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Abstract. Let M be the collection of all intersections of balls, considered as a subset
of the hyperspace H of all closed, convex and bounded sets of a Banach space, furnished
with the Hausdorff metric. We prove that M is uniformly very porous if and only if the
space fails the Mazur intersection property.

1. Introduction

Motivated by problems in Real Analysis and, especially, in differentiation theory, se-

veral authors considered what came to be known as porosity, a notion which concerns

the size of holes of a set near a point. Topologically speaking, porous sets are smaller

than merely being a countable union of nowhere dense closed sets [15]. Consequently,

porosity has been usually used to describe smallness in a topological sense. Precisely,

let M be a metric space, P a subset of M , B(x, R) the closed ball centered at x with

radius R and γ(x, R, P ) the supremum of all r for which there exists y ∈ M such that

B(y, r) ⊂ B(x, R) \ P . The number

ρ(x, P ) = 2 lim
R→0

sup
γ(x, R, P )

R

is called the porosity of P at x. We say that P is porous at x whenever ρ(x, P ) > 0

and, when P is porous at every point of M , we simply say that P is a porous set. If

there is ε > 0 satisfying ρ(x, P ) > ε for every x ∈ M , then P is said to be uniformly

porous. Finally, replacing “ lim sup ” by “ lim inf ” in the above definition, we encounter

the notions of very porosity and very porous set, respectively. The unit sphere of a normed

linear space is an easy example of an uniformly very porous set.

In convex geometry, the use of porosity received in recent years a great deal of attention.

Several topics as smoothness, strict convexity, diameters, nearest points and others have
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been investigated by using porosity. We refer to the works of Zamfirescu [16], [17] and

Gruber [8], [9] for more information about this rich line of research.

In Banach space theory, porosity has been used to describe topological properties of

the set of points of Frechet nondifferentiability [13], [14] and also in relation with questions

of best approximation [3] and variational principles [5]. For these and other applications

of porosity, we refer to Zajicek’s survey [15] and Phelps’ book [13].

The purpose of this paper is obtaining a new characterization for the Mazur Intersec-

tion property (every closed, convex and bounded subset is an intersection of closed balls)

[12] in terms of porosity. More precisely, let M be the collection of all intersections of

balls, considered as a subset of the hyperspace H of all closed, convex and bounded sets of

a Banach space, furnished with the Hausdorff metric. We prove that M is uniformly very

porous if and only if the space fails the Mazur intersection property, thus improving a

result obtained in [6]. Actually, in this cases, M turns out to be porous in a much strong

sense, somehow close to the notion of cone-meager introduced by Preiss and Zajicek [13],

[14] .

Throughout, X is a Banach space with norm ‖·‖ , B‖·‖ is the unit ball and S‖·‖ its unit

sphere. We denote by X∗ its dual space with dual norm ‖ · ‖∗ . The Hausdorff distance

between C1, C2 ∈ H is

d(C1, C2) = inf {ε > 0 : C1 ⊂ C2 + εB‖·‖, C2 ⊂ C1 + εB‖·‖} .

Given C ∈ H, the ball centered at C with radius R will be denoted by Bd(C, R) and the

distance from C to a subset A ⊂ H by d(C,A) = inf{d(C, A) : A ∈ A}. It is well known

that (H, d) is a complete metric space [11] and, hence, a Baire space. If C ∈ H, we denote

the boundary and the interior of C by ∂C and int C respectively.

2. Porosity and Mazur intersection property.

Consider the set M = {C ∈ H : C = ∩i∈IBi, Bi closed ball, i ∈ I}. The space X has

the Mazur intersection property if and only if H = M. Among the Banach spaces failing

the above property are separable spaces with non-separable dual [7]. In R2, a norm is

Fréchet differentiable if and only if it has the Mazur intersection property. The aim of this

note is to show thatM is uniformly very porous wheneverM 6= H. To this end, we need a

handy description of the elements of H\M, obtained as a consequence of Proposition 2.1.

In what follows, given f ∈ X∗, we denote Kf = ker f ∩ B‖·‖, Lf = {x ∈ B‖·‖ : f(x) ≥ 0}
and Mf = {x ∈ B‖·‖ : f(x) ≤ 0}.
Proposition 2.1. Given a Banach space, the following conditions are equivalent:
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(i) The space has the Mazur intersection property.

(ii) There is a dense set F ⊂ S‖·‖∗ satisfying Mf ∈M (Lf ∈M) for each f ∈ F .

(iii) There is a dense set F ⊂ S‖·‖∗ satisfying Kf ∈M for each f ∈ F .

Proof. To see (ii) ⇒ (iii) just observe that Mf ∈ M if and only if −Mf ∈ M so the

difficulty of the proof lies only in (iii) ⇒ (i). Before proving this implication, we shall

prove the next assertion: consider f ∈ X∗, y ∈ X, λ > 0 and a ball B containing y+λKf ;

then, B contains either y + λLf or y + λMf .

We may assume that B is the unit ball and, consequently, that λ ≤ 1. Indeed, if

B ⊃ y + λKf , then B ⊃ −y − λKf = −y + λKf and so B ⊃ λKf . Therefore Kf ⊃ λKf

and λ ≤ 1. The proof of the above assertion will be accomplished by studying two cases:

Case 1. f(y) = 0. Observe that, in this case, ‖y + λ(y/‖y‖)‖ ≤ 1 and thus λ ≤ 1− ‖y‖.
As a consequence, y + λB ⊂ B and, hence, B contains both y + λLf and y + λMf .

Case 2. f(y) 6= 0. We claim that y + λMf ⊂ B provided f(y) > 0. To prove this fact, we

will use a two-dimensional argument showing that

y + λMf ⊂ conv ( (y + λKf ) ∪Mf ) ⊂ B (2.1)

and, analogously, if f(y) < 0, a similar argument can be used to prove that y + λLf ⊂
conv ( (y + λKf ) ∪ Lf ) ⊂ B.

Consider an arbitrary point z ∈ Mf and the two-dimensional subspace Y spanned by

y and z. Let us call ϕ to the afin function which maps Kf ∩ Y onto y + λ(Kf ∩ Y ). We

will treat first the special case where λ = 1.

The function ϕ is a translation by the vector y. To prove 2.1, it is sufficient to show

that the ray {z + ty : t ≥ 0} has nonempty intersection with (y + Kf ) or, equivalently,

that z ∈ {Kf + ty : t ∈ R}. We argue geometrically: if z /∈ {Kf + ty : t ∈ R} then

conv ({z} ∪ (y + Kf )) ∩Ker f 6⊂ Kf which is a contradiction.

In the general case, where λ < 1, ϕ is just a dilation relative to the point y0 = 1
1−λ

y.

If R is the line passing through z and y0, then clearly ϕ(z) ∈ R. As in the previous case,

we must verify that R has nonempty intersection with (y + λKf ). If it is not so then z

does not belong to the cone {y0 + t(z − y0) : z ∈ Kf , t ≥ 0} and, again, it implies that

conv ({z} ∪ (y + λKf )) ∩Ker f 6⊂ Kf . Thus R ∩ (y + λKf ) 6= ∅, say w = R ∩ (y + λKf ).

We only need to prove that ϕ(z) = y + λz lies into the segment [w, z] ⊂ R. To this end,

notice that λ ≤ 1 and, hence,

f(z) ≤ f(y + λz) ≤ f(y) = f(w) .
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Once the claim has been proved, let C be a closed, bounded, convex set and let

z ∈ X \ C. By the Hahn-Banach separation theorem, there is f ∈ F and σ ∈ R such

that f(z) > σ and sup f(C) < σ. Take y ∈ X, f(y) = σ and n ∈ N large enough so that

z ∈ y + nLf and C ⊂ y + nMf . Let B ⊂ X \ {z} be a ball containing y + nKf . By the

above assertion, B contains y + nMf and hence it contains also C. �

Norm one functionals f ∈ X∗ satisfying that for every ε > 0 there exists a weak* slice

S = {x∗ ∈ B‖·‖∗ : x∗(x) ≥ 1− δ} (where x ∈ S‖·‖ and δ > 0) such that diam (f ∪ S) < ε

were introduced in [2] under the name of semi-denting points. In Proposition 5 of [2],

semi-denting points are characterized as those points satisfying Mf ∈ M. This result

combined with a similar argument to the one used at the end of Proposition 2.1 show

that f is semi-denting if and only if Kf ∈M.

Clearly, the set of semi-denting points is closed. Indeed, if f ∈ S‖·‖∗ is not semi-denting,

there is ε > 0 such that the set B(f, ε) = {x∗ ∈ S‖·‖∗ : ‖x∗ − f‖∗ < ε} contains no weak*

slices and thus no point g of B(f, ε) is semi-denting, either. As a consequence, condition

(iii) of Proposition 2.1 easily implies that Kf ∈ M for every f ∈ X∗. We come now to

the main result of this paper.

Theorem 2.2. The set M is uniformly very porous if and only if the space fails the

Mazur Intersection Property.

Proof. We find it convenient to isolate from the argument the following observation: con-

sider C ∈ H and λ > 0 so that D = {x ∈ C : d(x, ∂C) ≥ λ} 6= ∅; every set E ∈ H with

d(C, E) < λ contains also D. The proof is fairly easy: if x ∈ D \ E, there is a norm

one functional f separating x and E. Say, for instance, that f(x) > sup f(E). Clearly,

sup f(C) ≥ f(x) + λ > sup f(E) + λ, so d(C, E) > λ, a contradiction.

By Proposition 2.1, if X fails the Mazur Intersection Property there is a norm one

functional f such that Mf /∈ M. It means that there is also x0 ∈ B‖·‖ \Mf such that

every ball containing Mf contains also x0. Denote by α = f(x0) > 0 and consider an

arbitrary subset C ∈ B . We will prove that

ρ(C,M) = 2 lim
R→0

inf
γ(C, R,M)

R
≥ α

1 + α
.

and the proof will be accomplished by looking at two cases.

Case 1. The functional f attains its maximum over C, say at y0 ∈ C. Define the sets

CR = C + RB‖·‖ and DR = {x ∈ CR : f(x) ≤ sup f(C)}. Notice that DR /∈ M
since DR contains y0 + RMf and misses the point y0 + Rx0. However, we do not know

the existence of r > 0 such that Bd(DR, r) ⊂ H \M, which is necessary to compute the
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porosity of C. It is then convenient to select a suitable modification of DR, namely the

set ER = DR + αR
2

B‖·‖ . We claim that the ball Bd(ER, αR/2− 1/n) satisfies

Bd(ER, αR/2− 1/n) ∩ M = ∅

for n ∈ N large enough so that αR/2 − 1/n > 0. Indeed, if G ∈ H and d(G, ER) ≤
αR/2− 1/n then y0 + Rx0 /∈ G but, due to the first remark, y0 + RMf ⊂ G so every ball

containing G should contain also y0 + Rx0.

Now, since d(ER, C) ≤ R+Rα/2, then Bd(ER, αR/2−1/n) ⊂ B(C, R+Rα). It means

that γ(C, R + Rα,M) ≥ αR/2− 1/n, for n large enough, so γ(C, R + Rα,M) ≥ αR/2,

thus implying that

2 lim
R→0

inf
γ(C, R + Rα,M)

R + Rα
≥ lim

R→0
inf

αR

R + Rα
=

α

1 + α
.

Case 2. The functional f does not attain its maximum over C. Given R > 0, we take

ym so that f(ym) = sup f(C) and d(ym, C) < R/m. Consider now Cm = conv ({ym∪C}).
Since Cm satisfies the condition of Case 1, γ(Cm, R +Rα,M) ≥ αR/2 and, consequently,

γ(C, R + Rα + R/m,M) ≥ αR/2. Therefore

2 lim
R→0

inf
γ(C, R + Rα + R/m,M)

R + Rα + R/m
≥ lim

R→0
inf

αR

R + Rα + R/m
=

α

1 + α + 1/m

for every m ∈ N and the theorem is proved. �

Notice that, if C /∈ M, then x + λC /∈ M for every x ∈ X and λ ∈ R. It means

that M is porous in a much stronger sense than stated in Theorem 2.2, and close to the

notions of cone meager and angle-smallness introduced by Preiss and Zajicek (see [14]

and [13]).

The Mazur intersection property was introduced by Mazur [12] and later studied by

many other authors. Information concerning this property can be found in [1], [4], [10]

and references therein. There are still a number of open problems concerning this sub-

ject, as the existence of points of Fréchet differentiability in spaces with this property.

While spaces with Fréchet differentiable norm satisfy the Mazur intersection property, it

is unknown if it is also the case of spaces with a (Fréchet) differentiable bump function.
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