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Abstract. Let BX be the set of all closed, convex and bounded subsets of a
Banach space X equipped with the Hausdorff metric. In the first part of this
work we study the density character of BX and investigate its connections with
the geometry of the space, in particular with a property shared by the spaces
of Shelah and Kunen. In the second part we are concerned with the problem of
Rolewicz, namely the existence of support sets, for the case of spaces C(K).

1. Introduction

In this paper we discuss some topics concerning the set BX of all bounded, closed,

convex and nonempty subsets of a real Banach space X. The Hausdorff metric

between C1, C2 ∈ BX is given by

d(C1, C2) = inf {ε > 0 : C1 ⊂ C2 + εB‖·‖, C2 ⊂ C1 + εB‖·‖},

where B‖·‖ is the unit ball of X. It is well known that (BX , d) is a complete metric

space [11] and, hence, a Baire space.

The first part is devoted to study the density character of BX and its inter-

play with different geometrical properties. These properties are property α, the

(weak*) Mazur intersection property and the following cornerstone property, which

we shall name after the Kunen-Shelah property: among any uncountable family

of elements of X, there is one that belongs to the closed convex hull of the rest.

Shelah [23] (assuming the diamond principle for ℵ1) and Kunen [18] (assuming the

continuum hypothesis) constructed Banach spaces S and K respectively with the

above property. Most of our interest in Section 2 will tend to emphasize the effects of

Kunen-Shelah property for the topological properties of BX . For instance, we prove

here that, in many cases, spaces enjoying this property satisfy densX = densBX
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while, in general, densBX = 2densX . Moreover, assuming c < 2ω1 (where ω1 is the

first uncountable ordinal), an Asplund space X with densX = c enjoys the Kunen-

Shelah property if and only if densX = densBX . These conditions are satisfied, for

instance, by K and S.

Section 3 is related to the problem posed by Rolewicz on the existence of a

support set in any nonseparable Banach space. We shall restrict our attention here

to C(K) spaces. Lazar [14] proved that for every compact Hausdorff space K ,

such that either K is not hereditarily Lindelöf or K is not hereditarily separable,

then C(K) has a support set. Recently, Borwein and Vanderwerff proved in [1]

the existence of such a set in the Kunen space K (which is of the form K = C(K)

with K scattered compact) solving a problem posed by Finet and Godefroy [3]. We

begin by observing that the result of Borwein and Vanderwerff can be extended to

the class of all nonseparable Asplund spaces C(K). Then, we characterize Hausdorff

compacta K which are not hereditarily Lindelöf in terms of the existence of a positive

semibiorthogonal system (see definition in section 4). As a consequence, we obtain

that the existence of a support set in a Banach lattice does not imply the existence

of a positive semibiorthogonal system. Thus, the characterization obtained in [1]

cannot be strengthened in this direction. Finally, we prove that every Banach space

C(K) where K is not measure separable (denoted by K /∈MS) has a support set.

2. Density character of BX

In this section, the density character of BX is investigated. Recall that, if Ω is

a topological space, the density character of Ω (denoted by dens Ω) is the smallest

cardinal number of a dense subset of Ω. Given a Banach space X, a first easy

estimate of densBX is

densX ≤ densBX ≤ 2 densX (2.1)

and our aim consists in determining necessary and sufficient conditions ensuring

either left or right equalities, and their consequences for the geometry of the space.

There is a general argument to estimate densBX : the existence of an “almost

biorthogonal” system in X ×X∗ like the one appearing in the following definition.

A Banach space X is said to have property α [21] if there exist 0 ≤ λ < 1 and a

family {xi, x∗i }i∈I ⊂ X × X∗ with ||xi|| = ||x∗i ||∗ = x∗i (xi) = 1 such that: (1) for
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j 6= i, |x∗i (xj)| ≤ λ and (2) B‖·‖ = co ({±xi}i∈I) . Next, we denote by card I the

cardinality of the set I.

Proposition 2.1. Let X be a Banach space with a family {xi, x∗i }i∈I ⊂ X × X∗ ,

such that ||xi|| ≤ M and ||x∗i ||∗ ≤ M for some constant M > 0 , x∗i (xi) = 1

and |x∗i (xj)| ≤ λ , for j 6= i and some 0 ≤ λ < 1 . Then dens BX ≥ 2 card I . In

particular, if X has property α , then dens BX = 2dens X .

Proof. For each subset J ⊆ I , we consider CJ = co ({xi}i∈J) ∈ BX . Then, if

J 6= J ′ and i0 ∈ J \ J ′ , we have

||xi0 − y|| ≥ x∗i0(xi0 − y)/||x∗i0||
∗ ≥ (1− λ)/||x∗i0||

∗ ≥ (1− λ)/M

for every y ∈ CJ ′ . Hence

d(CJ , CJ ′) ≥ dist (xi0 , CJ ′) = inf {||xi0 − y|| : y ∈ CJ ′} ≥ (1− λ)/M ,

and the proof is finished. �

Some consequences can be now deduced from the preceding proposition. First,

a Banach space X with a biorthogonal system S = {xi, x∗i }i∈I ⊂ X ×X∗ satisfies

densBX ≥ 2 card I . Moreover, if S is a long biorthogonal system (that is, if card I =

densX) then dens BX = 2dens X . Indeed, by using a result of Plichko [19] (as in [7])

we obtain a bounded biorthogonal system with the same cardinality as the given one.

The assertion then follows from the preceding proposition. The preceding arguments

lead us directly to the characterization of finite dimensional Banach spaces as those

spaces satisfying densBX = ℵ0.

If η is a cardinal, recall that the cofinality of η (denoted by cf(η) ) is the smallest

cardinal β such that there exists a sequence of ordinals {βi}i<β strictly less than

η satisfying η = sup{βi : i < β} . As another application of Proposition 2.1, we

derive an estimate of densBX when either X has the Mazur intersection property, or

X∗ has the weak* Mazur intersection property. The major impact of this estimate

occurs when the cofinality of densX is not countable. Recall that a Banach space

X is said to have the Mazur intersection property ( [16], [4]) if every element of BX
is the intersection of closed balls. If Y is a dual Banach space, denote by B∗Y the set

of all weak*-compact convex and nonempty subsets of Y . The dual Banach space



4 A. S. GRANERO, M. JIMÉNEZ SEVILLA, AND J. P. MORENO

Y is said to have the weak* Mazur intersection property [4] if every element of B∗Y
is the intersection of closed dual balls.

Proposition 2.2. Let X be an infinite dimensional Banach space. If either X

has the Mazur intersection property or X∗ has the weak* Mazur intersection prop-

erty then dens BX > 2α for every α < densX . Moreover, if cf(densX) is not

countable, then densBX = 2densX .

Proof. Under these hypothesis, it is proved in [9] (see also [10]) the existence of a

bounded family {xi, x∗i }i∈I ⊂ X×X∗ and a set {λi}i∈I ⊂ (0, 1) satisfying card (I) =

dens X such that x∗i (xi) = 1 and x∗i (xj) ≤ 1− λi for every j 6= i . Since

I = ∪∞n=1 {i ∈ I : λi > 1/n}

then, for each α < dens X , there is nα ∈ N such that card ({i ∈ I : λi >

1/nα}) > α . Similarly, if cf(densX) is not countable, there exists n0 ∈ N with

card ({i ∈ I : λi > 1/n0}) = densX . The remainder of the proof follows easily by

using Proposition 2.1. �

So far we have shown the existence of a wide class of Banach spaces satisfying

densBX = 2densX since every “reasonable” Banach space has a long biorthogonal

system. On the other hand, the only examples exhibited satisfying

densBX = densX , (2.2)

are finite dimensional spaces. It is now natural to inquire whether there exists

an infinite dimensional space X for which equality (2.2) holds. Needless to say,

we are looking for a Banach space admitting no equivalent norm with property

α. This is the case, as it was observed in [7], of any Banach space X with the

Kunen-Shelah property: given an uncountable subset B of X, there is x ∈ B such

that x ∈ co (B \ x). The first known space with this property was constructed

by Shelah [23] using the diamond principle for ℵ1. Later on, assuming only the

continuum hypothesis, Kunen [18] provided a second example. These spaces where

used to answer some long standing questions in the theory of Banach spaces (see for

instance [1],[3], [7], [8], [9]). Both examples are Asplund and, in addition, Kunen

space K is of the form K = C(K) being K a scattered compact. As the reader

probably guesses, these spaces are our candidates to fulfill equation (2.2).
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Let us fix some notation. It will be convenient to consider the following subsets

of BX : UX = {C ∈ BX : intC 6= ∅} and OX = {C ∈ BX : 0 ∈ intC}. It is clear that

both OX and UX are open and UX is dense in BX . Similarly, consider the following

subsets of B∗Y : U∗Y = {C ∈ B∗Y : intC 6= ∅} and O∗Y = {C ∈ B∗Y : 0 ∈ intC}. Given

the Banach space X and a subset C ∈ OX , recall that Co = {f ∈ X∗ : f(x) ≤
1, x ∈ C} is the polar set of C. In turn, given C ∈ O∗X∗ , the set Co is Co ∩ X .

Recall that f ∈ Co is a weak* denting point if, for every ε > 0, there exist x ∈ X
and δ > 0 with diam {g ∈ Co : g(x) > f(x)− δ} < ε.

Proposition 2.3. Let X be an Asplund space satisfying the Kunen-Shelah property.

Then every subset of BX is a countable intersection of closed half-spaces. If, in

addition, densX = c then densBX = densX.

Proof. Let us consider C ∈ BX and assume, without loss of generality, that 0 ∈
intC . Then, Co ⊂ X∗ is a weak* compact and convex set with nonempty interior.

Since X is an Asplund space, X∗ has the Radon Nikodým property and Co =

cow
∗
(D∗) , being D∗ the set of all weak* denting points of Co . By [9], there exists

a countable set D′∗ ⊂ D∗ such that D∗ ⊂ D′∗ , thus implying Co = cow
∗
(D′∗)

and C = {x ∈ X : x∗(x) ≤ 1, x∗ ∈ D′∗} . For the second assertion, given a

dense subset {x∗i }i∈I of X∗ with card I = densX∗ = densX and J ⊂ I, denote by

CJ = {x ∈ X : x∗i (x) ≤ 1, i ∈ J} . Then

OX ⊂ F = {CJ ∈ BX : J ⊂ I, J countable} .

Since densBX = densOX and dens X = (dens X)ℵ0 = card F , the proof is com-

plete. Notice that, in fact, we obtain cardX = densX = densBX = cardBX . �

We can paraphrase the result obtained in the preceding proposition by stating

that spaces under consideration are extremely “poor” in convex sets. We shall see

later that a certain converse may be deduced with additional hypothesis. Recall

that a family {xα : α < ω1} in a Banach space X is weakly right-separated if

xα /∈ {xβ : β > α}
w

for all α < ω1. It can be easily seen that the lack of weakly

right-separated families implies the Kunen-Shelah property [18]. As far as we know,

it is an open problem whether or not the converse holds. The Kunen space has

not weakly right separated families; in fact, it is hereditarily Lindelöf in the weak

topology. It seems to be unknown whether or not the Shelah space has weakly right
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separated families. We are now interested in the question if having no weakly right

separated families implies (2.2). The answer, in some cases, is affirmative.

Proposition 2.4. Let X be a Banach space with no weakly right separated family.

Then:

(i) Every subset C ∈ B∗X∗ is w∗-separable.

(ii) Every subset C ∈ BX is a countable intersection of closed half-spaces.

(iii) If densX = densX∗ = c, then densX = densBX .

Proof. (i) Let C ∈ B∗X∗ and assume that C is not w∗-separable. Then we can

construct, in a standard way, a family {Cα}α<ω1 ⊂ B∗X∗ of w∗-separable subsets of

C such that Cα  Cα+1, for all α < ω1. If we take fα ∈ Cα+1 \ Cα and xα ∈ X

satisfying

sup {f(xα) : f ∈ Cα} < 1 < fα(xα),

then fα(xβ) < 1 whenever α < β and thus xα /∈ {xβ : β > α}
w

for all α < ω1.

Hence, {xα}α<ω1 is a weakly right-separated family, which is a contradiction. (ii)

Given C ∈ OX , there is a sequence {x∗n} ⊂ Co such that Co = {x∗n}
w∗

. Therefore,

C = {x ∈ X : x∗n(x) ≤ 1, n ∈ N }. The statement of (ii) can be extended

to every element of BX by using the density of UX . (iii) It can be proved as in

Proposition 2.3. �

Recall that Sersouri [22] proved the equivalence between the next properties:

(1) X has the strong Kunen-Shelah property: For every family {xα}α<w1 ⊂ X ,

there exists an α0 such that

xα0 ∈ co ({xβ : β > α0}) .

(2) Every family (Cα)α<w1 of closed convex subsets of X which is decreasing (i.e.

Cα+1 ⊆ Cα) is stationary (i.e. there is α0 < w1 such that Cα = Cα0 for every

α ≥ α0).

By using arguments similar to those exhibited in the preceding proof, we

can show that for an Asplund space X any of the above properties is equiv-

alent to

(3) Every element C ∈ B∗X∗ is weak* separable.
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(4) X has the Kunen-Shelah property.

It is worth to mention that condition (2) implies clearly the Corson’s property

(C ) that is, every collection of closed convex subsets of X with empty intersection

contains a countable subcollection with empty intersection. On the other hand, we

do not know if the Kunen-Shelah property implies the strong Kunen-Shelah property

for a general Banach space.

The connections between equation (2.2) and the Kunen-Shelah property become

clearer when densX = c as it occurs with the Kunen and Shelah spaces. For this

purpose, we find it necessary to assume that c < 2ω1 , a condition which is weaker

than the continuum hypothesis.

Proposition 2.5. Assume that c < 2ω1 and consider a Banach space X such that

densX = c.

(i) If densBX = densX, then X enjoys the Kunen-Shelah property.

(ii) If, in addition, X is an Asplund space, then densBX = densX iff X has the

Kunen-Shelah property.

Proof. (i) IfX lacks the Kunen-Shelah property, we can obtain, as in Proposition 2.2,

a bounded uncountable family {xα}α<ω1 and ε > 0 such that dist (xα, co ({xβ : β 6=
α})) ≥ ε > 0 . Then, Proposition 2.1 yields the estimate densBX ≥ 2ω1 > densX,

which is a contradiction. (ii) One implication is already proved in part (i) and the

other follows from Proposition 2.3. �

Let us make some remarks about the material in this section. A first comment

should be made on the density character of B∗X∗ . An estimate analogous to the one

given in (2.1) is

densBX = densB∗X∗ ≤ densBX∗ .

The equality follows from the facts that the sets OX and O∗X∗ are homeomor-

phic, densBX = densOX and densB∗X∗ = densO∗X∗ . It frequently occurs that

densB∗X∗ < densBX∗ . For instance, when X = `1 since `∞ has a long biorthogonal

system (`1(R) embeds isometrically into `∞). Also, it is the case when X = K since

K∗ = `1(R) and, consequently, densBK∗ = 2c.

The second observation concerns the concept of nicely smooth norm introduced

by Godefroy in [5]. Note that Proposition 2.4 implies that non separable Banach
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spaces with no weakly right-separated family do not admit an equivalent nicely

smooth norm. Indeed, every closed dual ball is w∗-separable. This is somehow a

generalization of a result given in [9], which provides an alternative proof to the fact

that no nicely smooth norm exist in the Kunen and Shelah spaces.

The third and final remark pertains to Proposition 2.4 and can be expressed with

the following open question raised by Godefroy: is every w∗-closed (not necessarily

convex) subset of the dual of Kunen space w∗-separable?

3. On the Rolewicz problem

A point x of a set C ∈ BX is called a support point for C if there is a functional

x∗ ∈ X∗ such that x∗(x) = infC x
∗ < supC x

∗ . We will say that C ∈ BX is

a support set if C contains only support points. Rolewicz proved in [20] that a

support set must be nonseparable and asked whether such a set exists in every

nonseparable space. Later on, some authors directed their attention to the study

of this suggestive problem. Kutzarova [12], Lazar [14] and Montesinos [17] proved

the existence of support sets in certain nonseparable spaces. The underlying idea

is that such sets can be constructed from an uncountable biorthogonal system. We

shall restrict our attention in this section to C(K) spaces, where K is a compact

Hausdorff space. Our aim is to examine topological conditions on K which ensure

the existence in C(K) of a support set. Lazar found in [14] two of such conditions: K

contains a non-Gδ closed subset (equivalently, K is not hereditarily Lindelöf) or K

is not hereditarily separable. Recently, Borwein and Vanderwerff solved a problem

by Finet and Godefroy [3], namely the existence of a support set in the Kunen space.

In the first result of this section we observe, using Lazar’s arguments, that this fact

can be extended to every space C(K) where K is an uncountable scattered compact.

Recall that the αth–derivative of a topological set K is usually denoted by K(α) .

Proposition 3.1. Every nonseparable Banach space C(K), with K Hausdorff and

scattered compact, has a support set.

Proof. If K(w1) 6= ∅, then {K \K(α)}α<ω1 is an open covering of K \K(ω1) without

a countable subcovering. Otherwise, there is α0 < ω1 such that K(α) \ K(α+1) is

uncountable. In any case, K is not hereditarily Lindelöf. �
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Observe that, in the case K(α) = ∅ for some α < ω1 , then C(K) has an

uncountable biorthogonal system.

The existence of a support set in the Kunen space (which has no uncount-

able biorthogonal systems) and the subsequent necessity to clarify the interplay

between both concepts, moved Borwein and Vanderwerff [1] to recapture the follow-

ing weakening considered by Lazar. The family {xα, fα}α<w1 ⊂ X ×X∗ is called a

semibiorthogonal system if fβ(xα) = 0 for all α < β, fα(xα) > 0 and fβ(xα) ≥ 0

for all α. It is proved in [1] that a Banach space has a support set if, and only

if, there exists a semibiorthogonal system. Since every C(K) space is a Banach

lattice, we can adopt this new point of view to examine the above characteriza-

tion. The notation and terminology used in the remainder for Banach lattices can

be found in [15]. Given a Banach lattice, denote by X+ its positive cone. Let us

say that a semibiorthogonal system {xα, fα}α<w1 is positive whenever xα ∈ X+

and fα ∈ (X∗)+ for every α . A natural question arises: there exists a positive

semibiorthogonal system in every Banach lattice with a support set? We shall an-

swer this question in the negative as a consequence of the following characterization.

We say that a family of sets {Cα}α<ω1 is expansive (contractive) whenever Cα  
Cα+1 (respectively Cα+1  Cα) for every α < ω1.

Proposition 3.2. Let K be a compact Hausdorff space and let X = C(K) . The

following are equivalent:

(i) K is not hereditarily Lindelöf.

(ii) X has an expansive family of closed ideals.

(iii) There is a positive semibiorthogonal system in X ×X∗.
(iv) There is a positive semibiorthogonal system in X × {δk : k ∈ K}.

Proof. (i)⇒(ii). If K is not hereditarily Lindelöf, there exists an uncountable family

{Uα}α<ω1 of open subsets of K such that U = ∪α<ω1Uα cannot be covered with any

countable subfamily of {Uα}α<ω1 . We may assume that Uα  Uα+1 for every α < ω1.

Then, the family of compacts {Kα = K \ Uα}α<ω1 is contractive and the associated

family of closed ideals Iα = {x ∈ C(K) : x|Kα ≡ 0} is expansive.

(ii)⇒ (iii) Take xα ∈ Iα+1 \ Iα , xα > 0 and gα ∈ I⊥α ⊂ X∗ with gα(xα) > 0 .

As I⊥α is a sublattice, we have that fα = g+
α ∈ I⊥α and fα(xα) ≥ gα(xα) > 0. Then

{xα, fα}α<w1 is a positive semibiorthogonal system.
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(iii)⇒(iv). Let {xα, fα}α<w1 ⊂ X × X∗ a positive semibiorthogonal system.

Recall that fα is a regular measure defined on the Borel subsets of K. If we denote

Gα = {k ∈ K : xα(k) > 0}, then Gβ ∩ supp fα = ∅ for β < α. We can pick

kα ∈ supp fα such that xα(kα) > 0. With this choice, we obtain that {xα, δkα}α<ω1

is a positive semibirthogonal system.

(iv)⇒(i). Consider the positive semibiorthogonal system {xα, δkα}α<ω1 . Then the

family {Uα = {k ∈ K : xα(k) > 0}}α<ω1 is an open covering of the set A = {kα}α<ω1

which does not admit any countable subcovering. �

As it is noted in [1], the double arrow space K is hereditarily Lindelöf and

hereditarily separable, while C(K) has an uncountable biorthogonal system and

hence a support set. This example provides a negative answer to the question

preceding Proposition 3.2.

A support set C ⊂ X (not necessarily bounded) is Y –supported [1], where

Y ⊂ X∗, if for every x ∈ C there is f ∈ Y with f(x) = infC f < supC f . A

support cone is a support set C ⊂ X such that λx ∈ X whenever λ ≥ 0 and

x ∈ C .

Proposition 3.3. Let X be a Banach lattice. The following are equivalent:

(i) X has an expansive family of closed ideals.

(ii) There is a positive semibiorthogonal system in X ×X∗.
(iii) There is a (X∗)+–supported cone C ⊂ X+ .

(iv) There is a (X∗)+–supported set C ⊂ X+ with 0 ∈ C.

Proof. (i)⇒(ii) is already done in Proposition 3.2. (ii)⇒(i). Let us denote by

{xα, fα}α<w1 the positive semibiorthogonal system. Consider for every α < w1 the

smallest closed ideal Iα containing {xβ}β<α . Then we shall deduce that fα ∈ I⊥α .

Indeed, it is easily proved from the fact that fα > 0 , xβ > 0 for β < w1 , and

Iα =
{
x ∈ X : |x| ≤ |u| for some u =

∑
i∈F

λixi and a finite set F ⊂ α
}
.

If u =
∑

i∈F λixi , F ⊂ α a finite set, it is clear that u+ ≤ a =
∑

i∈F+ λixi and

u− ≤ b =
∑

i∈F−(−λi)xi , where F+ = {i ∈ F : λi ≥ 0} and F− = {i ∈ F : λi ≤
0} . Thus, for 0 ≤ x ≤ |u| we have that 0 ≤ fα(x) ≤ fα(|u|) = fα(u+) + fα(u−) ≤
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fα(a) + fα(b) = 0 . On the other hand, fα 6∈ I⊥α+1 , so Iα  Iα+1 . The rest of the

proof follows easily from the arguments exhibited in [1]. �

We do not know if there is a positive semibiorthogonal system in X whenever X

has a (X∗)+-supported set C ⊂ X+.

The next result concerns the class MS of compacta K, those spaces for which

every regular measure on K is separable. This class contains, for instance, compact

ordered spaces, compact scattered spaces and Eberlein compacta. The class MS

has been recently studied by Džamonja and Kunen in [2].

Proposition 3.4. If K is a compact Hausdorff space and K /∈MS then C(K) has

a support set.

Proof. Since K /∈MS, there exists a regular measure µ on K which is non-separable.

From Maharam-Stone theorem [13, p. 122] we obtain that L1({0, 1}ω1 , ν) ↪→ L1(µ)

where ν is the Haar probability measure on {0, 1}ω1 . It means that L1({0, 1}ω1 , ν) ↪→
C(K)∗. Taking into account that `2(ω1) ↪→ L1({0, 1}ω1 , ν), there is a quotient map

q : C(K) → `2(ω1) and, in consequence, an uncountable biorthogonal system in

C(K). �

On the other hand, if K is any non-metrizable Rosenthal compact then C(K)

contains an uncountable biorthogonal system and the class of Rosenthal compact

have property MS (see [6]).

We finish this section by mentioning that the Rolewicz problem is still open in

spaces C(K). If there exists a compact Hausdorff space K for which C(K) has

no support set, then K should be hereditarily Lindelöf, hereditarily separable and

K ∈ MS. The “two arrows” space K satisfies these conditions but it cannot be

a counterexample. Recall that Borwein and Vanderwerff proved that if X has the

strong Kunen-Shelah property (as for instance, the Kunen and Shelah spaces), then

X∗ has no norm closed weak*–supported set.
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