On the Nonseparable Subspaces of $J(\eta)$ and $C([1, \eta])$

By Antonio S. Granero, M. Mar Jiménez and José P. Moreno of Madrid

(Received Sept., 1998)

Abstract. Let η be a regular cardinal. It is proved, among other things, that: (i) if $J(\eta)$ is the corresponding long James space, then every closed subspace $Y \subseteq J(\eta)$, with $Dens(Y) = \eta$, has a copy of $\ell_2(\eta)$ complemented in $J(\eta)$; (ii) if Y is a closed subspace of the space of continuous functions $C([1,\eta])$, with $Dens(Y) = \eta$, then Y has a copy of $c_0(\eta)$ complemented in $C([1,\eta])$. In particular, every nonseparable closed subspace of $J(\omega_1)$ (resp. $C([1,\omega_1])$) contains a complemented copy of $\ell_2(\omega_1)$ (resp. $c_0(\omega_1)$). As a consequence, we give examples $(J(\omega_1), C([1,\omega_1]), C(V), V$ being the "long segment") of Banach spaces X with the hereditary density property (HDP) (i.e., for every subspace $Y \subseteq X$ we have that $Dens(Y) = w^* - Dens(Y^*)$), even though these spaces are not weakly countably determined (WCD).

1. Notations and preliminaries

Throughout, $(X, \|\cdot\|)$ will be a real Banach space, B(X) the closed unit ball of X, S(X) the unit sphere and X^* its topological dual. Let O denote the ordinal numbers, LO the limit ordinals and C the cardinals. If $\eta \in C$, the cofinality $cf(\eta)$ of η is the smallest cardinal τ for which there exists a sequence of ordinals $\{\beta_i\}_{1 \leq i < \tau}$, $\beta_i \in O$, $\beta_i < \eta$ and $\eta = \sup\{\beta_i : 1 \leq i < \tau\}$. A cardinal η is said to be regular if $cf(\eta) = \eta$. Denote by RC the family of regular cardinals.

If A,B are subsets of the ordinal η , we write A < B iff, $\forall \alpha \in A, \ \forall \beta \in B$, we have $\alpha < \beta$. A transfinite sequence $\{A_{\alpha}\}_{1 \leq \alpha < \theta}, \ \theta \in O$, of subsets of η is said to be a *skipped* (transfinite) sequence iff $A_{\alpha} < A_{\beta}$, whenever $\alpha < \beta < \theta$, and for each $\alpha < \theta$, $\exists n_{\alpha} < \eta$ such that $A_{\alpha} < n_{\alpha} < A_{\alpha+1}$. A subset $A \subseteq \eta$ is said to be *nice* if $\min(A) \notin LO$. We say that S is a *segment* of η if $S \subseteq \eta$ and $[\kappa, \lambda] \subseteq S$ whenever $\kappa, \lambda \in S, \kappa \leq \lambda$. Note that, if S is a nice segment of η , then $S = [\alpha, \beta)$, where $\alpha = \min(S) \notin LO$ and

 $\beta = \min\{\gamma \in O : \gamma > S\}$. If $f : [1, \eta] \to \mathbb{R}$ is a map, define the support of f by $supp(f) = \{\alpha \leq \eta : f(\alpha) \neq 0\}$.

If X is a Banach space, in general, $\operatorname{Dens}(X^*, w^*) \leq \operatorname{Dens}(X, \|\cdot\|)$. So, X is said to have the *density property* if $\operatorname{Dens}(X^*, w^*) = \operatorname{Dens}(X, \|\cdot\|)$ and the *hereditary density property* (HDP) if every subspace $Y \subseteq X$ has the density property.

It is known that every weakly countably determined (WCD) Banach space X has the HDP (see [Va]). So, we can ask if there exists a non WCD Banach space with the HDP. The following easy Proposition gives a method to find Banach spaces with the HDP.

Proposition 1.1. Let X be a Banach space such that every closed subspace $Y \subset X$ contains a WCD subspace $Z \subset Y$ with Dens(Z) = Dens(Y). Then X has the HDP.

Proof. Let $i: Z \to Y$ be the canonical inclusion and suppose that $\operatorname{Dens}(Y, \|\cdot\|) > \operatorname{Dens}(Y^*, w^*)$. As $i^*: Y^* \to Z^*$ is a w^* - w^* -continuous quotient map, we would obtain that $\operatorname{Dens}(Z, \|\cdot\|) = \operatorname{Dens}(Y, \|\cdot\|) > \operatorname{Dens}(Y^*, w^*) \geq \operatorname{Dens}(Z^*, w^*)$, a contradiction because Z being WCD has the HDP.

We show that the "long James space" $J(\omega_1)$ is a non WCD Banach space such that every closed subspace $Y \subset J(\omega_1)$ contains a complemented copy of $\ell_2(I)$ with $\operatorname{card}(I) = \operatorname{Dens}(Y)$. So, by Prop. 1.1, $J(\omega_1)$ has the HDP.

Recall ([DGZ], p.253) that a compact space K is: (i) Gulko iff C(K) is WCD; (ii) Corson iff K is homeomorphic to a compact subset of $\Sigma(I)$ for some set I, where $\Sigma(I) = \{x \in [0,1]^I : card(\{i \in I : x_i \neq 0\}) \leq \aleph_0\}$. It is known that Gulko \Rightarrow Corson. If K is Gulko, clearly C(K) has the HDP, but there exists a Corson compact such that C(K) has not the HDP (see the Kunen-Haydon-Talagrand compact in [Ne], p. 1086). So, we can ask if there exists a non Gulko (even a non Corson) compact K such that C(K) has the HDP. We give examples ($[1, \omega_1]$, the "long segment") of non Corson compacts K such that C(K) has the HDP.

2. The subspaces of $J(\eta)$

If $\eta \in O$, consider in $[1, \eta]$ the order topology and observe that, if $f : [1, \eta] \to \mathbb{R}$ is continuous, then supp(f) is a nice subset of $[1, \eta]$. Define the square variation of f to be:

$$||f|| = \sup \left\{ \left(\sum_{i=1}^{n-1} |f(\alpha_{i+1}) - f(\alpha_i)|^2 \right)^{1/2} \right\}$$

where the supremum is taken over all possible choices $1 \le \alpha_1 < \alpha_2 < \cdots < \alpha_n \le \eta$. Define the long James space $J(\eta)$ to be:

$$J(\eta) = \{ f : [1, \eta] \to \mathbb{R} \text{ continuous } : f(\eta) = 0, ||f|| < \infty \}.$$

As may be verified, $(J(\eta), \|\cdot\|)$ is a Banach space.

The space $J(\eta)$ was firstly considered (implicitly) by Hagler and Odell [HO]. They proved that every infinite dimensional closed subspace of $J(\eta)$ contains a copy of ℓ_2 . It was Edgar who introduced and studied (explicitly) the space $J(\eta)$ (see [E1], [EW]). The norm $\|\cdot\|$ we have just defined is not Edgar's original norm [E1], but it is equivalent. In fact the space considered here is isometrically isomorphic to the space introduced by Edgar (see [B], p. 347). In [Z] Zhao studies the bidual of $J(\eta)$.

Remark. Although we will only consider the space $J(\eta)$, it is worthy to remark that the same proofs work if $J(\eta)$ is replaced by $J_p(\eta)$, $1 , and the norm in <math>J_p(\eta)$ is defined in terms of the p-th variation instead of the square variation.

Concerning the subspaces, $J(\eta)$ works approximately like the James space J. Recall that in 1967 Herman and Whitley [HW] proved that every infinite dimensional closed subspace of J contains a copy of ℓ_2 . In 1977 Casazza, Lin and Lohman [CLL] improved this result showing that every infinite dimensional closed subspace of J contains a complemented copy of ℓ_2 .

If $S = [\alpha, \beta)$ is a nice segment of η , let $Y = \{f \in J(\eta) : supp(f) \subseteq S\}$ and define $Q_S : J(\eta) \to Y$ as follows:

$$\forall f \in J(\eta), \ \forall i \leq \eta, \qquad Q_S(f)(i) = \left\{ \begin{array}{ll} 0 & \text{,if } i \notin S, \\ f(i) - f(\beta) & \text{,if } i \in S \end{array} \right.$$

Clearly Q_S is a projection on Y such that $||Q_S|| \leq \sqrt{2}$.

If $f,g \in J(\eta)$, we write f < g iff supp(f) < supp(g). A sequence $\{f_{\alpha}\}_{\alpha < \theta}$, $\theta \in O$, in $J(\eta)$ is said to be a *skipped sequence* iff $\{supp(f_{\alpha})\}_{\alpha < \theta}$ is a skipped sequence of subsets of η . Observe that, if $\eta \in C$ satisfies $cf(\eta) \geq \aleph_1$ and $f \in J(\eta)$, then $\exists \alpha_f < \eta$ such that, $\forall \alpha > \alpha_f$, $f(\alpha) = 0$. If $\gamma \leq \eta$, let $P_{\gamma} : J(\eta) \to J(\eta)$ be such that, $\forall f \in J(\eta), \ P(f) = f \cdot \mathbf{1}_{[1,\gamma]}$. Of course, P_{γ} is a projection with $\|P_{\gamma}\| = 1$.

Lemma 2.1. Let $\eta \in O$. Then:

- 1. Let $\gamma \leq \eta$, $\gamma \in LO$, $f \in J(\eta)$ with $f(\gamma) = 0$ and $\{\gamma_{\alpha}\}_{{\alpha < \tau}} \subset [1, \eta)$ such that $\gamma_{\alpha} < \gamma_{\beta} < \gamma$, for $\alpha < \beta < \tau$, and $\lim_{\alpha \to \tau} \gamma_{\alpha} = \gamma$. Then $\|P_{\gamma}(f) P_{\gamma_{\alpha}}(f)\| \to 0$ as $\alpha \to \tau$.
- 2. If $Y \subseteq J(\eta)$ is a closed subspace with $Dens(Y) \ge \aleph_0$ and $\gamma \le \eta$, then $Y_0 = \{y \in Y : y(\gamma) = 0\}$ is a subspace of Y such that $dim(Y/Y_0) \le 1$ and $Dens(Y_0) = Dens(Y)$.

Proof. (1) This is true because, if there existed $\epsilon > 0$ such that $||P_{\gamma}(f) - P_{\gamma_{\alpha}}(f)|| \ge \epsilon$, $\forall \alpha < \tau$, then we would obtain easily that $||P_{\gamma}(f)|| = \infty$. Observe that in this argument it is essential that $f(\gamma) = 0$.

(2) This is trivial.
$$\Box$$

Lemma 2.2. If $\eta \in O$, every normalized skipped sequence $\{f_{\alpha}\}_{{\alpha}<\theta}$, $\theta \in O$, in $J(\eta)$ is a monotone basic sequence equivalent to the canonical basis of $\ell_2(\theta)$, and the closed subspace $Y := [\{f_{\alpha}\}_{{\alpha}<\theta}]$ generated is complemented in $J(\eta)$.

4 Math. Nachr. (1998)

Proof. First of all, note that, if $\{f_i\}_{i=1}^p$ is a finite skipped normalized sequence in $S(J(\eta))$ such that $supp(f_1) < n_1 < supp(f_2) < \cdots < n_{p-1} < supp(f_p) < \eta$ and $a_i \in \mathbb{R}, i = 1, 2, ..., p$, then:

$$\sum_{i=1}^{p} |a_i|^2 \le \|\sum_{i=1}^{p} a_i f_i\|^2 \le 2 \sum_{i=1}^{p} |a_i|^2.$$

Indeed, if $g := \sum_{i=1}^p a_i f_i$, for the first inequality (i.e., $\sum_{i=1}^p |a_i|^2 \le \|\sum_{i=1}^p a_i f_i\|^2$) take finite subsets $J_i = \{n_{i-1} = k_1^i < k_2^i < \dots < k_{j_i}^i = n_i\}, \ i = 1, 2, \dots, p, \ (n_0 = 1, n_p = \eta), \ \text{and} \ J = \{k_1 < k_2 < \dots < k_r\} \subset [1, \eta] \ \text{and observe that:}$

$$\sum_{i=1}^{p} |a_i|^2 = \sum_{i=1}^{p} \sup_{J_i} \sum_{s=1}^{j_i-1} |g(k_{s+1}^i) - g(k_s^i)|^2 \le \sup_{J} \sum_{i=1}^{r-1} |g(k_{i+1}) - g(k_i)|^2 = ||g||^2,$$

where the suprema are taken over all possible choices of J_i and J.

For the second inequality (i.e., $\|\sum_{i=1}^p a_i f_i\|^2 \le 2\sum_{i=1}^p |a_i|^2$) observe that $(a-b)^2 \le 2(a^2+b^2)$. So, if $J=\{j_1 < j_2 < \cdots j_r\} \subset [1,\eta]$ is an arbitrary finite subset and $J \cup \{n_0,n_1,..,n_p\} = \{k_1 < k_2 < \cdots < k_s\} =: K_J$, then:

$$||g||^2 = \sup_{J} \sum_{i=1}^{r-1} |g(j_{i+1}) - g(j_i)|^2 \le 2 \sup_{K_J} \sum_{i=1}^{s-1} |g(k_{i+1}) - g(k_i)|^2 \le 2 \sum_{i=1}^{p} |a_i|^2,$$

where the suprema are taken over all possible choices of J.

So, if $\{f_{\alpha}\}_{{\alpha}<\theta}$, $\theta\in O$, is a skipped normalized sequence in $J(\eta)$, it is equivalent to the canonical basis of $\ell_2(\theta)$. Consider the closed subspace $Y:=[\{f_{\alpha}\}_{{\alpha}<\theta}]$ and prove that Y is complemented in $J(\eta)$:

- (A) Let $S_{\alpha} = [p_{\alpha}, q_{\alpha})$, where $p_{\alpha} = \min(supp(f_{\alpha}))$, $q_{\alpha} = \min\{\gamma \in O : \gamma > supp(f_{\alpha})\}$, and $Y_{\alpha} = \{f \in J(\eta) : supp(f) \subseteq S_{\alpha}\}$. Then $\{S_{\alpha}\}_{\alpha < \theta}$ is a skipped sequence of nice segments of η such that $f_{\alpha} \in Y_{\alpha}$. Let $Q_{\alpha} := Q_{S_{\alpha}}$ and pick $g_{\alpha} \in S(Y_{\alpha}^{*})$ such that $g_{\alpha}(Q_{\alpha}(f_{\alpha})) = \|Q_{\alpha}(f_{\alpha})\| = \|f_{\alpha}\| = 1$.
- (B) If $f \in J(\eta)$, define $Q(f) : [1, \eta] \to \mathbb{R}$ so that $Q(f) = \sum_{\alpha < \theta} g_{\alpha}(Q_{\alpha}(f)) \cdot f_{\alpha}$. Clearly $Q(f)(\eta) = 0$ and we claim that $\sum_{\alpha < \theta} |g_{\alpha}(Q_{\alpha}(f))|^2 \le 2||f||^2$. Indeed:

$$\begin{split} \sum_{\alpha < \theta} |g_{\alpha}(Q_{\alpha}(f))|^{2} &\leq \sum_{\alpha < \theta} \|Q_{\alpha}(f)\|^{2} = \sum_{\alpha < \theta} \sup \left\{ |f(\alpha_{n}) - f(q_{\alpha})|^{2} + \right. \\ &+ \sum_{i=2}^{n} |f(\alpha_{i}) - f(q_{\alpha}) - f(\alpha_{i-1}) + f(q_{\alpha})|^{2} + |f(\alpha_{1}) - f(q_{\alpha})|^{2} : \\ &: p_{\alpha} \leq \alpha_{1} < \alpha_{2} < \ldots < \alpha_{n} < q_{\alpha}, \ n \in \mathbb{N} \right\} = \\ &= \sum_{\alpha < \theta} \sup \left\{ |f(\alpha_{n}) - f(q_{\alpha})|^{2} + \sum_{i=2}^{n} |f(\alpha_{i}) - f(\alpha_{i-1})|^{2} + |f(\alpha_{1}) - f(q_{\alpha})|^{2} : \\ &: p_{\alpha} \leq \alpha_{1} < \alpha_{2} < \cdots < \alpha_{n} < q_{\alpha}, \ n \in \mathbb{N} \right\} = \\ &= \sup \left[\sum_{\alpha \in A} \sup \left\{ |f(\alpha_{n}) - f(q_{\alpha})|^{2} + \sum_{i=2}^{n} |f(\alpha_{i}) - f(\alpha_{i-1})|^{2} + |f(\alpha_{1}) - f(q_{\alpha})|^{2} : \\ &: p_{\alpha} \leq \alpha_{1} < \alpha_{2} < \ldots < \alpha_{n} < q_{\alpha}, n \in \mathbb{N} \right\} : A \subset \theta \text{ finite } \right] \leq \\ &\leq 2 \sup \left\{ \sum_{i=1}^{m-1} |f(\beta_{i+1}) - f(\beta_{i})|^{2} : 1 \leq \beta_{1} < \beta_{2} < \ldots < \beta_{m} \leq \eta, m \in \mathbb{N} \right\} = 2 \|f\|^{2}. \end{split}$$

In consequence, $Q(f) \in J(\eta)$ and Q is a projection on Y such that $||Q|| \leq 2$.

Proposition 2.3. Let $\eta \in O$ and $Y \subset J(\eta)$ be a closed infinite dimensional subspace. Then Y contains a copy of ℓ_2 complemented in $J(\eta)$.

Proof. We apply transfinite induction. If $\eta = \omega$, the statement was proved by Casazza, Lin and Lohman [CLL]. Assume that the result is true for every $\alpha < \eta$:

- (1) If $\eta = \alpha + 1$, by Lemma 2.1, $Y_0 = \{f \in Y : f(\alpha) = 0\}$ is a closed infinite dimensional subspace of $V := \{f \in J(\eta) : f(\alpha) = f(\eta) = 0\}$. Since V can be canonically identified with $J(\alpha)$, by induction hypothesis, there exists in Y_0 a copy Z of ℓ_2 and a projection $P: V \to Z$. Thus, PP_{α} is a projection from $J(\eta)$ onto Z.
- (2) Suppose that $\eta \in LO$ and that there exists $\alpha < \eta$ such that P_{α} is an isomorphism between Y and $P_{\alpha}(Y)$. Since $P_{\alpha}(J(\eta))$ can be canonically identified with $J(\alpha+1)$, by the induction hypothesis there exists in $P_{\alpha}(Y_0)$ a copy W of ℓ_2 and a projection $P: P_{\alpha}(J(\eta)) \to W$. Consider $Z = (P_{\alpha|Y})^{-1}(W)$. Then $Z \subset Y$ is a copy of ℓ_2 and $(P_{\alpha|Y})^{-1} \circ P \circ P_{\alpha}$ is a projection from $J(\eta)$ onto Z.

In the contrary case (i.e., if P_{α} , $\forall \alpha < \eta$, doesn't work as an isomorphism over Y), we have that, $\forall \alpha < \eta$, $\forall \epsilon > 0$, there exists $f \in S(Y)$ such that $\|P_{\alpha}(f)\| \leq \epsilon$. Fix $\epsilon > 0$ and pick $y_1 \in S(Y)$. By Lemma 2.1, there exists $\alpha_1 < \eta$ such that $\|y_1 - P_{\alpha_1}(y_1)\| \leq \epsilon 4^{-1}$. Choose $y_2 \in S(Y)$ and $\alpha_1 < \alpha_2 < \eta$ such that $\|P_{\alpha_1}(y_2)\| \leq \frac{\epsilon}{2} 4^{-2}$ and $\|y_2 - P_{\alpha_2}(y_2)\| \leq \frac{\epsilon}{2} 4^{-2}$. Thus $\|y_2 - (P_{\alpha_2} - P_{\alpha_1})y_2\| \leq \epsilon 4^{-2}$. By reiteration we get sequences $\{y_n\}_{n\geq 1} \subset S(Y)$ and $\{\alpha_n\}_{n\geq 1} \subset [1,\eta)$ such that: (i) $\alpha_n < \alpha_{n+1} < \eta$; (ii) $\|y_n - (P_{\alpha_n} - P_{\alpha_{n-1}})y_n\| \leq \epsilon 4^{-n}$, $(P_{\alpha_0} = 0)$. Let $x_n = \frac{(P_{\alpha_n} - P_{\alpha_{n-1}})y_n}{\|(P_{\alpha_n} - P_{\alpha_{n-1}})y_n\|}$. Then $\{x_{2n}\}_{n\geq 1}$ is a skipped normalized sequence of $J(\eta)$ and, by Lemma 2.2, it is equivalent to the canonical basis of ℓ_2 and there exists a projection $Q: J(\eta) \to [\{x_{2n}\}_{n\geq 1}]$ with $\|Q\| \leq 2$. Moreover, we have:

$$\sum_{n\geq 1} \|y_{2n} - x_{2n}\| \leq \sum_{n\geq 1} \|y_n - \frac{(P_{\alpha_n} - P_{\alpha_{n-1}})y_n}{\|(P_{\alpha_n} - P_{\alpha_{n-1}})y_n\|}\| \leq$$

$$\sum_{n\geq 1} \|y_n - (P_{\alpha_n} - P_{\alpha_{n-1}})y_n\| + \sum_{n\geq 1} |1 - \|(P_{\alpha_n} - P_{\alpha_{n-1}})y_n\|| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So, by [LT], Prop. 1.a.9, if $\epsilon \leq \frac{1}{16}$, the subspace $[\{y_{2n}\}_{n\geq 1}]$ is complemented in $J(\eta)$.

Proposition 2.4. Let $\eta \in C$, $cf(\eta) = \tau \ge \omega_1$, and $Y \subseteq J(\eta)$ a closed subspace with $Dens(Y) = \eta$. Consider the following statements:

- 1. $w^* Dens(Y^*) = Dens(Y) = \eta$.
- 2. There exists in Y a normalized transfinite sequence $\{f_{\alpha}\}_{{\alpha}<\tau}$ with $supp(f_{\alpha}) < supp(f_{\beta})$, whenever ${\alpha} < {\beta} < {\tau}$.
- 3. There exists in Y a normalized skipped transfinite sequence $\{g_{\alpha}\}_{{\alpha}<\tau}$.
- 4. There exists in Y an isomorphic copy of $\ell_2(\tau)$ complemented in $J(\eta)$.
- 5. There exists in Y an isomorphic copy of $\ell_2(\tau)$.

Then $(1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)$ and, if $\eta \in RC$, they are all equivalent.

Proof. (1) \Rightarrow (2). Let $1 \leq \alpha < \eta$. We claim that $\exists f \in S(Y)$ such that $[1,\alpha] \cap supp(f) = \emptyset$. Indeed, in the contrary case, the family of functionals $d_{\beta} \in J(\eta)^*$, $1 \leq \beta \leq \alpha$, such that $d_{\beta}(g) = g(\beta)$, $\forall g \in J(\eta)$, would be total over Y, which contradicts (1). So, to find in S(Y) a sequence $\{f_{\alpha}\}_{\alpha < \tau}$ with $supp(f_{\alpha}) < supp(f_{\beta})$, whenever $\alpha < \beta < \tau$, pick $f_1 \in S(Y)$ arbitrarily. Since $cf(\eta) = \tau \geq \omega_1$ and $f_1(\eta) = 0$, there exists $\gamma_1 < \eta$ such that $supp(f_1) < \gamma_1 < \eta$. Now, by the above, choose $f_2 \in S(Y)$ and $\gamma_2 < \eta$ such that $\gamma_1 < supp(f_2) < \gamma_2$, and so on. Finally, by a standard transfinite argument, the choice can be completed.

- (2) \Rightarrow (3). Let $\alpha < \tau$. If $\alpha \in LO$, take $g_{\alpha} = f_{\alpha}$. If $\alpha = \gamma + n$, $\gamma \in LO$, $1 \le n < \omega$, take $g_{\alpha} = f_{\alpha+n} = f_{\gamma+2n}$.
 - $(3) \Rightarrow (4)$ follows from Lemma 2.2; $(4) \Rightarrow (5)$ is obvious.

Finally suppose that $\eta \in RC$ and prove that $(5) \Rightarrow (1)$. From the embedding $i: \ell_2(\eta) \to Y$ we get the quotient map $i^*: Y^* \to \ell_2(\eta)$, which is $w^* - w^*$ continuous. So, if w^* - Dens $(Y^*) < \eta$, we would have w^* -Dens $(\ell_2(\eta)) < \eta$, a contradiction. \square

Proposition 2.5. Let $\omega_1 \leq \eta \in RC$, and $Y \subseteq J(\eta)$ a closed subspace with $Dens(Y) = \eta$. Then there exists in Y a normalized sequence $\{f_{\alpha}\}_{{\alpha}<\eta}$ with $supp(f_{\alpha}) < supp(f_{\beta})$, whenever ${\alpha} < {\beta} < {\eta}$.

Proof. First of all, we prove that, $\forall \rho < \eta$, $\exists \gamma \in LO$, $\rho < \gamma < \eta$, and a closed subspace $Y_0 \subseteq Y$ such that $dim(Y/Y_0) \le 1$ and $\{0\} \ne P_\gamma(Y_0) \subseteq Y_0$. So, fix $\rho < \eta$ and assume, without loss of generality, that $P_\rho(Y) \ne \{0\}$. Choose a countable sequence of ordinals $\{\gamma_n\}_{n\ge 0}$ and a countable sequence $\{Y_n\}_{n\ge 1}$ of closed subspaces of Y such that:

- 1. $\rho = \gamma_0 < \gamma_1 < \gamma_2 < .. < \eta$.
- 2. $Dens(P_{\gamma_n}(Y)) \leq Dens(Y_{n+1}) < \eta$.
- 3. $P_{\gamma_n}(B(Y_{n+1}))$ is dense in $P_{\gamma_n}(B(Y))$.
- 4. $supp(Y_{n+1}) \subseteq [1, \gamma_{n+1}].$

Let $\gamma = \sup_{n \geq 0} \gamma_n$ and $Y_0 = \{y \in Y : y(\gamma) = 0\}$. By Lemma 2.1, $\dim(Y/Y_0) \leq 1$. Pick $y \in S(Y_0)$ and select x_n in $B(Y_{n+1})$ so that $\|P_{\gamma_n}(y) - P_{\gamma_n}(x_n)\| \to 0$ as $n \to \infty$. Since $\|P_{\gamma}(y) - P_{\gamma_n}(y)\| \to 0$ as $n \to \infty$, we get $\|P_{\gamma}(y) - P_{\gamma_n}(x_n)\| \to 0$ as $n \to \infty$.

Consider $u_n = x_n - P_{\gamma_n}(x_n)$, $n \ge 1$, which satisfies $u_n < u_{n+1}$. So $\{u_{2n}\}_{n \ge 1}$ is a bounded skipped sequence of $J(\eta)$. By Lemma 2.2, $u_{2n} \to 0$ weakly. Hence $P_{\gamma}(y) - x_{2n} \to 0$ weakly as $n \to \infty$. Therefore $P_{\gamma}(y) \in Y_0$.

Since $\gamma < \eta$, we have that $Dens(P_{\gamma}(Y_0)) \leq Card(\gamma) < \eta = Dens(Y_0)$. Hence, there exists $f_1 \in S(Y_0) \subset S(Y)$ such that $\gamma < supp(f_1)$. Choose $\gamma_1 < \eta$ such that $\gamma < supp(f_1) < \gamma_1$. By a new application of the above argument, find $f_2 \in S(Y)$ and $\gamma_2 < \eta$ such that $\gamma_1 < supp(f_2) < \gamma_2$, and so on. Thus, by a standard transfinite

induction we obtain in Y a normalized sequence $\{f_{\alpha}\}_{{\alpha}<\eta}$ with $supp(f_{\alpha}) < supp(f_{\beta})$, whenever ${\alpha} < {\beta} < {\eta}$.

Corollary 2.6.(1) If $\eta \in RC$, every closed subspace $Y \subseteq J(\eta)$ with $Dens(Y) = \eta$, contains a copy of $\ell_2(\eta)$, complemented in $J(\eta)$.

- (2) Every closed subspace $Y \subset J(\omega_1)$ contains a copy of $\ell_2(I)$ complemented in $J(\omega_1)$, with Card(I) = Dens(Y).
 - (3) $J(\omega_1)$ is a non WCD Banach space which has the HDP.

Proof. (1) If $\eta = \omega$, the statement is the result of Cassaza, Lin and Lohman [CLL]. If $\eta \geq \omega_1$, we apply Prop. 2.5 and Lemma 2.2.

- (2) This follows from (1) and Prop. 2.3.
- (3) It is well known that $J(\omega_1)$ is not WCD ([B], [E1]). If $Y \subset J(\omega_1)$ is an infinite dimensional closed subspace, there exists in Y an isomorphic copy of $\ell_2(I)$ with $\operatorname{card}(I) = \operatorname{Dens}(Y)$. So, applying Prop. 1.1 we obtain that $J(\omega_1)$ has the HDP.

3. Subspaces of $C([1, \eta])$

In this §3 we apply the Prop.1.1 like in §2, but with $c_0(I)$ instead of $\ell_2(I)$. If K is a compact Hausdorff space and $f:K\to\mathbb{R}$ is continuous, denote by $supp(f)=\{k\in K:f(k)\neq 0\}$. If $\eta\in O$ is an infinite ordinal and $K=[1,\eta]$, with the order topology, then $C([1,\eta])$ is clearly isomorphic to $C_0([1,\eta]):=\{f\in C([1,\eta]):f(\eta)=0\}$. If $\alpha\leq \eta$, let $P_\alpha:C([1,\eta])\to C([1,\eta])$ be the projection such that, $\forall f\in C([1,\eta]),\ P(f)=f\cdot \mathbf{1}_{[1,\alpha]}$. Of course, P_α is a projection with $\|P_\alpha\|=1$ and $P_\alpha(C([1,\eta]))$ is isometric to $C([1,\alpha])$.

Lemma 3.1. If $\eta \in O$, then every normalized skipped sequence $\{f_{\alpha}\}_{{\alpha}<\theta}$, $\theta \in O$, in $C_0([1,\eta])$ is a monotone basic sequence equivalent to the canonical basis of $c_0(\theta)$ and the closed subspace $Z := [\{f_{\alpha}\}_{{\alpha}<\theta}]$ generated is 2-complemented in $C_0([1,\eta])$.

Proof. Let $\{f_{\alpha}\}_{{\alpha}<\theta}$ be a normalized skipped sequence in $C_0([1,\eta])$. Clearly, $\{f_{\alpha}\}_{{\alpha}<\theta}$ is a monotone basic sequence equivalent to the canonical basis of $c_0(\theta)$. Prove that the closed subspace $Z:=[\{f_{\alpha}\}_{{\alpha}<\theta}]$ is complemented in $C_0([1,\eta])$. This proof is similar to the one of Lemma 2.2, namely:

(A) Let $S_{\alpha} = [p_{\alpha}, q_{\alpha})$, where $p_{\alpha} = \min(supp(f_{\alpha}))$, $q_{\alpha} = \min\{\gamma \in O : \gamma > supp(f_{\alpha})\}$, and $Z_{\alpha} = \{f \in C_0([1, \eta]) : supp(f_{\alpha}) \subseteq S_{\alpha}\}$. Then $\{S_{\alpha}\}_{\alpha < \theta}$ is a skipped sequence of nice segments of η such that $f_{\alpha} \in Z_{\alpha}$. Let $Q_{\alpha} : C_0([1, \eta]) \to Z_{\alpha}$ be defined as follows:

$$\forall f \in C_0([1, \eta]), \ \forall i \le \eta, \qquad Q_{\alpha}(f)(i) = \begin{cases} 0, & \text{if } i \notin S_{\alpha} \\ f(i) - f(q_{\alpha}), & \text{if } i \in S_{\alpha} \end{cases}$$

It can be easily seen that Q_{α} is a projection on Z_{α} such that $\|Q_{\alpha}\| \leq 2$. Pick $g_{\alpha} \in S(Z_{\alpha}^{*})$ such that $g_{\alpha}(Q_{\alpha}(f_{\alpha})) = \|Q_{\alpha}(f_{\alpha})\| = \|f_{\alpha}\| = 1$. 8 Math. Nachr. (1998)

(B) If $f \in C_0([1,\eta])$, define $Q(f) : [1,\eta] \to \mathbb{R}$ so that $Q(f) = \sum_{\alpha < \theta} g_\alpha(Q_\alpha(f)) \cdot f_\alpha$. Clearly $Q(f)(\eta) = 0$ and we claim that, $\forall f \in C_0([1,\eta]), \ Q(f) \in Z$. To prove this it is enough to show that, $\forall f \in C_0([1,\eta]), \ F(f) := \{\|Q_\alpha(f)\|\}_{\alpha < \theta} \in c_0(\theta)$. Use transfinite induction over $\alpha \le \eta$ such that $supp(f) \subseteq [1,\alpha]$. It is clear that, if $supp(f) \subseteq [1,n], 1 \le n < \omega$, then $F(f) \in c_0(\theta)$. Let $\gamma \le \eta$ be such that, $\forall \beta < \gamma$ and $\forall g \in C_0([1,\eta])$, with $supp(g) \subseteq [1,\beta]$, we have that $F(g) \in c_0(\theta)$, and assume that $supp(f) \subseteq [1,\gamma]$. There are two possibilities:

- (I) Suppose that $\gamma = \beta + 1$. Since $F(f \cdot \mathbf{1}_{[1,\beta]})$ and $F(f \cdot \mathbf{1}_{\{\beta+1\}})$ are in $c_0(\theta)$, clearly $F(f) \in c_0(\theta)$.
 - (II) Assume that $\gamma \in LO$.
 - (a) If $f = \mathbf{1}_{[1,\gamma]}$, then $Q_{\alpha}(f) \neq 0$ for, at most, a unique $\alpha < \eta$. Hence $F(f) \in c_0(\theta)$.
- (b) If $f(\gamma) = 0$, then $||f \cdot \mathbf{1}_{[1,\gamma_i]} f|| \to 0$, where $\gamma_i \uparrow \gamma$, $i < \tau$, $\tau = cf(\gamma)$. Hence $||Q_{\alpha}(f \cdot \mathbf{1}_{[1,\gamma_i]}) Q_{\alpha}(f)|| \to 0$ (uniformly for $\alpha < \theta$) as $i \uparrow \tau$. Therefore, as $F(f \cdot \mathbf{1}_{[1,\gamma_i]}) \in c_0(\theta)$, $\forall i < \theta$, we get that $F(f) \in c_0(\theta)$.
- (c) Finally, if $f(\gamma) \neq 0$, taking into account $f = (f f(\gamma) \cdot \mathbf{1}_{[1,\gamma]}) + f(\gamma) \cdot \mathbf{1}_{[1,\gamma]}$ and (1), (2), we obtain that $F(f) \in c_0(\theta)$.

So Q is a projection on Z such that $||Q|| \leq 2$.

Proposition 3.2. Let $\eta \in O$ be an infinite ordinal and $Y \subset C([1, \eta])$ a closed infinite dimensional subspace. Then:

- 1. If Y is isomorphic to c_0 , Y is complemented in $C([1, \eta])$.
- 2. Y contains a copy of c_0 complemented in $C([1, \eta])$.
- 3. If $\omega_1 \leq \eta \in RC$, $Y \subset C_0([1,\eta])$ and $Dens(Y) = \eta$, there exists a normalized sequence $\{f_{\alpha}\}_{{\alpha}<\eta} \subset Y$ with $supp(f_{\alpha}) < supp(f_{\beta})$, whenever ${\alpha} < {\beta} < {\eta}$.
- 4. If $\eta \in RC$ and $Dens(Y) = \eta$, Y contains a copy of $c_0(\eta)$, complemented in $C([1,\eta])$.
- Proof. (1) Choose $A \subset [1, \eta]$ such that $\operatorname{card}(A) = \aleph_0$ and, $\forall f \in Y, \|f\| = \sup\{|f(\alpha)| : \alpha \in A\}$. We can assume, without loss of generality, that A is closed (if not, take \overline{A} instead of A and note that \overline{A} is also countable (by standard transfinite induction)). Observe that A is order and topologically homeomorphic to some ordinal interval $[1,\beta]$ with $\beta < \omega_1$. Consider the projection $P_1: C([1,\eta]) \to C([1,\eta])$ such that $P_1(f) = f \cdot \mathbf{1}_A$, $\forall f \in C([1,\eta])$. Then $P_1(C([1,\eta])) = C(A) \cong C([1,\beta])$ (isometry) and $P_{1|Y}$ is an order isometric isomorphism between Y and $P_1(Y)$. As C(A) is separable, Sobczyk's Theorem gives us a projection $P_2: C(A) \to C(A)$ such that $P_2(C(A)) = P_1(Y)$. So $P = (P_1|_Y)^{-1} \circ P_2 \circ P_1$ is a projection of $C([1,\eta])$ onto Y.
- (2) We apply transfinite induction. As $C([1,\eta])$ is isomorphic to c_0 , for $\eta < \omega^{\omega}$, the statement is true if $\eta < \omega^{\omega}$ (see [LT], Prop. 2.a.2). Assume that the result holds for every $\alpha < \eta$ and proceed as in Prop. 2.3. If $\eta = \alpha + 1$, $Y_0 = \{f \in Y : f(\eta) = 0\}$ is a closed infinite dimensional subspace of $C_0([1,\eta]) \cong C([1,\alpha])$ and the statement follows by induction hypothesis.

Assume that $\eta \in LO$. As $C([1,\eta]) \simeq C_0([1,\eta])$ (isomorphism), we suppose that we work in $C_0([1,\eta])$. If there exists $\alpha < \eta$ such that P_α is an isomorphism between Y and $P_\alpha(Y)$, the result follows by induction hypothesis (because $P_\alpha(C_0([1,\eta])) \cong C([1,\alpha])$. In the contrary case, like in Prop. 2.3, we get two normalized sequences $\{y_n\}_{n\geq 1} \subset S(Y)$ and $\{x_n\}_{n\geq 1}$ such that $\{x_{2n}\}_{n\geq 1}$ is a skipped normalized sequence of $C_0([1,\eta])$ and $\sum_{n\geq 1} \|y_{2n} - x_{2n}\| \leq \epsilon$, where $\epsilon > 0$ is arbitrary. So, applying Lemma 3.1 and [LT], Prop. 1.a.9, we complete the proof.

- (3) To prove this statement use the argument of Prop. 2.5, taking into account that every normalized sequence $\{u_{\alpha}\}_{\alpha<\theta}$, $\theta\in O$, in $C_0([1,\eta])$, with $u_{\alpha}< u_{\beta}$, $\alpha<\beta<\theta$, is equivalent to the canonical basis of $c_0(\theta)$. So, it is shrinking and $u_{\alpha_n}\to 0$ weakly for every subsequence $\{u_{\alpha_n}\}_{n<\omega}$.
- (4) Work in $C_0([1,\eta])$, which is isomorphic to $C([1,\eta])$. Consider a closed subspace $Y \subseteq C_0([1,\eta])$ with $Dens(Y) = \eta$. If $\eta = \omega$, apply (2). If $\omega_1 \le \eta$, by (3) there exists in Y a normalized sequence $\{f_{\alpha}\}_{\alpha<\eta}$, $f_{\alpha} < f_{\beta}$ whenever $\alpha < \beta < \eta$, equivalent to the canonical basis of $c_0(\eta)$. Without loss of generality, we can suppose that $\{f_{\alpha}\}_{\alpha<\eta}$ is skipped. So, by Lemma 3.1, we have that the closed subspace $[\{f_{\alpha}\}_{\alpha<\eta}]$ is complemented in $C_0([1,\eta])$.

Corollary 3.3. (1) Every closed subspace $Y \subset C([1, \omega_1])$ contains a copy of $c_0(I)$ complemented in $C([1, \omega_1])$, with Card(I) = Dens(Y).

(2) $[1, \omega_1]$ is a non Gulko (even non Corson) compact K such that C(K) has the HDP.

Proof. (1) This follows from (2) and (4) of Prop. 3.2.

(2) It is well known that $[1, \omega_1]$ is non Gulko (see [DGZ], p. 259). Also, $[1, \omega_1]$ is non Corson because a Corson Radon-Nikodym compact is Eberlein compact ([OSV]). Finally, applying Prop. 1.1 we obtain that $C([1, \omega_1])$ has the HDP.

The "long segment". ([E], p. 297) Consider in $V_0 = [1, \omega_1) \times [0, 1)$ the linear order < defined by letting $(\alpha, t) < (\beta, s)$ whenever $\alpha < \beta$ or $\alpha = \beta$ but t < s. Adjoining the point ω_1 to V_0 and assuming that $x < \omega_1$ for every $x \in V_0$, we obtain a linearly ordered set V. The set V with the topology induced by the linear order < is called the "long segment". Clearly, Dens $(C(V)) = \aleph_1$.

To prove that C(V) has the HDP, it is enough to prove that $C_0(V) = \{f \in C(V) : f(\omega_1) = 0\}$ has. Consider a closed subspace $Y \subset C_0(V)$ such that $Dens(Y) = \aleph_1$. We claim that for every $\alpha < \omega_1$ there exist $\alpha < \beta < \omega_1$ and $f \in Y \setminus \{0\}$ such that $supp(f) \subset ((\beta, 0), \omega_1)$. Indeed:

- A) Consider the restriction $R_1(Y)$ of the functions of Y to $[(1,0),(\alpha,0)]$ which satisfies $R_1(Y) \subset C([(1,0),(\alpha,0)]) \simeq C([0,1])$ (isomorphism). So, there exists a separable subspace $Y_1 \subset Y$ such that $R_1(B(Y_1))$ is dense in $R_1(B(Y))$.
- B) Let $\alpha_1 < \alpha_2 < \omega_1$ be such that $\operatorname{supp}(Y_1) \subset [(1,0),(\alpha_2,0)]$. Let R_2 be the restriction on $[(1,0),(\alpha_2,0)]$ and choose a separable subspace $Y_1 \subset Y_2 \subset Y$ such that $R_2(B(Y_2))$ is dense in $R_2(B(Y))$.

By reiteration, we get a sequence (α_n) of ordinals. Let $\beta = \lim_{n \to \infty} \alpha_n$, $Y_0 = \{f \in A_n\}$

 $Y: f((\beta,0)) = 0$ } and choose $f \in B(Y_0)$ such that $f_{|[(\beta,0),\omega_1]} \neq 0$. Let us see that $g:=f\cdot 1_{[(1,0),(\beta,0)]}\in Y$. Indeed, pick $y_n\in B(Y_n)$ such that $\|R_n(y_n)-R_n(g)\|_\infty \leq 1/n$. We want to prove that $y_n\to g$ weakly, i.e., that $\mu(y_n)\to \mu(g)$ for every Radon measure μ on V. Without loss of generality, we can suppose that $|\mu|([(\beta,0),\omega_1])=0$. Let $\epsilon>0$ and pick $n_0\geq 1$ such that $|\mu|((\alpha_{n_0},0),(\beta,0))<\epsilon$. Then for $n\geq n_0$ we have:

$$|\mu(y_n - g)| \le |\mu| \left(|y_n - g|_{|[(1,0),(\alpha_{n_0},0)]} \right) + ||y_n - g|| \cdot |\mu| ((\alpha_{n_0},0),(\beta,0)) \le \frac{||\mu||}{n} + 2\epsilon,$$

which implies that $y_n \to g$ weakly. As $y_n \in Y$, we conclude that $g \in Y$, $f \cdot \mathbf{1}_{((\beta,0),\omega_1]} \in Y$ and this proves the claim. Applying the claim we obtain a sequence $\{f_\alpha\}_{\alpha<\omega_1} \subset Y$ of normalized functions with skipped supports. Clearly, $[\{f_\alpha\}_{\alpha<\omega_1}] \cong c_0(\omega_1)$ and, by Prop. 1.1, we get that C(V) has the HDP.

Acknowledgements

Supported in part by DGICYT grants PB 97-0240 and PB 96-0607

References

- [B] R. D. BOURGIN, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Springer-Verlag, Lect. Notes in Math., Vol. 993 (1983).
- [CLL] P. G. CASAZZA, B. L. LIN AND R. H. LOHMAN, On James'quasi-reflexive Banach space, Proc. Amer. Math. Soc., 67 (1977), p. 265-271.
- [DGZ] R. DEVILLE, G. GODEFROY AND V. ZIZLER, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64 (1993).
- [E] R. Engelking, General Topology, PWN-Polish Scientific Publishers (1977).
- [E1] G. A. Edgar, A long James space, in: Measure Theory, Oberwolfach 1979, Lectures Notes in Math. 794, Springer-Verlag (1980) p. 31-37.
- [E2] G. A. EDGAR, Measurability in Banach spaces, Indiana Univer. Math. J., Vol. 26, n. 4 (1977), p. 663-677.
- [EW] G. A. EDGAR AND R. F. WHEELER, Topological properties of Banach spaces, Pac. J. Math., 115 (1984), p. 317-350.
- [HO] J. HAGLER AND E. ODELL, A Banach space not containing ℓ₁ whose dual ball is not weak* sequentially compact, Illinois J. Math., 22 (1978), p. 290-294.
- [HW] R. HERMAN AND R. WHITLEY, An example concerning reflexivity, Studia Math.,28 (1967), p. 289-294.
- [LT] J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach Spaces I, Springer-Verlag (1977).
- [Ne] S. NEGREPONTIS, Banach spaces and topology, in:K. Kunen and J. E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland (1984). p. 1045-1142.
- [OSV] J. ORIHUELA, W. SCHACHERMAYER AND M. VALDIVIA, Every Radon-Nikodym Corson compact is Eberlein compact, Studia Math., 98 (1991), p. 157-174.
- [PS] A. Pelczynski and Z. Semadeni, Spaces of continuous functions (III), Studia Math., 18 (1959), p211-222.
- [Va] L. Vašák, On one generalization of weakly compactly generated Banach spaces, Studia Math., 70 (1981), p. 11-19.
- [Z] J. F. Zhao, The transfinite basis of the bidual space of the long James space, Acta Math. Sci. (English Ed.), 5 (1985), p.295-301.

Departamento de Análisis Matemático, Facultad de Matemáticas Universidad Complutense de Madrid 28040-MADRID, Spain Departamento de Matemáticas Universidad Autónoma de Madrid, Cantoblanco 28049-MADRID, Spain