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Abstract. In section 1 we present definitions and basic results concerning the Mazur
intersection property (MIP) and some of its related properties as the MIP* . Section 2
is devoted to renorming Banach spaces with MIP and MIP*. Section 3 deals with the
connections between MIP, MIP* and differentiability of convex functions. In particular,
we will focuss on Asplund and almost Asplund spaces. In Section 4 we discuss the
interplay between porosity and MIP. Finally, in section 5 we are concerned with the
stability of the (closure of the) sum of convex sets which are intersections of balls and
with Mazur spaces.

1. The Mazur intersection property and its relatives

It was Mazur [39] who first drew attention to the euclidean space property: every

bounded closed convex set can be represented as an intersection of closed balls. He began

the investigation to determine those normed linear spaces which posses this property,

named after him the Mazur intersection property or MIP. He proved Theorem 1.1, whose

proof is so nice and clear that it deserves to be the starting point for this survey. The

following easy (and useful) fact will be used extensively throughout the rest of the paper:

a closed, convex and bounded set C is an intersection of balls if and only if for every

x /∈ C, there is a closed ball containing the set but missing the point. Hence, the MIP

can be regarded as a separation property by balls which is stronger than the classical

separation property by hyperplanes. We denote by B and S the unit ball and unit sphere

of a Banach space. Analogously, B∗ and S∗ will stand for the corresponding unit ball and

unit sphere in the dual space.

Theorem 1.1. If a norm ‖·‖ in a Banach space X is Fréchet differentiable, then (X, ‖·‖)
satisfies the Mazur intersection property.

Proof. Consider a closed convex and bounded set C and assume that 0 /∈ C. We will

find x ∈ X and r > 0 such that C ⊂ x + rB but 0 /∈ (x + rB). Since 0 /∈ C, there is
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a norm one functional f ∈ S∗ such that inf f(C) > 0. Using Bishop-Phelps theorem, we

can find a norm-attaining functional g ∈ S∗ close enough to f so that inf g(C) > 0. If

we pick x ∈ S satisfying g(x) = 1 then g = ‖ · ‖′(x). The idea now is considering a ball

big enough so that its boundary play the role of a separating hyperplane. To this end,

put ε = (inf g(C))/2 and, for n ≥ 2, consider the ball Bn = nεx + (n− 1)εB. Clearly, for

every n ≥ 2 we have 0 /∈ Bn. We will show that C ⊂ Bn for some n. If this is not the

case, for each n ≥ 2 we can choose xn ∈ C \Bn. Then ‖xn − nεx‖ > (n− 1)ε and hence

‖x− (1/nε)xn‖ > 1− 1/n (1.1)

Using that ‖ · ‖ is Fréchet differentiable at x and g = ‖ · ‖′(x) we can write, for every

h ∈ X,

‖x + h‖ − ‖x‖ − g(h) = r(h), where lim
h→0

r(h)/||h|| = 0. (1.2)

Replacing now in the above equation h by −(1/nε)xn, using 1.1 and the equality ε =

inf g(C)/2, we obtain

r(−(1/nε)xn) = ‖x− (1/nε)xn‖ − 1 + g((1/nε)xn) > 1/n .

Hence, for n ≥ 2,

r(−(1/nε)xn)

‖ − (1/nε)xn‖ ≥
(1/n)

‖(1/n)ε−1xn‖ ≥
ε

supn{‖xn‖} . (1.3)

which contradicts 1.2 since {xn} ⊂ C, C is bounded and limn ‖(1/nε)xn‖ = 0. ¤

Norm one functionals f ∈ X∗ satisfying that for every ε > 0 there exists a weak* slice

S = {x∗ ∈ B∗ : x∗(x) ≥ 1− δ} (where x ∈ S and δ > 0) such that diam (f ∪ S) < ε were

introduced in [11] under the name of semi-denting points. When, in addition, we ask that

f ∈ S, then we recover the classical definition of weak* denting point. Semidenting points

play an important role in questions related to the MIP because of the following key result,

due to Chen and Lin, whose proof can be found in [11]. It is the key to the subsequent

characterization of MIP, probably the most useful between the several characterizations

known of this property [18].

Proposition 1.2. A functional f ∈ S∗ is a semi-denting point of B∗ if and only if for

every closed convex and bounded set C and every x ∈ X, if f separates C and x then

there is a ball D in X with C ⊂ D and x /∈ D.

Proposition 1.3. Given a Banach space, the following conditions are equivalent:

(i) The space has the Mazur intersection property.

(ii) There is a dense set of semi-denting points in S∗.
(iii) There is a dense set of weak* denting points in S∗.
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Proof. To prove the equivalence between (ii) and (iii), note that weak* denting points are

semi-denting points so we only need to prove (ii) =⇒ (iii). To this end, define Fn as

the set of those norm one functionals lying in the (relative to S∗) interior of some S∗ ∩ S
where S is a weak* slice of diameter less than 1/n. Then Fn is open and, using (ii), dense

in S∗. Therefore F = ∩nFn is also dense in S∗ (actually, F is a Gδ dense set). Note,

finally, that F is the set of weak* denting points of S∗.

To prove that (i) implies (ii), we will use Proposition 1.2 to see that every norm

one functional is a semidenting point. Indeed, consider f ∈ S∗, C a closed, convex

and bounded set and, finally, x ∈ X \ C. Assume, for instance, that f(x) > 0 and

sup f(C) < 0 (otherwise we can consider a suitable translation C−y and x−y). There is

λ > 0 satisfying C ⊂ λMf where Mf = {z ∈ B : f(z) ≤ 0}. Now, since X has the MIP,

Mf is an intersection of balls, thus implying the existence of a ball D containing Mf but

missing x. The same ball D separates C from x.

The arguments to prove that (ii) implies (i) are quite similar. Let C be convex,

bounded and closed and let x /∈ C. By using (ii), we can find a semi-denting point

f ∈ S∗ separating C from x, say for instance that sup f(C) < f(x). We may assume that

sup f(C) < 0 and f(x) > 0. Clearly, for enough big n ∈ N, C ⊂ nB and x ∈ nB. Using

that f is semi-denting, it is not difficult to prove that Mf is an intersection of balls, and

so it is nMf . As a consequence, there is a ball containing Mf (hence C) that miss the

point x, thus implying that C is also an intersection of balls. ¤

Clearly, the set of semi-denting points is closed. Indeed, if f ∈ S∗ is not semi-denting,

there is ε > 0 such that the set B(f, ε) = {x∗ ∈ S∗ : ‖x∗ − f‖∗ < ε} does not contain

the intersection of S∗ with a weak* slice and thus no point g of B(f, ε) is semi-denting,

either. As a consequence, condition (ii) of Proposition 1.3 easily implies that every norm-

one functional is a semi-denting point. A weak* denting point is an extreme point. In

a finite dimensional space, and extreme point is always a weak* denting point, so the

classical Phelps’ result is inmediate from the above proposition.

Corollary 1.4. [47] A finite dimensional normed linear space X has the MIP if and only

if the set of extreme points of B∗ is dense in S∗.

Since the weak* denting points of B∗∗ must be points of X, we get easily the following

consequence of Proposition 1.3. Besides, having in mind Proposition 1.1, note also that

next corollary generalizes the well known result that X is reflexive if the norm of X∗ is

Fréchet differentiable.

Corollary 1.5. A Banach space whose dual X∗ satisfies the MIP is reflexive.
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There exist some other characterizations of spaces with MIP, in terms of the duality

mapping, support mappings and points of ε-differentiability (see [18]), though probably

the most useful is the one given in Proposition 1.3.

Among the several intersection properties that appeared as variations on the MIP,

probably the most important is the weak* Mazur intersection property or MIP* introduced

in [18]: a dual space satisfies the MIP* if every weak* compact convex set is an intersection

of closed dual balls. In [18] it is shown that every result for MIP has an analogous

formulation for MIP*. In particular, it is connected with convexity properties of the

predual space:

Proposition 1.6. [18] A dual space X∗ has the MIP* if and only if the set of denting

points of the predual unit ball is dense in its unit sphere.

The nice piece of work contained in [18] was the culmination of previous results

obtained, among others, by Phelps [47] and Sullivan [56]. Since these pioneering works,

the investigation on different intersection properties has been slow but steady. Whitfield

and Zizler studied in [60] the property that every compact convex set is an intersection

of closed balls. Further research on this property was carried out later by Sersouri in

[52] and [53] and later by J. Vanderwerff [59]. The corresponding intersection property

for weakly compact and convex sets was investigated by Zizler in [65] and J. Vanderwerff

in [59]. Finally, an uniform version of the MIP was considered in [61] by Whitfield and

Zizler. A unified approach to different intersection properties is presented by Chen and

Lin in [10]. Other authors have also contributed to the study of MIP and MIP* as Acosta

and Galan in [1], P. Bandyopadhyaya and A. Roy in [3] and finally, P. Georgiev and P. S.

Kenderov, whose results will be mentioned in the next sections.

2. Renorming Banach spaces with MIP or MIP*

Both MIP and MIP* are metric properties and hence invariant under isometries but

not under isomorphisms. The question of whether a Banach space can be renormed

with MIP or a dual space with MIP* has not an easy answer. Indeed, one might well

ask how, when provided with a norm, one can construct an equivalent norm such that

every closed convex body is an intersection of (new) closed balls. Zizler [65] realized

that Troyansky renorming techniques for LUR norms ([9], Lemma 7.1.1) can be applied

to study intersection properties. This fruitful idea turned out to be specially successful

when applied first to MIP* [41] and later to MIP [31]. Recall that a biorthogonal system

{xi, x
∗
i }i∈I ⊂ X ×X∗ is fundamental provided X = span ({xi}i∈I).

Lemma 2.1. Let X be a Banach space with a fundamental biorthogonal system {xi, x
∗
i }i∈I ⊂

X ×X∗. Then, the subspace Y = span ({xi}i∈I) admits a LUR norm.
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Theorem 2.2. Let X be a Banach space with a fundamental biorthogonal system. Then

X∗ admits an equivalent norm with the MIP*.

The above theorem applies to a fairly wide class of Banach spaces including, for

instance, the dual of `∞(Γ). This fact will be used later to prove that almost every norm

(in the sense of Baire) in this space is Fréchet differentiable on a dense set. We only

know few Banach spaces which admits no fundamental biorthogonal system. This is the

case, for instance, of Kunen, Shelah and the space `c
∞(Γ) (the subspace of all elements

of `∞(Γ) with countable support, being card Γ strictly bigger than the cardinal of the

continuum), spaces that will appear later in this survey. Before to state the analogous

versions of these results for the MIP let us mention that, once we know that there is an

equivalent norm with MIP (or MIP*, if it is dual) in a Banach space, then there are many.

In fact, Georgiev [16] proved that almost every norm (again in the Baire sense, that will

be precised latter) satisfies this property provided there is one satisfying it.

Proposition 2.3. [16] Given a Banach space X, the set of norms having the MIP is

either empty or residual. Analogously, the set of dual norms having MIP* is either empty

or residual (in the set of all dual norms).

This result has many applications. For instance, it can be used together with the

following proposition to show the density of norms which are Fréchet differentiable in

open dense sets in spaces with MIP or MIP*. There exist even stronger results linking

MIP, MIP* and differentiability that will be discussed later, in the section devoted to

almost Asplund spaces.

Proposition 2.4. [41] If X∗ has MIP*, then the predual norm can be approximated by

norms which are Fréchet differentiable on an open dense set. Also, if X has MIP, then

the dual norm can be approximated by (dual) norms which are Fréchet differentiable on

an open dense set.

It was for long time an open problem to determine whether spaces with the MIP are

Asplund spaces. Also, it was unknown if every Asplund space admits a norm with the

MIP or, in particular, a Fréchet differentiable norm. The latter was shown in the negative

by Haydon [28]. First and second problems were also answered in the negative in [31]

using, together with Proposition 1.3, the following results.

Theorem 2.5. Let (X∗, ‖·‖∗) be a dual Banach space with a biorthogonal system {xi, fi}i∈I ⊂
X∗ ×X and X0 = span ({xi}i∈I). Then, X∗ admits an equivalent dual norm | · |∗ which

is locally uniformly rotund at the points of X0. Then, if X0 is dense in X∗, the Banach

space X with the predual norm | · | has the Mazur Intersection property.
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Outline of the proof. We may assume that ‖fi‖ = 1, for every i ∈ I and let us consider

∆ = {0} ∪ N ∪ I. Define the map T from X∗ into `∞(∆) as follows:

T (x)(δ) =




‖x‖∗ if δ = 0
2−nGn(x) if δ = n ∈ N
fi(x) if i ∈ I

for every x ∈ X∗ and δ ∈ ∆, where

FA(x) =
∑
i∈A

|fi(x)|

EA(x) = dist
(
x, span({xi}i∈A)

)
A ⊂ I, card A < ∞

Gn(x) = sup
card A≤n

{EA(x) + nFA(x)}.

Clearly T (X∗) ⊆ `∞(∆) and T (X0) ⊆ c0(∆). On the other hand, since

2−n(1 + n2) ≤ 2 for every n ∈ N , we have ‖x‖∗ ≤ ‖T (x)‖∞ ≤ 2‖x‖∗ .

For every δ ∈ ∆, consider the map Tδ(x) = T (x)(δ), x ∈ X∗. Obviously, if δ ∈ I∪{0}
the map Tδ is weak*-l.s.c. . Moreover, the maps FA and, the maps EA are weak*-l.s.c.,

so Tδ is weak*-l.s.c. for every δ ∈ ∆.

Let p be the Day norm [9, p.69] in `∞(∆) , and consider in X∗ the map n(x) =

p(T (x)) , x ∈ X∗. It can be easily proved that n(·) is an equivalent norm in X∗. The

norm n(·) has the following expression:

n(x)2 = sup{
n∑

i=1

|Tδi
(x)|2
4i

: (δ1, δ2, . . . , δn) ⊂ ∆, δi 6= δj, n ∈ N}

so n(·) is weak*-l.s.c. , that is, n is a dual norm | · |∗. The norm p defined in `∞(∆) is

locally uniformly rotund at the points of c0(∆). It can be checked that the norm | · |∗ is

locally uniformly rotund at the points of X0 [31]. Now, it is straightforward to verify that

the points of X0 ∩ S|·|∗ are weak* denting points of B|·|∗ . Finally, if the subspace X0 is

dense in X∗, by the Proposition 1.3, the space X endowed with the predual norm of | · |∗
has the Mazur intersection property. ¤

Corollary 2.6. Let X, Y be Banach spaces such that dens X∗ ≤ dens Y ∗. Suppose that

Y ∗ has a fundamental biorthogonal system {yi, fi}i∈I ⊂ Y ∗ × Y . Then, the Banach space

X ⊕ Y admits an equivalent norm with the MIP.

Proof. Let us consider Z = X⊕Y with the norm ||(x, y)||Z = ||x||X + ||y||Y . By Theorem

2.5 we need only to show that Z∗ ≈ X∗⊕Y ∗ has also a fundamental biorthogonal system
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in Z∗ × Z. An element x∗ + y∗ of X∗ ⊕ Y ∗ is considered an element of Z∗ in the usual

way: (x∗ + y∗)(x + y) = x∗(x) + y∗(y) for every x ∈ X, y ∈ Y . Relabel the fundamental

biorthogonal system given in Y ∗ as {yn
i , fn

i }i∈I, n∈N . We may assume that ‖yn
i ‖Y ≤ 1/n

for every i ∈ I, n ∈ N. Let us take a dense set {xi}i∈I of X∗. Then, the system

S = {xi + yn
i , fn

i }i∈I, n∈N ⊂ Z∗ × Z

is a fundamental biorthogonal system in Z∗ and we conclude the proof. ¤

As a corollary, we get that every Banach space X can be embedded into a Banach

space with the MIP: just consider X ⊕ `2(Γ) with card Γ = dens X∗. Thus, for instance,

the non-Asplund space `1⊕`2(c) admits an equivalent norm with the MIP. We also obtain

as an application of the above corollary the following result of Deville [6].

Corollary 2.7. [6] For every ordinal η, the long James space J(η), its predual M(η) and

every finite dual of J(η) admit an equivalent norm with the Mazur intersection property.

Proof. First, we need to observe that `2(η) can be complementably embedded into J(η).

Indeed, consider the subset

A = {α ∈ [0, η] : α = 2n or α = γ + 2n , with γ ordinal limit and n ≥ 1 }

and the subspace H(η) = {f ∈ J(η) : f(α) = 0 if α /∈ A}. The subspace H(η) is

isomorphic to `2(A) and card A = card η. On the other hand, the projection f ∈ J(η) −→
p(f) ∈ H(η) defined as

p(f)(α) =

{
f(α)− f(α− 1) if α ∈ A
0 if α /∈ A

is continuous and, therefore, H(η) is complemented in J(η). Thus, we have that J(η) ≈
`2(η)⊕ Y for a Banach space Y (which can be easily identified with J(η) ) and J(η)∗ ≈
`2(η)⊕ Y ∗.

On the other hand, M(η), J(η) and every finite dual of J(η) are Asplund spaces

[12]. Consequently dens `2(η) = card η ≥ dens Y = dens Y ∗ = dens Y ∗∗ and, applying

Corollary 2.6, we obtain that J(η) and J(η)∗ admit a norm with the Mazur intersection

property. The assertion for M(η) and the dual spaces of J(η)∗ follows from the fact that

M(η) is isometric to J(η)∗ (cf. [12]). ¤

Consider the James’tree space JT . It is shown in [37] that JT ∗∗ is isomorphic to

JT ⊕ `2(R). Then, as a consequence of Corollary 2.6, we obtain that JT ∗∗ and finite

even duals of JT ∗∗ admit an equivalent norm with the Mazur intersection property. On
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the other hand, notice that the space JT ∗ and finite odd duals of JT admit a Fréchet

differentiable norm since their duals are WCG. We finish this section with the following

consequences, the first one already mentioned.

Corollary 2.8. (i) Every Banach space X can be almost isometrically complementably

embedded into a Banach space with the Mazur intersection property.

(ii) Every Banach space X may be isometrically embedded into a Banach space Z with

the Mazur intersection property.

Proof. (i) Let us consider the Banach space Z = X ⊕ `2(Γ) with card Γ = dens X∗ .

By Corollary 2.6, Z can be renormed with the MIP and a useful result of Georgiev [16]

ensures that the set of equivalent norms with the Mazur intersection property in a Banach

space is either empty or residual. In this case the set is residual and implies the assertion.

Notice that dens Z = dens X∗. Clearly, this is sharp in the sense that, necessarily, if a

Banach space Z has the MIP, dens Z = dens Z∗. In addition, if X is a subspace of Z,

dens Z ≥ dens X∗.

(ii) We denote by α = dens X , β = α+(= min {γ ordinal number : card γ > α }),
and the Banach space

mα(β) = { x ∈ `∞(β) : supp x has cardinality at most α },

with the supremum norm ‖x‖ = supγ<β |xγ|. Obviously, X may be isometrically embed-

ded into (mα(β), ‖·‖) . On the other hand, by Corollary 2.8, mα(β) embeds into a Banach

space (Z, | · |) with the Mazur intersection property and, by a result of Partington [46],

(mα(β), ‖·‖) embeds isometrically into (mα(β), | · |) . Therefore, X embeds isometrically

into (Z, | · |) . Note that, with this argument, we have dens X∗ < dens Z∗ ¤

We are concern now with the three-space problem for the MIP. The following result

states that being isomorphic to a Banach space with the MIP is a three space property

[51]. An application of this result states that every space of continuous functions over a

tree can be renormed with the MIP [31].

Proposition 2.9. Let X be a Banach space and Y be a closed subspace of X such that

Y admits a norm with the Mazur Intersection Property and X/Y admits a norm with

the Mazur intersection property. Then X admits a norm with the Mazur intersection

property.

Sketch of the Proof. M. Raja [51] proved the following renorming theorem: Consider the

set D of all weak*-denting points of the (dual) unit ball of a dual Banach space X∗. Then,

X∗ admits an equivalent dual norm which is locally uniformly rotund at every point of

D. Thus, we may assume that both Y ∗ and (X/Y )∗ admit equivalent dual norms with
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a (Gδ) dense set of LUR points. The existence of an equivalent dual norm in X∗ with a

(Gδ) dense set of LUR points follows by imitating the proof of the three-space property

for locally uniform rotund renormings given in [21]: We consider, under the standard

identifications, (X/Y )∗ to be the annihilator subspace Y ⊥ with the weak* topology in

(X/Y )∗ being the same as the induced weak* topology which Y ⊥ inherites as a subspace

of X∗. Then, we may assume that there is a norm on Y ⊥ which is σ(Y ⊥, X)-l.s.c. and

has a Gδ dense set of locally uniformly rotund points. The subspace Y ⊥ is weak* closed

so this norm can be extended to an equivalent dual norm ‖ · ‖∗ on X∗. Let | · |∗ be an

equivalent dual norm on Y ∗ which is locally uniformly rotund at a Gδ dense set. Consider

the restriction map Q : X∗ → Y ∗, which is weak*-weak* continuous and the Bartle-

Graves continuous selection mapping B : Y ∗ → X∗, which is bounded on bounded sets,

B(y∗) = |y∗|∗B(y∗/|y∗|∗) and B(0) = 0. For every y∗ ∈ S|·|∗ = {y∗ ∈ Y ∗ : |y∗|∗ = 1},
take y ∈ Y such that y∗(y) = 1 and |y| ≤ 2. Define Py∗(x

∗) = x∗(y)B(y∗), for x∗ ∈ X∗,
which is weak*-weak* continuous. The following family of weak* l.s.c. convex functions

defined on X∗

ϕy∗(x
∗) = |Q(x∗) + y∗|∗,

ψy∗(x
∗) = ||x∗ − Py∗(x

∗)||∗, y∗ ∈ S||·||∗ ,

is uniformly bounded on bounded sets. Therefore, if we consider

φk(x
∗) = sup{ϕy∗(x

∗)2 + 1
k
ψy∗(x

∗)2 : y∗ ∈ S|·|∗},

φ(x∗) = ‖x∗‖∗2 + |Q(x∗)|∗2 +
∑

k

2−kφk(x
∗),

the Minkowski functional |||·|||∗ of the set {x∗ ∈ X∗ : φ(x∗)+φ(−x∗) ≤ 4} is an equivalent

dual norm on X∗.

Consider the mapping (not necessarily linear) S : X∗ → Y ⊥, defined as S(x∗) =

x∗ −B(Q(x∗)) . It is proved in [21] that x∗ is a locally uniformly rotund point for ||| · |||∗
provided Q(x∗) is locally uniformly rotund for | · |∗ and S(x∗) is locally uniformly rotund

for ‖ · ‖∗ in Y ⊥. To conclude, observe that the mappings S and Q are continuous and

open. Then, the sets

L|·|∗ = {x∗ ∈ X∗ : | · |∗ is locally uniformly rotund at Q(x∗)},
L‖·‖∗ = {x∗ ∈ X∗ : S(x∗) is weak* denting of ‖ · ‖∗ in Y ⊥ }

and therefore L = L|·|∗ ∩ L‖·‖∗ are Gδ dense sets of X∗. Hence, the space (X, ||| · |||) has

the Mazur intersection property. ¤
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Haydon gave in [28] an example of an Asplund space admitting no equivalent Gâteaux

differentiable norm, namely the space C0(L) of all continuous functions vanishing at the

infinity over the following tree L : denote by ω1 the smallest uncountable ordinal, α

an ordinal number and consider L =
⋃

α<ω1
ωα

1 which is called the full uncountable

branching tree of height ω1. Therefore, it is a natural question to ask whether the space

C0(L) admits an equivalent norm with the Mazur intersection property [9, Ch. VII]. The

answer is affirmative. Moreover, for every tree T , the space C0(T ) admits a norm with

the Mazur intersection property.

Lemma 2.10. Let K be a compact Hausdorff scattered space such that card K = card I,

being I the set of isolated points of K. Then, the Banach space C(K) admits an equivalent

norm with the Mazur intersection property.

Proof. The space C(K) is an Asplund space, so its dual space is identifiable with `1(K).

For every ω ∈ K ′ = K \ I, we can consider disjoint subsets of different points {tωn}∞n=1 ⊂ I

and A = I \ {tωn : ω ∈ K ′, n ∈ N }. Denote by δt ∈ `1(K) the evaluation at the point

t ∈ K and by χt the characteristic function at the point t. Clearly χt ∈ C(K) if and only

if t is an isolated point in K. Let us consider the biorthogonal system {yω
n , fω

n }n∈N, ω∈K′ ⊂
C(K)∗ × C(K) , where yω

n = (1/n)δtωn and fω
n = nχtωn . Then, the system

S = {δω + yω
n , fω

n }n∈N, ω∈K′ ∪ {δt, χt}t∈A ⊂ C(K)∗ × C(K)

is a fundamental biorthogonal system in C(K)∗. We apply now Corollary 2.6 to finish

the proof. ¤
Remark 2.11. The above tree L =

⋃
α<ω1

ωα
1 equipped with the order topology is a locally

compact scattered Hausdorff space such that the cardinal of its isolated points is equal

to card(L). Hence, its Alexandrof compactification αL is a compact Hausdorff scattered

space such that card(αL) = card(I), being I the set of isolated points of αL. So, the

Banach space C(αL) verifies Lemma 2.10. As C0(L) is isomorphic to C(αL), C0(L) also

verifies this Lemma.

Every tree T equipped with the order topology is a locally compact scattered Hausdorff

space with card(T ) ≥ card(I), being I the set of isolated points of T . When card(T ) >

card(I) we cannot apply Lemma 2.10 but, in spite of this fact, next proposition shows

that C0(T ) admits an equivalent norm with the MIP.

Proposition 2.12. The Banach space C0(T ) admits a norm with the Mazur intersection

property whenever T is a tree space.

Proof. For any t ∈ T we denote by t+ the set of immediate successors of t and consider

the subset of T

H = {t ∈ T ′ : t+ = ∅},
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where T ′ is the set of all accumulation points of T and the closed subspace of C0(T )

Y = {f ∈ C0(T ) : f(t) = 0, if t ∈ H}.

The space T \ H is locally compact, Hausdorff, scattered and verifies that the cardinal

of its isolated points is equal to card(T \ H). Hence, the Alexandrov compactification

α(T \H) of T \H is scattered and verifies that card(α(T \H)) = card(I), I being the set

of isolated points of α(T \H). Observe that Y ≈ C0(T \H) is isomorphic to the space of

all continuous functions on α(T \H). Then, by Lemma 2.10, we obtain a norm on Y such

that its dual norm has a dense set of locally uniformly rotund points. On the other hand,

it can be easily verified using the fact that H is an antichain and the Tietze’s extension

theorem that C0(T )/Y is isomorphic to c0(H) , and then, C0(T )/Y admits a norm such

that its dual norm has a dense set of locally uniformly rotund points. Now the assertion

follows from Proposition 2.9. ¤

3. MIP, MIP*, Asplund and almost Asplund spaces

The results obtained in the previous section provide a wide range of Banach spaces

with an equivalent MIP norm. This could induce to think that this class of Banach spaces

is larger than the class of Asplund spaces. This is not the case. There are Asplund spaces

which cannot be renormed with the MIP ([31] and [22]). An example to this assertion is

the Kunen space [35], a C(K) Banach space where K is a scattered compact set (and thus

C(K) is Asplund) constructed assuming the continuum hypothesis. The Kunen space is

a non-separable Asplund space satisfying that for every uncountable set {xi}i∈I in the

space, there exists i0 ∈ I such that

xi0 ∈ conv
({xi}I\{i0}

)
. (3.1)

The first example of a non-separable Banach space satisfying (3.1) was constructed

by Shelah assuming the diamond principle for ℵ1 [54].

Proposition 3.1. The Kunen and Shelah spaces do not admit an equivalent norm with

the Mazur intersection property. Analogously, the duals of the previous spaces do not

admit a dual norm with the MIP*.

Proof. First, if a Banach space X with a norm | · | has the Mazur intersection property,

then, by Proposition 1.3(iii), the dual norm | · |∗ has a dense set of weak* denting points

in its unit sphere. Consider 0 < δ < 1 and find a family of weak* denting points

(fα)α∈I ⊂ S|·|∗ with card I = dens X∗ = dens X such that

|fα − fβ| ≥ δ, for α 6= β. (3.2)
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Then, there is a family of slices S(B|·|∗ , yα, ρα), for α ∈ I, with |yα| = 1, fα(yα) > ρα > 0 ,

and

S(B|·|∗ , yα, ρα) ∩ S(B|·|∗ , yβ, ρβ) = ∅, for α 6= β. (3.3)

We denote xα = (1/ρα)yα for every α ∈ I. It follows from (3.3) that fα(xα) > 1 and

|fα(xβ)| ≤ 1 for α, β ∈ I, β 6= α. Consequently,

xα /∈ conv
({xβ}β∈I\{α}

)
. (3.4)

Therefore, if X is a non-separable Banach space with the MIP, there is an uncountable

subset {xα}α∈I ⊂ X satisfying (3.4). This implies that that the Kunen and Shelah spaces

does not admit an equivalent norm with the MIP.

For the second assertion, consider the Banach space (X∗, | · |∗) with the weak* Mazur

intersection property. Then, by Proposition 1.6, the norm | · | has a dense set of denting

points in its unit sphere. Take 0 < δ < 1 and find a family of denting points (xα)α∈I in

X, |xα| = 1, with card I = dens X such that

|xα − xβ| ≥ δ, for α 6= β. (3.5)

¿From the fact that the points (xα)α∈I are denting in B|·| and condition (3.5), we get

that, for every α, xα /∈ conv
({xβ}β∈I\{α}

)
. Thus, the duals of the Kunen and Shelah

spaces do not admit an equivalent dual norm with MIP*. ¤

The property exhibited in (3.1) shared by the spaces contructed by Shelah and Kunen,

that is, for every uncountable family of points in the space there is one point in the closed

convex hull of the rest, has been extensively studied in [22]. Let us denote this property

by KS. The following result was proved for the Kunen space in [31] and for the general

case in [22].

Theorem 3.2. Let X be a Banach space. The following assertions are equivalent:

(i) X has the KS property.

(ii) Every weak*-closed convex subset K ⊂ X∗ is weak*-separable.

(iii) Every convex subset K ⊂ X∗ is weak*-separable.

Let us mention that there are still a number of open problems concerning the MIP,

as the existence of points of Fréchet differentiability in spaces with this property. While

spaces with Fréchet differentiable norm satisfy the Mazur intersection property, it is un-

known if it is also the case of spaces with a (Fréchet) differentiable bump function. In

this setting, it was proved in [8] the following result.

Theorem 3.3. [8] If a Banach space has the Radon-Nikodým property and a Fréchet

differentiable bump function, then it has an equivalent norm with the MIP.
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We are concerned now with the connections between Mazur intersection property on

X or weak* Mazur intersection property on X∗ and the generic differentiability of “most”

equivalent (dual) norms defined on X∗ or X, respectively. Let F be the space of all

sublinear, positively homogeneous, continuous functionals on a Banach space X, furnished

with the metric ρ associated to the uniform convergence on bounded sets. Analogously,

let F ∗ be the space of all sublinear, positively-homogeneous, continuous and w∗-lower

semicontinuous functionals on X∗. The spaces (F, ρ) and (F ∗, ρ) are complete metric

spaces and thus Baire spaces.

A Banach space X (resp. the dual X∗ of a Banach space X) is called almost Asplund

(resp. almost weak* Asplund) space, if there exists a dense Gδ subset F0 of F (resp. F ∗
0

of F ∗) such that every f ∈ F0 (resp. every f ∗ ∈ F ∗
0 ) is Fréchet differentiable on a dense

Gδ subset of X (resp. of X∗). The first author to consider this class of Banach spaces

was P. Georgiev [15]. He proved that MIP in X and MIP* in X∗ imply that X is almost

Asplund and X∗ is almost weak* Asplund. More connections between differentiability of

convex functions and Mazur (weak* Mazur) intersection properties were investigated by

Kenderov and Giles [34] and J. P. Moreno [41], among others. Later on, following the

ideas of [15], it was proved in [17] that the dual of a Banach space with the MIP is a

almost weak∗ Asplund space and, analogously, the predual of a dual space with the MIP*

intersection property is an almost Asplund space. We will focus here on this last result

and its geometrical derivations.

Some interesting consequences are obtained by considering norms instead of sublinear

functionals. Among them, we can mention that “almost all in the Baire sense” (we shall

detail this later) equivalent norms on a Banach space with a fundamental biorthogonal

system are Fréchet differentiable on a dense Gδ subset. This is the case, for instance, of

spaces `1(Γ) and `∞(Γ), for every Γ, whose bad differentiability behavior is well known.

Moreover, there are only few examples of spaces without fundamental biorthogonal system

([49], [44]) so this result applies for most Banach spaces.

Denote by HX , or just H if there is no ambiguity on the space we are considering, the

set of all bounded, closed, convex and nonempty subsets of a real Banach space X. The

Hausdorff distance between C1, C2 ∈ H is given by

d(C1, C2) = inf {ε > 0 : C1 ⊂ C2 + εB, C2 ⊂ C1 + εB},

where B is the unit ball of X. The space (H, d) is a complete metric space [36] and, hence,

a Baire space. Denote by H∗ the elements of HX∗ which are weak* closed. The space

(H∗, d) is also a complete metric space. The mappings I : (H, d) → (F ∗, ρ), where I(K) :=

σK the support functional on K: σK(x∗) = supx∈K〈x, x∗〉, and Î : (H∗, d) → (F, ρ), where

Î(K∗) := σK∗ , the support functional on K∗ defined on X, σK∗(x) = supx∗∈K∗〈x, x∗〉, are
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homeomorphisms. The existence of the homeomorphisms I and Î and the duality between

Fréchet differentiability and strong exposition can be tied together in the following Lemma

3.4 whose proof is omitted.

Lemma 3.4. A Banach space X is almost Asplund if and only if there is a dense Gδ

subset H∗
0 ⊂ H∗ such that every element of H∗

0 has a dense Gδ set of weak*-strongly

exposing functionals in X. A dual Banach space X∗ is almost weak* Asplund if and only

if there is a dense Gδ subset H0 ⊂ H such that every element of H0 has a dense Gδ set

of strongly exposing functionals in X∗.

Let b : X → S∗ be a selection of the subdifferential mapping of the norm, i.e.

〈x, b(x)〉 = ‖x‖ for every x ∈ X. Given C ⊂ X, f ∈ X∗ and α > 0, we will denote

by S(C, f, α) the slice {x ∈ C : f(x) > sup f(C)− α}. The following lemma is a key tool

in the proof of the result cited above. There is an analogous version for a dual Banach

space with the weak* Mazur Intersection Property.

Lemma 3.5. Let X be an infinite dimensional Banach space with the Mazur intersection

property. Then, for every n ≥ 2, there is a subset Xn ⊂ X such that:

(i) ∪∞n=2 b(Xn) is dense in S∗,

(ii) 〈x, b(x)〉 > supz∈Xn\{x}〈b(x), z〉, for every x ∈ Xn,

(iii) ‖b(x)− b(y)‖ > 1
n
, for every x, y ∈ Xn, x 6= y.

Proof. By Proposition 1.3, the dual norm has a dense set X∗
0 of weak* denting points

in its unit sphere. Consider for every n ≥ 2, a maximal subset X∗
n ⊂ X∗

0 satisfying

‖x∗ − y∗‖ > 2/n, for every x∗, y∗ ∈ X∗
n , x∗ 6= y∗. Then, F ∗

0 = ∪∞n=2X
∗
n ⊂ X∗

0 is dense

in S∗, and for every x∗ ∈ X∗
n there is a slice S(B∗, yn(x∗), γn(x∗)), yn(x∗) ∈ B∗ and

γn(x∗) ∈ (0, 1
n
) so that,

x∗ ∈ S(B∗, yn(x∗), γn(x∗)), diam S(B∗, yn(x∗), γn(x∗)) <
1

2n

and

S(B∗, yn(x∗), γn(x∗)) ∩ S(B∗, yn(z∗), γn(z∗)) = ∅ (3.6)

for every x∗, z∗ ∈ X∗
n, x∗ 6= z∗. By (3.6) it follows that yn(x∗1) 6= yn(x∗2) for x∗1 6= x∗2,

i.e. the mapping yn : X∗
n → S is an injection. We have ‖x∗ − b(yn(x∗))‖ < 1

2n
, for every

x∗ ∈ X∗
n and

‖b(yn(x∗1))− b(yn(x∗2))‖ >
1

n
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for each x∗1, x
∗
2 ∈ X∗

n, x∗1 6= x∗2. If we define Xn = { yn(x∗)
1−γn(x∗) : x∗ ∈ X∗

n}, then it is easy to

check the conditions (i), (ii), (iii) and the proof is completed. ¤

Theorem 3.6. Consider a Banach space X with dual X∗.

(i) If X has the Mazur intersection property then X∗ is almost weak* Asplund.

(ii) If X∗ has the weak* Mazur intersection property then X is almost Asplund.

Sketch of the proof. The idea of the proof is contained in Theorem 4 of [15]. In order to

prove (i), it is enough to show the existence of a dense Gδ subset B0 ⊂ H such that every

element of B0 has a dense Gδ set of strongly exposing functionals in X∗. Let {Xn}n≥2 be

the sequence we have found in Lemma 3.5 and for every x ∈ Xn define:

αn(x) = 〈x, b(x)〉 − sup
y∈Xn\{x}

〈y, b(x)〉,

For integers n ≥ 2 and m ≥ 1 denote:

Hn,m = {x ∈ Xn : αn(x) >
1

m
}

and define Bn,m,k as the set of all Z ∈ H for which there are α > 0 and γ > 0 such that

diam S(Z, b(x), α) < 1
k
− γ for each x ∈ Hn,m if Hn,m 6= ∅ and Bn,m,k = H if Hn,m = ∅. It

can be proved that Bn,m,k is a dense and open subset of H for every n ≥ 2 and m, k ∈ N.

We omit the rather technical and cumbersome proof that can be found in [17]. Finally,

it is easy to see that every element of B0 := ∩n,m,kBn,m,k is strongly exposed by each

x∗ ∈ M , being M = ∪n,m{b(w) : w ∈ Hn,m}. By the Baire category theorem, B0 is dense

Gδ in H. Since M is dense in S∗ and since the strongly exposing functionals form a Gδ

subset, the proof is completed. The proof of (ii) is similar. ¤

An interesting corollary is now at hand, as a direct consequence of the above result

and the results in section 2.

Corollary 3.7. Consider a Banach space X with dual X∗.

(i) If X has a fundamental biorthogonal system then X is almost Asplund.

(ii) If X∗has a fundamental biorthogonal system {xi, x
∗
i }i∈I ⊂ X∗ × X then X∗ is

almost weak* Asplund.

Let N be the set of all equivalent norms on a Banach space X furnished with the

metric ρ, defined in this way,

ρ(n1, n2) = sup{|n1(x)− n2(x)|; x ∈ B||·||}, where n1, n2 ∈ N,



16 A. S. GRANERO, M. JIMÉNEZ-SEVILLA AND J. P. MORENO

and N∗ the set of all equivalent dual norms on X∗. Since N is an open subset of the

complete metric space of all continuous seminorms on X under the distance ρ and the

map π : ‖ · ‖ → ‖ · ‖∗ is an homeomorphism between N and N∗, both are Baire spaces. If

the space H (H∗) is replaced by the set of all unit balls of equivalent norms (dual norms,

respectively), we obtain analogous results replacing F (F ∗) by N (N∗).

There are few known Banach spaces without fundamental biorthogonal systems. In

fact, the question whether every Banach space is almost Asplund remains open. According

to Corollary 3.7, a possible counterexample should have no fundamental biorthogonal

system. This is the case of Kunen space mentioned above, but it is Asplund. On the other

hand, it is worth to mention that the duals of the Kunen and Shelah spaces are not almost

weak* Asplund. In fact, there is no equivalent dual norm being Fréchet differentiable on

a dense set in the preceding spaces. Otherwise, the unit ball of the associated (predual)

norm in the Kunen or Shelah spaces would be the closed convex hull of its strongly

exposed points. This would produce in the Kunen and Shelah spaces, by imitating the

proof of Proposition 3.1, an uncountable family satisfying the separation property given

in (3.4), thus a contradition. Plichko proved that `c
∞(Γ) (being card Γ strictly bigger than

the cardinal of the continuum) does not admit a fundamental biorthogonal system. We

do not know if this space and the Shelah space are almost Asplund.

Next theorem illustrates, under a different point of view, the relationship between

convexity and Mazur intersection properties. As an application, analogies and differences

between these properties and the Radon-Nikodým property are exhibited. Our aim here

is to point out that Mazur intersection properties seem to be a good alternative to Radon-

Nikodým property when some convexity conditions are required [17], [23] and [29]. Recall

that a Banach space X is said to have the Radon-Nikodým property if every element of

H is the closed convex hull of its strongly exposed points. A Banach space X is Asplund

if and only if X∗ has the Radon-Nikodým property.

Theorem 3.8. (A) Let X be a Banach space whose dual X∗ has the weak* Mazur inter-

section property. Then

(i) there exists a dense Gδ subset B0 ⊂ H such that every element of B0 is the closed

convex hull of its strongly exposed points.

(ii) there exists a dense Gδ subset B∗0 ⊂ B∗X∗ such that every element of B∗0 is the weak*

closed convex hull of its weak* strongly exposed points.

(B) Let X be a Banach space with the Mazur intersection property. Then there is B0

satisfying (i) and there exists a dense Gδ subset B∗0 ⊂ B∗X∗ such that every element of B∗0
is the weak* closed convex hull of its weak* denting points.
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4. Intersection of closed balls and porosity

4.1. Distance of two sets. Given a normed space X, and two closed and bounded

subsets C,D ⊂ X, denote by %(C,D) = inf{‖x − y‖ : x ∈ A, y ∈ B}. F. Hausdorff calls

%(A,B) the lower distance between A and B, though it is clear that it is not a metric,

since the triangle inequality is not fulfilled. How to define then a distance between closed

and bounded sets? Here is the most accepted formula, namely the Hausdorff distance,

that we have already used in section 3:

d(C,D) = sup{%(x,D), %(y, C) : x ∈ C, y ∈ D}
= inf{ε > 0 : C ⊂ D + εB and D ⊂ C + εB}

being B the unit ball. A well known theorem of H. Hahn establishes that the family

of all closed and bounded sets of X, endowed with the Haudorff distance, is a complete

metric space when X is complete [36]. Recall that HX (or simply by H, when it causes

no confusion) denotes the family of all closed, bounded and convex subsets of X. To

prove that H is also a complete metric space with the Hausdorff metric, when X is

complete, it just suffices to prove that, given a convergent sequence {Cn} ⊂ H, the limit

C also is a convex set. We may assume that d(Cn, C) < 1/n, for every n. Defining

Dn = Cn + (1/n)B, we know that C ⊂ Dn and d(Dn, C) < 2/n, so limn{Dn} = C. Now,

take x, y ∈ C and suppose that z lies in the segment [x, y] = {tx + (1− t)y : t ∈ [0, 1]}. If

z /∈ C, there is m ∈ N satisfying (z + (2/m)B)∩C = ∅. This implies that z /∈ Dm, which

contradicts the fact z ∈ Dn, for every n. Thus z ∈ C and C is convex. Therefore, H
endowed with the Hausdorff distance is a complete metric space and hence a Baire space.

4.2. Porous sets. Motivated by problems in Real Analysis and, especially, in differen-

tiation theory, several authors considered what came to be known as porosity, a notion

which concerns the size of holes of a set near a point. Topologically speaking, porous

sets are smaller than merely being a countable union of nowhere dense closed sets [62].

Consequently, porosity has been usually used to describe smallness in a topological sense.

Precisely, let M be a metric space, P a subset of M , B(x,R) the closed ball centered at

x with radius R and γ(x,R, P ) the supremum of all r for which there exists y ∈ M such

that B(y, r) ⊂ B(x,R) \ P . The number

ρ(x, P ) = 2 lim
R→0

sup
γ(x,R, P )

R

is called the porosity of P at x. We say that P is porous at x whenever ρ(x, P ) > 0

and, when P is porous at every point of M , we simply say that P is a porous set. If

there is ε > 0 satisfying ρ(x, P ) > ε for every x ∈ M , then P is said to be uniformly

porous. Finally, replacing “ lim sup ” by “ lim inf ” in the above definition, we encounter
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the notions of very porosity and very porous set, respectively. The unit sphere of a normed

linear space is an easy example of an uniformly very porous set.

In convex geometry, the use of porosity received in recent years a great deal of atten-

tion. Several topics as smoothness, strict convexity, diameters, nearest points and others

have been investigated by using porosity. We refer to the works of Zamfirescu [63], [64]

and Gruber [25], [26] for more information about this rich line of research.

In Banach space theory, porosity has been used to describe topological properties of

the set of points of Frechet nondifferentiability [48], [50] and also in relation with questions

of best approximation [5] and variational principles [7]. For these and other applications

of porosity, we refer to Zajicek’s survey [62] and Phelps’ book [48].

Let M be the collection of all intersections of balls, considered as a subset of H
furnished with the Hausdorff metric. The space has the Mazur intersection property or

MIP if M = H [39]. We will prove that M is uniformly very porous if and only if the

space fails the MIP. To this end, we need a handy description of the elements of H \M,

obtained as a consequence of Proposition 4.1, whose proof is partially based in Proposition

1.3. The only difficulty lies in (iii) implies (i) (see [30] for the details of the proof). In

what follows, given f ∈ X∗, we denote Kf = ker f ∩ B, Lf = {x ∈ B : f(x) ≥ 0} and

Mf = {x ∈ B : f(x) ≤ 0}.

Proposition 4.1. Given a Banach space, the following conditions are equivalent:

(i) The space has the Mazur intersection property.

(ii) There is a dense set F ⊂ S∗ satisfying Mf ∈M (Lf ∈M) for each f ∈ F .

(iii) There is a dense set F ⊂ S∗ satisfying Kf ∈M for each f ∈ F .

Theorem 4.2. The set M is uniformly very porous if and only if the space fails the

Mazur Intersection Property.

Proof. We find it convenient to isolate from the argument the following observation: con-

sider C ∈ H and λ > 0 so that D = {x ∈ C : d(x, ∂C) ≥ λ} 6= ∅; every set E ∈ H with

d(C, E) < λ contains also D. The proof is fairly easy: if x ∈ D \ E, there is a norm

one functional f separating x and E. Say, for instance, that f(x) > sup f(E). Clearly,

sup f(C) ≥ f(x) + λ > sup f(E) + λ, so d(C,E) > λ, a contradiction.

By Proposition 4.1, if X fails the Mazur Intersection Property there is a norm one

functional f such that Mf /∈ M. It means that there is also x0 ∈ B \ Mf such that

every ball containing Mf contains also x0. Denote by α = f(x0) > 0 and consider an
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arbitrary subset C ∈ B . We will prove that

ρ(C,M) = 2 lim
R→0

inf
γ(C,R,M)

R
≥ α

1 + α
.

and the proof will be accomplished by looking at two cases.

Case 1. The functional f attains its maximum over C, say at y0 ∈ C. Define the sets

CR = C + RB and DR = {x ∈ CR : f(x) ≤ sup f(C)}. Notice that DR /∈ M
since DR contains y0 + RMf and misses the point y0 + Rx0. However, we do not know

the existence of r > 0 such that Bd(DR, r) ⊂ H \M, which is necessary to compute the

porosity of C. It is then convenient to select a suitable modification of DR, namely the

set ER = DR + αR
2

B . We claim that the ball Bd(ER, αR/2− 1/n) satisfies

Bd(ER, αR/2− 1/n) ∩ M = ∅

for n ∈ N large enough so that αR/2 − 1/n > 0. Indeed, if G ∈ H and d(G,ER) ≤
αR/2− 1/n then y0 + Rx0 /∈ G but, due to the first remark, y0 + RMf ⊂ G so every ball

containing G should contain also y0 + Rx0.

Now, since d(ER, C) ≤ R+Rα/2, then Bd(ER, αR/2−1/n) ⊂ B(C,R+Rα). It means

that γ(C,R + Rα,M) ≥ αR/2− 1/n, for n large enough, so γ(C,R + Rα,M) ≥ αR/2,

thus implying that

2 lim
R→0

inf
γ(C,R + Rα,M)

R + Rα
≥ lim

R→0
inf

αR

R + Rα
=

α

1 + α
.

Case 2. The functional f does not attain its maximum over C. Given R > 0, we take

ym so that f(ym) = sup f(C) and d(ym, C) < R/m. Consider now Cm = conv ({ym∪C}).
Since Cm satisfies the condition of Case 1, γ(Cm, R +Rα,M) ≥ αR/2 and, consequently,

γ(C, R + Rα + R/m,M) ≥ αR/2. Therefore

2 lim
R→0

inf
γ(C,R + Rα + R/m,M)

R + Rα + R/m
≥ lim

R→0
inf

αR

R + Rα + R/m
=

α

1 + α + 1/m

for every m ∈ N and the theorem is proved. ¤

Notice that, if C /∈ M, then x + λC /∈ M for every x ∈ X and λ ∈ R. It means

that M is porous in a much stronger sense than stated in Theorem 4.2, and close to the

notions of cone meager and angle-smallness introduced by Preiss and Zajicek (see [50]

and [48]).
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5. Stability of the sum in M.

Two of the most important ways of combining two convex sets C,D to produce a

third one are the vector sum C + D and the convex hull conv(C ∪ D), together with

the operations C+̂D = (C + D) and conv (C ∪ D) of forming the respective closures.

The stability of M with respect to the usual set operations is very easy to check: M is

stable under translations, dilations and intersections and it is not stable under unions,

convex hulls and the closure of convex hulls. For instance, if you consider in R ⊕∞ R
the sets C = {(0, 0)} and D = {(1, 1)}, then conv(C ∪D) is not an intersection of balls.

However, the situation with respect to the sum and the closure of the sum seems to be

more complicated. The present note is concerned with the extent to which the property of

being an intersection of balls is preserved by the operations + and +̂. We will concentrate

our attention also in a modest but quite relevant question: let B be the unit ball of X,

λ > 0 and C ∈ M; is it true that C + λB ∈ M? An affirmative answer to this question

would provide the following topological consequence for M.

Proposition 5.1. The set M is a closed subset of H provided C+̂λB ∈ M for every

C ∈M and each λ > 0.

Proof. Let {Cn} be a sequence in M and let C ∈ H be such that limn d(Cn, C) = 0.

To prove that C ∈ M, take x /∈ C and let δ = dist(x, C) > 0. We may assume that

d(Cn, C) < δ/4, for every n ∈ N . On the one hand, C ⊂ Cn+̂2d(Cn, C)B and, on the

other hand, x /∈ Cn+̂2d(Cn, C)B. Now, as the set Cn+̂2d(Cn, C)B is an intersection of

balls, there is a ball D such that x /∈ D and C ⊂ Cn+̂2d(Cn, C)B ⊂ D. ¤

The stability of M under the operation + implies, in particular, that C+D is a closed

set whenever C,D ∈ M. Therefore, in this case, C+̂λB = C + λB ∈ M and, by the

above proposition, M is closed. Incidentally, let us mention that the stability under +̂

does not imply the stability under the vector sum, as the following remark shows. Recall

that many non-reflexive Banach spaces can be renormed to satisfy the MIP. The space

c0(N) is the simplest example since every separable space with separable dual admits a

Fréchet differentiable (and thus MIP) norm [9].

Remark 5.2. When X is a nonreflexive Banach space with the MIP and C ∈ M, the set

C +λB need not be closed. Consequently, M need not be stable under vector sums, even

if it is stable under +̂.

Detail. Indeed, when X is nonreflexive, there is a functional f ∈ S∗ which does not

attain its norm. Since X has the MIP and M = H, the set C = {x ∈ B : f(x) ≤ 0}
is an intersection of balls. However, this is not the case for C + λB because this set
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is not closed when 0 < λ < 1/2. Indeed, there is x ∈ (1/2)B for which f(x) = λ.

Hence for all n with 1/n < 1/2 − λ we have x + (λ + 1/n)B ⊂ B. Then ∅ 6= Dn =

(x + (λ + 1/n)B) ∩ f−1((−∞, 0]) ⊂ C. If xn ∈ Dn, clearly (xn + λB) ∩ (x + (1/n)B) 6= ∅
and so x is in the closure of C + λB. However, C ∩ f−1(λ) = ∅ and so x /∈ C + λB.

5.1. The binary intersection property. When B is the unit ball and C = ∩iBi is an

intersection of balls, it is tempting to write

C + λB = ∩iBi + λB = ∩i(Bi + λB) (5.1)

and, as a consequence, to conclude that C + λB ∈M. However, (5.1) is false in general.

To be convinced of this, consider (R2, ‖ · ‖2) and define B1 as the Euclidean unit ball,

B2 = B1 + (2, 0) and take λ = 1.

As an easy example, notice that (5.1) holds in (Rn, ‖ · ‖∞). Sine [55] proved that (5.1)

is satisfied in those normed spaces with the so called binary intersection property (BIP):

every collection of mutually intersecting closed balls has nonempty intersection. However,

we will prove in Section 5.2 that the validity of (5.1) for every λ > 0 does not characterizes

spaces with the BIP. This property plays a major role in questions of extendability of

general continuous linear maps, as proved by Nachbin and Goodner (see [45] and references

therein). We note that normed spaces with the BIP are complete. Moreover, a Banach

space X has the BIP if and only if X = C(K,R) with the supremum norm, where K is

a extremally disconnected, or Stonean, compact Hausdorff space (Nachbin [43], Goodner

[27] and Kelley [32]). The following proposition improves that above mentioned result of

Sine.

Proposition 5.3. If a normed space X has the BIP then every (nonempty) C = ∩iBi ∈
M and D ∈M satisfy ∩iBi + D = ∩i(Bi + D).

Proof. Recall that, as noted above, we have X = C(K,R). Given an extreme point e

of the unit ball of X, there is only one way of making X into a complete vector lattice

having e as an order unit such that the norm deduced from the order relation and e is

identical to the sup norm [43]. For instance, we can choose e = 1K if the canonical order

induced by R in C(K,R) is desired. Every closed ball is identical to a segment and, in

particular, Bi = B(xi, ri) = [xi − rie, xi + rie]. Therefore,

C = ∩iBi = [sup
i
{xi − rie}, inf

i
{xi + rie}]

and, analogously, D = [α, β]. Indeed, given any bounded family {fi} ⊂ C(K) both infi fi

and supi fi (taken in the order of C(K)) are continuous functions on K (see [38], Prop.
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1.a.4). Consequently,

∩iBi + D = [sup
i
{xi − rie}, inf

i
{xi + rie}] + [α, β]

= [sup
i
{xi − rie}+ α, inf

i
{xi + rie}+ β]

= [sup
i
{α + xi − rie}, inf

i
{β + xi + rie}]

= ∩i(Bi + D)

¤

5.2. The case of c0(I). The geometry of the unit ball of the space `∞(I) is quite close

to that of the unit ball of c0(I). Thus, it seems quite natural to ask about the stability

of M in this latter space. (Recall that for a (not necessarily countable) set I, a point

x = (xi) is in c0(I) provided xi → 0 in the sense that for any ε > 0, there are only

finitely many indices i ∈ I for which |xi| > ε.) First of all, we must try to obtain an

easy-to-use description of sets which are intersection of balls. Denote by {ei} and {fi}
the canonical basis of c0(I) and the associated functionals, respectively. Since the unit

ball for the supremum norm on c0(I) is B = ∩if
−1
i ([−1, 1]) it is easy to show that B′ is

a closed ball with radius λ > 0 if and only if it has the form B′ = ∩if
−1
i ([ai, bi]), where

ai → −λ, bi → λ and bi − ai = 2λ for all i ∈ I. Consequently, if {Bα = ∩if
−1
i ([aαi, bαi])}

is a collection of closed balls with nonempty intersection, we have

∩αBα = ∩α ∩i f−1
i ([aαi, bαi])

= ∩i ∩α f−1
i ([aαi, bαi])

= ∩if
−1
i ([sup

α
{aαi}, inf

α
{bαi}]) . (5.2)

Moreover, fixing an index α0, for each i we have aα0i ≤ supα aαi ≤ infα bαi ≤ bα0i and,

as a consequence, there exists k > 0 such that −k ≤ supα aαi ≤ infα bαi ≤ k for every

i ∈ I. Conversely, a set C = ∩if
−1
i [ai, bi] is an intersection of balls provided there exists

k > 0 such that −k ≤ ai ≤ bi ≤ k for all i. To see this, let x /∈ C and suppose, for

instance, that fi0(x) < ai0 . We claim that the ball (ai0 + k)ei0 + kB contains C but not

x. To this end, note first that fi0(x− (ai0 + k)ei0) < −k so x /∈ (ai0 + k)ei0 + kB. Clearly,

C ⊂ kB ∩ f−1
i0

([ai0 , bi0 ]) and, also,

kB ∩ f−1
i0

([ai0 , bi0 ]) ⊂ (ai0 + k)ei0 + kB .

Indeed, if y ∈ kB ∩ f−1
i0

([ai0 , bi0 ]), then fi0(y− (ai0 + k)ei0) = fi0(y)− (ai0 + k) ≥ −k and

also fi0(y) − (ai0 + k) ≤ bi0 − ai0 − k ≤ k − k − ai0 = −ai0 ≤ k. For any other index

i 6= i0, we have |fi(y − (ai0 + k)ei0)| = |fi(y)| ≤ k. We are ready now to state the next

proposition.
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Proposition 5.4. Given C and D two (nonempty) intersections of balls in c0(I), the set

C +D is also an intersection of balls. Precisely, if C = ∩if
−1
i [ai, bi] and D = ∩if

−1
i [ci, di],

then C + D = ∩if
−1
i [ai + ci, bi + di].

Proof. The inclusion C + D ⊂ ∩if
−1
i [ai + ci, bi + di] is straightforward. To prove the

reverse inclusion, we will assume that 0 ∈ [ci, di] for every i ∈ I (otherwise, we would

replace C and D by C ′ = C − u and D′ = D − u for some u ∈ D ). Let z =
∑

i ziei ∈
∩i{f−1

i ([ai + ci, bi + di])}. We want x =
∑

i xiei ∈ C and y =
∑

i yiei ∈ D such that

zi = xi + yi for every i ∈ I. Since ai + ci ≤ ai ≤ bi ≤ bi + di, each i ∈ I falls into one (and

only one) of the following subsets:

I1 = {i ∈ I : ai + ci ≤ zi < ai}
I2 = {i ∈ I : ai ≤ zi ≤ bi}
I3 = {i ∈ I : bi < zi ≤ bi + di} .

We define xi = ai in case i ∈ I1, xi = zi in case i ∈ I2 and xi = bi in case i ∈ I3.

Obviously, ai ≤ xi ≤ bi and ci ≤ yi = zi − xi ≤ di. Since |xi| ≤ |zi| for all i ≥ m for some

m ∈ N, we are assured that x (and hence y) is an element of c0(I). ¤

Corollary 5.5. If C = ∩αBα is a nonempty intersection of balls in (c0, ‖ · ‖∞) and

λ > 0 then ∩αBα + λB = ∩α(Bα + λB). Consequently, the validity of (5.1) does not

characterizes the BIP.

Proof. Since Bα = ∩if
−1
i ([aαi, bαi]) and λB = ∩if

−1
i ([−λ, λ]), Proposition 5.4 implies that

Bα + λB = ∩if
−1
i ([aαi − λ, bαi + λ]). As a consequence, using again Proposition 5.4 we

obtain

∩αBα + λB = ∩if
−1
i ([sup

α
{aαi}, inf

α
{bαi}]) + ∩if

−1
i ([−λ, λ])

= ∩if
−1
i ([sup

α
{aαi} − λ, inf

α
{bαi}+ λ])

= ∩if
−1
i ([sup

α
{aαi − λ}, inf

α
{bαi + λ}])

= ∩i ∩α f−1
i ([aαi − λ, bαi + λ])

= ∩α ∩i f−1
i ([aαi − λ, bαi + λ])

= ∩α(Bα + λB) . (5.3)

¤

5.3. Polyhedral norms. Recall that a Banach space is polyhedral [33] if the unit ball

of any of its finite dimensional subspaces is a polyhedron. The typical example of a

polyhedral space is c0 endowed with the usual supremum norm. Is it true that M is
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stable under vector sums in every polyhedral space? We will answer this question in the

negative, despite the fact that the geometry of the unit ball of these spaces is quite close

to that of (c0, ‖ · ‖∞).

Most of the knowledge that we have about polyhedral spaces is due to the work of

V. Fonf (see [13] and [14]). Among many other things he proved that, given a polyhedral

Banach space X with unit ball B, there is a set (not necessarily countable) {fi}i∈I of

norm–one functionals such that:

For every x ∈ X, there is i0 ∈ I such that ‖x‖ = fi0(x) (5.4)

For every i ∈ I, f−1
i ({1}) ∩B has nonempty (relative) interior in f−1

i ({1}) (5.5)

With this tool in our hands, we easily obtain a description of the sets in M which is just

a generalization of the one obtained for c0(Γ). In the following proposition, we keep the

above notation (see [24].

Proposition 5.6. A bounded convex set C in a polyhedral Banach space is an intersection

of balls if and only if C = ∩if
−1
i ([inf fi(C), sup fi(C)]).

The Proposition above implies that in a finite dimensional Banach space with poly-

hedral norm, every set in M is a finite intersection of balls. The first question pertaining

to the stability of M in a polyhedral space is whether, given two sets C = ∩if
−1
i [ai, bi]

and D = ∩if
−1
i [ci, di], one has

C + D = ∩if
−1
i [ai + ci, bi + di] . (5.6)

As the next proposition shows, the answer to this question can be negative, even if we

reformulate the question in a slightly different way: Is (5.6) true if we assume, in addition,

that ai = inf fi(C), bi = sup fi(C), ci = inf fi(D) and di = sup fi(D)? The answer is again

no, since a positive answer would imply the stability of M under vector sums in every

polyhedral Banach space, and this is not the case even in finite dimensional spaces.

Proposition 5.7. The set M is not stable under vector sums in (Rn, ‖ · ‖1), n > 3 or in

`1(I).

Proof. The segment C joining the point (1/2, 1/2, 0) with (−1/2,−1/2, 0) is an intersec-

tion of exactly two balls of radius 1. This is also the case of the segment D joining the

point (−1/2, 1/2, 0) with (1/2,−1/2, 0). However, the set C + D is not an intersection

of balls. Indeed, denote by {f1, f2, f3, f4} the norm one functionals satisfying (5.4) and

(5.5) and by B the unit ball. Since C + D = B ∩ {(x, y, z) ∈ R3 : z = 0}, we have that

inf fi(C + D) = −1 and sup fi(C + D) = 1 for every i = 1, ..., 4. According to Corollary
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6.4, if C + D were an intersection of balls then

C + D = ∩if
−1
i ([inf fi(C + D), sup fi(C + D)]) = ∩if

−1
i ([−1, 1]) = B

which is a contradiction.

The spaces (Rn, ‖ · ‖1) and `1(I) are particular cases of X = Y ⊕1 Z where Y =

(R3, ‖ · ‖1) and ⊕1 denotes that the sum is endowed with the `1-norm. The intersection of

every ball in X with the subspace Y is an `1-ball. As a consequence, if a closed, bounded

and convex subset of Y is an intersection of X-balls, it is also an intersection of Y -balls.

Finally, the sets C and D considered in the above paragraph are intersection of X-balls

but this is not the case for the set C +D. For instance, to see that D is the intersection of

the two balls B1 = (1/2, 1/2, 0)+B and B2 = (−1/2,−1/2, 0)+B, just take into account

that, for every x = (x1, x2, x3)+z ∈ B1∩B2 we have |x1−1/2|+ |x2−1/2|+ |x3|+‖z‖ ≤ 1

and |x1 + 1/2|+ |x2 + 1/2|+ |x3|+ ‖z‖ ≤ 1. Consequently,

|x1 − 1/2|+ |x2 − 1/2| ≤ 1− |x3| − ‖z‖
|x1 + 1/2|+ |x2 + 1/2| ≤ 1− |x3| − ‖z‖

and the only solution is when |x3| = ‖z‖ = 0 and (x1, x2) ∈ D. ¤

It has been proved in [24] that in (R3, ‖ · ‖1) the family M is stable under adding

balls. As a consequence, we get that this property is different from being stable under

the closure of vector sums. Though the result is also true for (Rn, ‖ · ‖1) with n > 3, the

arguments of the proof are those of the tridimensional case, which has the advantage of

great simplicity.

In Remark 5.2, we observed the existence of spaces for which M is not stable by

adding balls. However, we have no example of a normed space for which M is not stable

under the operation C+̂λB, C ∈ M and λ > 0. On the other hand, the set of norms for

which M is stable under vector sums is not closed in the space of all equivalent norms,

endowed with the uniform metric. Indeed, in a finite dimensional Banach space, the set

of norms with the Mazur intersection property is dense.

6. Mazur sets and Mazur spaces

As we mentioned in the introduction, a set C is an intersection of balls if it satisfies

the following separation property: For every x /∈ C, there is a closed ball B such that

C ⊂ B but x /∈ B. This property can be strengthened by simply replacing the point

x by a hyperplane. We say that C is a Mazur set if given any hyperplane H with

dist(C, H) > 0, there is a ball D such that C ⊂ D and D ∩ H = ∅. Note that this
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is equivalent to saying that C is a Mazur set if given f ∈ X∗ with sup f(C) < λ, then

there exists a ball D such that C ⊂ D and sup f(D) < λ. (Consider the hyperplane

H = f−1(λ)). Denote by P the collection of all Mazur sets of a normed space.

By the separation theorem, every Mazur set is an intersection of balls and so P ⊂
M ⊂ H. However, we will show that the converse is not always true, even if the norm

is Fréchet differentiable. There are mainly two reasons connecting Mazur sets with the

subject of this paper: On the one hand, P is always stable under (the closure) of vector

sums; on the other hand, sometimes P = M 6= H.

Proposition 6.1. Given two Mazur sets C and D, the set C+̂D is always a Mazur set.

However, C ∩D is not necessarily a Mazur set. Consequently, P is always stable under

the closure of vector sums but it is not necessarily stable with respect to intersections.

Proof. Let C and D be two Mazur subsets of a Banach space X. Consider a functional

f ∈ X∗ and λ ∈ R such that sup f(C+̂D) < λ. Denote by α = sup f(C) and β =

sup f(D). Clearly, sup f(C+̂D) = sup f(C) + sup f(D) and so α + β < λ. Therefore,

there are two real numbers α′ and β′ satisfying α < α′, β < β′ and α′ + β′ < λ. Now,

since C and D are Mazur sets, there are two closed balls B1 and B2 such that C ⊂ B1

and D ⊂ B2 satisfying sup f(B1) < α′ and sup f(B2) < β′. The sum of the two balls B1

and B2 is again a ball B3 that obviously contains C+̂D and satisfies

sup f(B3) = sup f(B1) + sup f(B2) < α′ + β′ < λ.

Since we know that there exist Banach spaces for which M is not stable under the closure

of vector sums (we proved that (R3, ‖ · ‖1) is such an example), the first part of this

proposition implies that P can actually be different from M. The two segments C and

D of Proposition 5.7 are the intersection of two balls (which are, obviously, Mazur sets)

but they themselves are not Mazur sets. ¤

Definition 6.2. Spaces in which every element of M is a Mazur set (P = M) will be

called Mazur spaces.

In an analogous way, we can define a subset C of a dual Banach space X∗ to be a

weak* Mazur set if it can be separated by balls from weak* closed hyperplanes H with

dist(C, H) > 0. We can denote the family of all weak* Mazur sets by P∗ and we can say

that X∗ is a weak* Mazur space if P∗ = M. Proposition 6.1 can be formulated for weak*

Mazur sets and proved in essentially the same way. We do not know, however, an example

of a weak* Mazur set which is not a Mazur set. Therefore, we know no example of a weak*

Mazur space which is not a Mazur space (that is, a dual space for which P ( P∗ = M).

Going back to Mazur spaces, the next proposition shows that the case P = M = H has
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a nice geometric characterization, in terms of weak* denting points of the dual unit ball.

Recall that a Banach space satisfies the MIP if and only if the set of weak* denting points

of the dual ball is a residual set of the dual sphere [18] (see also Proposition 1.3).

Proposition 6.3. A Mazur space X satisfies the Mazur intersection property if and only

if every norm one functional in X∗ is a weak* denting point of B∗.

Proof. Chen and Lin proved in [10] that f is a weak* denting point of the dual unit ball

B∗ if, and only if, for every bounded subset A ⊂ X with inf f(A) > 0 there is a ball D

containing A such that inf f(D) > 0. Suppose that P = H and consider f ∈ B∗ and a

bounded subset A such that inf f(A) > 0. Then C ≡ conv(A) ∈ P and thus there is a

ball D satisfying A ⊂ C ⊂ D with inf f(D) > 0. Conversely, let C ∈ H and H be a

closed hyperplane such that dist(C,H) > 0. We may assume that H is the kernel of a

norm-one functional f ∈ B∗ and inf f(C) > 0. The existence of the desired ball is due to

the fact that f is a weak* denting point. ¤

In Remark II.7.6 of [9], there is an example of a dual norm on `1(N) with the property

that every point of the unit sphere is a weak* denting point. Consequently, Mazur spaces

with the MIP need not be reflexive, although they are certainly Asplund spaces. Indeed,

their dual spaces admit dual LUR norms [51] and, therefore, they admit Fréchet differen-

tiable norms. Spaces for which every point of the unit sphere is a denting point can be

characterized as those satisfying a weaker notion of local uniform rotundity introduced by

Troyanski in [58] and called average locally uniform rotundity (see also [9]). On the other

hand, there is a wide family of Banach spaces which are not Asplund spaces, even though

they can be renormed to satisfy the MIP [31]. Obviously, these (renormed) spaces cannot

be Mazur spaces. The next corollary contains an example of an Asplund space satisfying

the MIP but failing to be a Mazur space.

Corollary 6.4. A reflexive space with a Fréchet differentiable norm is always a Mazur

space. However, spaces with Fréchet differentiable norms need not be Mazur spaces. Fi-

nally, Mazur spaces with the MIP are always smooth spaces.

Proof. In a reflexive space with a Fréchet differentiable norm, every norm one functional

of the dual is the differential of the norm at some point. Consequently, it is a weak*

strongly exposed point (and thus a weak* denting point) of the dual unit ball.

On the other hand, it is well known that there is only a partial duality between

smoothness and convexity. As a matter of fact, from the pioneering results about renorm-

ings on spaces of continuous functions on scattered compact spaces due to Talagrand [57],

we know that there are spaces with Fréchet differentiable norm whose dual space admits

no rotund norm. This is the case, for instance, for C([0, ω1]). Since every weak* denting
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point is also an extreme point, the proposition above implies that the dual norm of a

Fréchet norm in a Mazur space must be rotund. As a consequence, C([0, ω1]), endowed

with an equivalent Fréchet differentiable norm is not a Mazur space. The previous propo-

sition shows that, in particular, a Mazur space with the MIP has a dual rotund norm and

thus the norm of the space itself is Gâteaux differentiable. ¤

To finish our discussion on Mazur spaces and the MIP, notice that the condition

of Fréchet differentiability in Corollary 6.4 is essential. Indeed, there are even finite

dimensional Banach spaces with the MIP which are not Mazur spaces. Take, for instance,

a norm in R3 with a dense set of denting points which contains a segment in its unit

sphere. The predual norm has the MIP but R3 endowed with this predual norm is not a

Mazur space.

6.1. Examples of Mazur spaces. This section is devoted to presenting some examples

of Mazur spaces which are not merely reflexive spaces with a Fréchet differentiable norm.

We will prove that this is the case for c0(I) and `∞(I) with their usual norms. These spaces

are natural candidates to be Mazur spaces in view of the results obtained in Sections 2

and 3. It is a bit surprising that every two dimensional space is a Mazur space. This

result distinguishes dimension d ≤ 2 from dimension d ≥ 3: Note that (R3, ‖ · ‖1) is not

a Mazur space, since M is not stable under vector sums (Proposition 5.7).

Proposition 6.5. For every set I, the space (c0(I), ‖ · ‖∞) is a Mazur space.

Proof. Consider C = ∩if
−1
i ([ai, bi]), a norm one functional f =

∑
i yie

∗
i ∈ `1 and two real

numbers α > β such that inf f(C) = α > β. There is no loss in generality in assuming

that 0 ∈ C. We must find a ball D such that C ⊂ D and inf f(D) > β. We know from

Section 5.2 that D = ∩if
−1
i ([ci, di]) is a ball of radius λ > 0 if and only if ci → −λ, di → λ

and di − ci = 2λ. Since we want C ⊂ D, we need [ai, bi] ⊂ [ci, di] for every i ∈ I and

accordingly we choose λ = sup{max{|ai|, |bi|}}. The strategy will be to define ci = −λ

and di = λ except for a finite number of coordinates. More precisely, let F ⊂ I be a finite

set such that
∑

i/∈F |yi| < (α− β)/2λ. For every i ∈ F , we define

ci =

{
ai if yi > 0
bi − 2λ if yi ≤ 0

di =

{
ai + 2λ if yi > 0
bi if yi ≤ 0

and, for every i /∈ F , take ci = −λ and di = λ. It is easy to check that D = ∩if
−1
i ([ci, di])

is a ball and that C ⊂ D. We just need to compute inf f(D). Let F+ = {i ∈ F : yi > 0}.
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For every x ∈ D we have

f(x) =
∑
i∈I

xiyi =
∑

i∈F+

xiyi +
∑

i∈F\F+

xiyi +
∑

i/∈F

xiyi

≥
∑

i∈F+

aiyi +
∑

i∈F\F+

(bi − 2λ)yi −
∑

i/∈F

λ|yi|

≥
∑

i∈F+

aiyi +
∑

i∈F\F+

biyi − (α− β)/2

≥ α − (α− β)/2 = (α + β)/2 > β

since the point
∑

i∈F+ aiei +
∑

i∈F\F+ biei is an element of C = ∩if
−1
i ([ai, bi]). Indeed,

ai, bi ∈ [ai, bi] when i ∈ F and, for the rest of coordinates, 0 always belongs to [ai, bi] since

0 ∈ C. ¤

Proposition 6.6. Let K be a Stonean compact Hausdorff space. Then C(K) is a Mazur

space.

We finish this section with a result that distinguishes dimension d ≤ 2. Indeed, we

will see later that for normed linear space X with dimension greater than 2 there is an

equivalent norm ‖ · ‖ for which (X, ‖ · ‖) is not a Mazur space.

Theorem 6.7. Every two dimensional normed linear space is a Mazur space.

The following lemma is a key tool in proving Theorem 6.7. We will denote by B∗ the

dual unit ball of B. As usual, ext C stands for the collection of all extreme points of C.

Lemma 6.8. Suppose that C ∈ M, x ∈ ∂C and that there exists f ∈ ∂B∗ \ ext B∗

satisfying f(x) = sup f(C). Then there is y ∈ B with f(y) = sup f(B) such that any

g ∈ ∂B∗ with g(y) = sup g(B) satisfies g(x) = sup g(C).

Proof. Since f is not an extreme point of B∗, there is a vertex y ∈ ∂B such that f(y) = 1.

Suppose that there is g ∈ ∂B∗ with g(y) = 1 but g(x) < sup g(C). Choose h ∈ ∂B∗ with

h(y) = 1 such that f lies in the interior of the segment defined by h and g. Let x′ be the

intersection of the lines {s ∈ R2 : h(s) = h(x)} and {s ∈ R2 : g(s) = sup g(C)}. Since

x′ /∈ C, the proof of the lemma will be accomplished by showing that x′ is in every ball

containing C, which provides a contradiction.

Indeed, let a+λB be a ball such that C ⊂ a+λB. Consider a point z ∈ C satisfying

g(z) = sup g(C). Necessarily

g(a + λy) ≥ g(a + λB) ≥ sup g(C) = g(z)
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and, analogously, h(a + λy) ≥ h(x). Hence we have

x′ ∈ conv {x, z, a + λy}

which implies x′ ∈ C. ¤

Notice that the condition f /∈ ext B∗ was essential in the above lemma. In fact, the

statement is not true for extreme points. Suppose, for instance, that D is the euclidean

ball in R2 and B = {(2, 0) + 3D} ∩ {(0, 2) + 3D} ∩ {(−2, 0) + 3D} ∩ {(0,−2) + 3D}. Let

{y} = ∂B ∩ {(t, t), t > 0} and let f be the unique functional supporting (0,−2) + 3D

at y. Define C = {(x1, x2) ∈ R2 : −1 ≤ f(x1, x2) ≤ 1,−1 ≤ x1 ≤ 1} and let {x} =

∂C ∩{(0, t), t > 0}. The only support point of f in B is y and B has many other support

functionals at y, while f is the only functional supporting C at x.

On the other hand, the lemma is not valid for higher dimensional spaces. Consider,

for instance, the space (R3, ‖ · ‖1), the set C = {(t, t, 0),−1 ≤ t ≤ 1}, the point x =

(0, 0, 0) ∈ C and the functional f(x1, x2, x3) = x3 which is not an extreme point of the

dual unit ball.

Proof of Theorem 6.7 It is enough to show that for any C ∈M, f ∈ ∂B∗ and ε > 0,

there is a closed ball Bε containing C and satisfying sup f(Bε) = sup f(C) + ε. We split

the proof into two cases.

Case 1: f ∈ ext B∗. There exists y ∈ ∂B such that f(y) = 1 and the line L = {s ∈
R2 : f(s) = 1} is (at least) a one-sided tangent to B at y. Since y defines two sides in L,

it is convenient to fix one which is tangent to B and call it the positive side (with respect

to y). Let LC = {x ∈ R2 : f(x) = sup f(C)} and Lε = {x ∈ R2 : f(x) = sup f(C) + ε}.
We fix a point z ∈ Lε satisfying, first, that {z + sy : s ∈ R} ∩C = ∅ and second, that the

set ∂C ∩ {x ∈ R2 : f(x) = sup f(C)} lies in the positive side of LC with respect to the

point

z′ = {z + sy : s ∈ R} ∩ LC .

Finally, for every λ > 0, we consider the point aλ = z−λy and the ball aλ + λB. We just

need to show that there is λC > 0 such that C ⊂ aλC
+ λCB. To do that, we first choose

a point b in the positive side of LC with respect to z′ and λ0 > 0 such that

C ⊂ conv {b, aλ0 , z = aλ0 + λ0y} .

We need only find λC > 0 satisfying λC ≥ λ0 and b ∈ aλC
+ λCB. Consider the point

b′ = Lε ∩ {aλ0 + s(b − aλ0) : s ∈ R} and define the sequence {xn = z + (b′ − z)/n}.
Let yn be the corresponding point of ∂(a1 + B) such that the segment joining xn and yn

is orthogonal (in the euclidean sense) to Lε. If xn ∈ ∂(a1 + B), in this case we define
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yn = xn. Notice that yn is well defined for n sufficiently large. Since the positive side of

Lε is tangent to a1 + B at z, we have

‖yn − xn‖ ‖xn − z‖−1 = n ‖yn − xn‖ ‖b′ − z‖−1 n→∞−→ 0 .

Therefore, there is an n0 such that

n ‖yn − xn‖ ‖b′ − z‖−1 < ε ‖b′ − z‖−1

for every n ≥ n0. As a consequence, n ‖yn − xn‖ < ε and hence ∂(an + nB) ∩ [b′, b] 6= ∅
for n ≥ n0. This implies that b ∈ an + nB for n ≥ n0. To finish the proof of Case 1,

define λC = max{λ0, n0}.

Case 2: f /∈ ext B∗ . Let φ, ψ ∈ ext B∗ be such that f lies in the interior of the

segment [φ, ψ] ⊂ ∂B∗. Let y ∈ B be such that f(y) = 1. We have ψ(y) = φ(y) = 1, since

ψ(y) ≤ 1, φ(y) ≤ 1 and there is 0 < t < 1 satisfying 1 = f(y) = tφ(y) + (1 − t)ψ(y).

Consider now x ∈ C satisfying f(x) = sup f(C). By Lemma 6.8 we know that ψ(x) =

sup ψ(C) and, analogously, φ(x) = sup φ(C). As in the preceding case, we will consider

balls aλ + λB for which aλ + λy = x + εy. Now pick z, w ∈ R2 with φ(z) = φ(x) and

ψ(w) = ψ(x) satisfying C ⊂ conv{z, w, x}. The only question is whether there is λ > 0

so that z, w ∈ aλ + λB. The existence of such a λ can be proved using an argument of

differentiability, as in Case 1, since ψ and φ are extreme points of B∗.

Corollary 6.9. A Banach space has dimension less than three if and only if is a Mazur

space with respect to every equivalent norm.

Proof. It is clear that one dimensional spaces are always Mazur spaces and Theorem 6.7

states that this is also the case of two dimensional spaces. To prove the reverse, suppose

that the Banach space X contains a three–dimensional subspace Y , which can be assumed

(after renorming) to be (R3, ‖ · ‖1). Letting Z (in its inherited norm) be the complement

of Y in X, so we can assume that X is the `1–sum Y ⊕1 Z. We proved in Proposition 5.7

that in this case M is not stable under the closure of vector sums and hence X with this

norm is not a Mazur space. ¤
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open sets, Bull. Sc. math., 122 (1998) 93-105.
[42] J. R. Munkres, Topology, second edition, Prentice Hall (2000).
[43] L. Nachbin, A theorem of Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc.

39 (1950), 28–46.
[44] S. Negrepontis, Banach spaces and Topology, Handbook of set theoretic Topology (K. Kunen and

J. E. Vaughan, eds.), North-Holland, 1984, 1045–1142
[45] L. Narici and E. Beckenstein, The Hahn-Banach theorem: the life and times, Topology and its

Applications 77 (1997) 193-211.
[46] J. R. Partington, Equivalent norms on spaces of bounded functions , Isr. J. Math. 35(1980), No. 3,

205–209.
[47] R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960),

976–983.
[48] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math.

1364, Springer Verlag, 1989; rev ed., 1993.
[49] A. N. Plichko, A Banach space without a fundamental biorthogonal system, Soviet. Math. Dokl. 22

(1980) No. 2, 450–453.
[50] D. Preiss and L. Zajicek, Stronger estimates of smallness of sets of Fréchet nondifferentiability of
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