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Abstract. We make a survey of recent results on the geometrical properties of
smooth bump functions and the geometrical and topological properties of star-
like bodies in Banach spaces. We try to stress the interplay between infinite-
dimensional topology and nonlinear functional analysis by relating questions about
topological and geometrical properties of starlike bodies to other interesting prob-
lems on nonlinear analysis and the theory of smoothness in Banach spaces.

1. Introduction

A bump b on a Banach space X is a (most often smooth, at least continuous)
function with bounded nonempty support, supp(b) = {x ∈ X : b(x) 6= 0}. The exis-
tence of smooth bump functions on a Banach space X is closely related in several
ways to the (linear and nonlinear) structure of the space X, and has often impor-
tant consequences on its geometrical properties (see [27]). In connection with bump
functions there is the class of starlike bodies, which, perhaps, have not yet received
the attention that they are worth.

A closed subset A of a Banach space X is said to be a starlike body if there
exists a point x0 in the interior of A such that every ray emanating from x0 meets
∂A, the boundary of A, at most once. Up to a suitable translation, we can always
assume (and we will do so) that x0 = 0 is the origin of X. For a starlike body A,
we define the characteristic cone of A as

ccA = {x ∈ X|rx ∈ A for all r > 0},
and the Minkowski functional of A as

µA(x) = inf{λ > 0| 1
λ

x ∈ A}
for all x ∈ X. It is easily seen that for every starlike body A its Minkowski functional
µA is a continuous function which satisfies µA(rx) = rµA(x) for every r ≥ 0 and
x ∈ X, and µ−1

A (0) = ccA. Moreover, A = {x ∈ X|µA(x) ≤ 1}, and ∂A = {x ∈ X |
µA(x) = 1}. Conversely, if ψ : X → [0,∞) is continuous and satisfies ψ(λx) = λψ(x)
for all λ ≥ 0, then Aψ = {x ∈ X | ψ(x) ≤ 1} is a starlike body and µAψ

= ψ. More
generally, for a continuous function ψ : X → [0,∞) such that ψx(λ) = ψ(λx), λ > 0,
is increasing and sup{ψx(λ) : λ > 0} > ε for every x ∈ X \ψ−1(0), the set ψ−1([0, ε])
is a starlike body whose characteristic cone is ψ−1(0).

A familiar important class of starlike bodies are convex bodies, that is, starlike
bodies that are convex. For a convex body U , ccU is always a convex set, but in
general the characteristic cone of a starlike body is not convex.

We will say that A is a Cp smooth starlike body provided its Minkowski functional
µA is Cp smooth on the set X \ ccA = X \ µ−1

A (0). A starlike body A is said to
be Lipschitz provided its Minkowski functional µA is a Lipschitz function. Finally,
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two (smooth) starlike bodies A, B in a Banach space X are relatively homeomorphic
(relatively diffeomorphic) whenever there is a self-homeomorphism (diffeomorphism)
g : X −→ X so that g(A) = B.

Starlike bodies often appear in nonlinear functional analysis as natural substi-
tutes of convex bodies or in connection with polynomials. Indeed, for every n-
homogeneous polynomial P : X → R the sets Ac = {x ∈ X | P (x) ≤ c}, c > 0,
are either starlike bodies or complements of starlike bodies; therefore the level sets
of every n-homogeneous polynomials are boundaries of starlike bodies, and if one
is interested in the geometrical behaviour of n-homogeneous polynomials then one
should also pay some attention to the geometrical properties of starlike bodies. On
the other hand, smooth bounded starlike bodies also arise in a natural way from
smooth bump functions; indeed, for every Banach space (X, ‖.‖) with a Cp smooth
bump function there exist a functional ψ and constants a, b > 0 such that ψ is Cp

smooth away from the origin, ψ(λx) = |λ|ψ(x) for every x ∈ X and λ ∈ R, and
a‖x‖ ≤ ψ(x) ≤ b‖x‖ for every x ∈ X (see [27], proposition II.5.1) The function
ψ has a useful conical shape and can sometimes take the role of a smooth norm
in spaces which in general are not known to possess such norms. The level sets of
this function are precisely the boundaries of the Cp smooth bounded starlike bodies
Ac = {x ∈ X | ψ(x) ≤ c}, c ∈ R+. Conversely, if a Banach space X has a Cp smooth
bounded starlike body then it has a Cp smooth bump function as well.

It is therefore reasonable to ask to what extent the geometrical properties of
convex bodies are shared with the more general class of starlike bodies. Surprisingly
enough, very little work concerning smooth starlike bodies and their geometrical
properties has been attempted until very recently.

This work is mainly a compilation of some recent research about the topological
and geometrical properties of starlike bodies and bump functions that has been
carried out by Manuel Cepedello, Robert Deville, Tadeusz Dobrowolski and the
present authors during the last few years. Our aim here is to organize some of
the results obtained from that research in a coherent way, stressing the interplay
between infinite-dimensional differential topology and nonlinear functional analysis.
In particular we relate some questions about topological and geometrical properties
of starlike bodies to other interesting problems on nonlinear analysis, such as the
failure of Rolle’s theorem in infinite dimensions and other ways of characterizing the
smoothness properties of a Banach space. As said above, starlike bodies and bump
functions are tightly related, so it is no surprise that looking at the geometrical
properties of one of these classes of objects can help us to learn more about the
nature of the other.

We will avoid the most technical proofs, trying to focus on the ideas behind them
rather than overwhelming the reader with cumbersome details. However, we believe
that some of the new tools developed in the proofs (such as the twisted tube method
of section 4, or the construction of mappings whose derivatives are surjections of
section 6) might have some applications beyond the problems considered herein. In
such cases we will try to be more accurate in our account.

The structure of this essay is as follows.

(1) Introduction
(2) Classifying starlike bodies
(3) Smooth Lipschitz contractibility of boundaries of starlike bodies in infinite

dimensions
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(4) The failure of Rolle’s and Brouwer’s theorems in infinite dimensions
(5) How small can the range of the gradient of a bump be?
(6) How large can the range of a derivative be?
(7) What does the range of a derivative look like?
(8) Geometrical properties of starlike bodies. The failure of James’ theorem for

starlike bodies.
Sections 2 and 3 concern some (smooth) topological properties of starlike bodies;

the results of section 2 are part of [10], while those of section 3 constitute the main
theorems from [4]. Sections 4, 5, 6 and 7 are devoted to a study of the geometrical
properties of bump functions; more specifically, we ask and answer questions about
the size of the sets of gradients of smooth bump functions. This study enables us
to answer to some natural questions about the geometrical properties of starlike
bodies (such as the topological size of the cones of tangent hyperplanes to smooth
starlike bodies), which we consider in section 8, and in particular we deduce that
James’ theorem on the characterization of reflexivity cannot be extended to the class
of starlike bodies. Most of the material of sections 4, 5, 6 and 8 can be found in
[6, 7, 13, 14]. The statements and original proofs of the results of section 7 are due
to Borwein, Fabian, Kortezov and Loewen (see [23, 24]), though the proof sketches
we present here are different.

2. Classifying starlike bodies

It was V. L. Klee [39] that first gave a topological classification of the convex
bodies of a Hilbert space. This result was generalized for every Banach space with
the help of Bessaga’s non-complete norm technique (see the book by Bessaga and
Pelczynski [22]). To get a better insight in the history of the topological classification
of convex bodies the reader should have a look at the papers by Stocker [51], Corson
and Klee [25], Bessaga and Klee [20, 21], and Dobrowolski [30]. These results have
recently been sharpened to get a full classification of the Cp smooth convex bodies
of every Banach space [9]. In its most general form the result on a classification
of (smooth) convex bodies reads as follows (see [9]); here, as in the whole section,
p = 0, 1, 2, ...,∞, and “C0 diffeomorphic” means just “homeomorphic”.

Theorem 2.1. Let U be a Cp convex body in a Banach space X.
(a) If ccU is a linear subspace of finite codimension (say X = ccU ⊕ Z, with

Z finite-dimensional), then U is Cp relatively diffeomorphic to ccU + BZ ,
where BZ is an Euclidean ball in Z.

(b) If ccU is not a linear subspace or ccU is a linear subspace such that the
quotient space X/ccU is infinite-dimensional, then U is Cp relatively dif-
feomorphic to a closed half-space (that is, {x ∈ X | x∗(x) ≥ 0}, for some
x∗ ∈ X∗).

Our aim here is to discuss to what extent this result can be generalized for
(smooth) starlike bodies. The following example shows that part (b) of theorem 2.1
is not true for starlike bodies whose characteristic cones are not convex sets.

Example 2.2. Let A = {(x, y) ∈ R2 | |xy| ≤ 1}. It is plain that A is a starlike body
in the plane R2, and its characteristic cone is the pair of lines defined by the equation
xy = 0. Then A cannot be relatively diffeomorphic (not even relatively homeomor-
phic) to a half-plane of R2. Indeed, ∂A is not connected, while the boundary of a
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closed half-plane (that is to say, a line) is always connected. Similar examples show
that for every n ∈ N there exists a starlike body An in the plane R2 such that ∂An

has exactly n connected components. Hence An is not relatively homeomorphic to
Am whenever n 6= m.

However, it seems natural to think that every two (smooth) starlike bodies with
the same characteristic cone should be diffeomorphic. This is indeed true and it is
a fact that, though elementary, will help us to unravel the tangle of starlike bodies
and get a first generalization of theorem 2.1.

Proposition 2.3. Let X be a Banach space, and let A1, A2 be Cp smooth starlike
bodies such that ccA1 = ccA2. Then there exists a Cp diffeomorphism g : X −→ X
such that g(A1) = A2, g(∂A1) = ∂A2, and g(0) = 0. Moreover, g(x) = η(x)x, where
η : X → [0,∞), and hence g preserves the rays emanating from the origin.

Proof. First let us see that the statement is true if we make the additional assumption
that A1 ⊆ A2. So, let us suppose that A and B are starlike bodies such that the
origin is an interior point of both A and B, ccA = ccB, and A ⊆ B (so that
µB(x) ≤ µA(x) for every x, where µA and µB are the Minkowski functionals of A
and B respectively), and see that there exists a Cp diffeomorphism g : X → X such
that g(A) = B, g(0) = 0, and g(∂A) = ∂B.

Let λ(t) be a non-decreasing real function of class C∞ defined for t > 0, such
that λ(t) = 0 for t ≤ 1/2 and λ(t) = 1 for t ≥ 1. Let

g(x) =
[
λ(µA(x))

µA(x)
µB(x)

+ 1− λ(µA(x))
]
x

for x /∈ ccA, and g(x) = x whenever µB(x) = 0. It is clear that g is a Cp smooth
mapping. With the help of the implicit function theorem it is not difficult to see
that g−1 is Cp smooth as well.

Now let us consider the general case. Let A = {x ∈ X | µA1(x) + µA2(x) ≤ 1},
which is a Cp smooth convex body satisfying ccA = ccAj and A ⊆ Aj , for j = 1, 2.
We already know that there exist self-diffeomorphisms of X, g1 and g2, such that
gj(A) = Aj and gj(∂A) = ∂Aj , j = 1, 2. Then, if we put g = g2 ◦ g−1

1 , we get a
self-diffeomorphism of X transforming A1 onto A2 and ∂A1 onto ∂A2. ¤

As said above, one cannot dream of extending part (b) of theorem 2.1 to the class
of general starlike bodies. The complexity of the characteristic cones of (unbounded)
starlike bodies really makes a difference that forces us to devise a new classification
scheme that suits all starlike bodies, whatever their characteristic cones may be.
If one wants to stick to the Bessaga-Klee classification scheme then the best result
one can get is that theorem 2.1 still holds for the class of starlike bodies whose
characteristic cones are convex sets.

We will next state and prove such a result. To this end we need to use the
following result (see [11] for the proof), which implies that every closed convex cone
in a separable Banach space can regarded as the characteristic cone of some C∞
smooth convex body. We say that a nonempty subset C of a Banach space X is a
cone (resp., a cone over a set K) provided [0,∞)C = C (resp., C = [0,∞)K). The
cone C is proper if C 6= X.

Theorem 2.4. For every proper closed convex set C in a separable Banach space
X there exists a C∞ smooth convex function f : X −→ [0,∞) so that f−1(0) = C.
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Moreover, when C is a cone, U = f−1([0, 1]) is a C∞ smooth convex body in X so
that ccU = C.

Now we have arrived at the following generalization of theorem 2.1.

Theorem 2.5. Let A be a Cp starlike body in a separable Banach space X. Assume
that ccA is a convex subset of X.

(a) If ccA is a linear subspace of finite codimension (say X = ccA ⊕ Z, with
Z finite-dimensional), then A is Cp relatively diffeomorphic to ccA + BZ ,
where BZ is an Euclidean ball in Z.

(b) If ccA is either not a linear subspace or else ccA is a linear subspace such
that the quotient space X/ccA is infinite-dimensional, then A is Cp relatively
diffeomorphic to a closed half-space.

Moreover, in the case p = 0 this is true for all Banach spaces X.

Proof. To obtain (a) it is enough to apply proposition 2.3 for A1 = A and A2 =
ccA + BZ .

To obtain (b), write C = ccA, which is a closed convex cone of X. By proposition
2.4 there exists a C∞ smooth convex body U so that ccU = C = ccA. Then, by
proposition 2.3 the starlike bodies U and A are Cp relatively difeomorphic. On the
other hand, by the assumption, ccU = C is either not a linear subspace or else is
a linear subspace such that dim(X/C) = ∞. Now, part (b) of theorem 2.1 tells us
that U is Cp relatively diffeomorphic to a closed half-space, and hence so is A.

Finally, in the case p = 0, it is easy to see that, for every closed convex cone
C ⊂ X, the set U = C + B, where B is the unit ball of X, is a closed convex body
so that C = ccU . Hence, the above argument applies. ¤

In particular, for an infinite-dimensional separable Banach space X, the bound-
ary of every smooth bounded starlike body A ⊂ X is Cp diffeomorphic to a hy-
perplane. We now apply the above result to get smooth negligibility of starlike
bodies.

Corollary 2.6. Let X be a separable Banach space, and let A be a Cp smooth starlike
body such that its characteristic cone is a linear subspace of infinite codimension in
X. Then there exists a Cp diffeomorphism from X onto X \A.

Proof. According to theorem 2.5, there exists a Cp self-diffeomorphism of X mapping
A onto a closed half-space. Therefore X \ A is Cp diffeomorphic to an open half-
space. Since an open half-space is obviously C∞ diffeomorphic to the whole space,
we may conclude that X \A and X are Cp diffeomorphic. ¤

As said above, examples like 2.2 show that the classification scheme used in
theorem 2.5 is useless when one wants to cover such cases as those of starlike bodies
with nonconvex characteristic cones. Let us have a closer look at those examples.
In the case of the bodies An whose construction is hinted in example 2.2, and whose
boundary has n connected components, one could wonder whether every starlike
body in Rk whose boundary has exactly n connected components must be relatively
homeomorphic to An

More generally, it is natural to ask whether for every couple of starlike bodies A
and B in a Banach space X with homeomorphic boundaries ∂A and ∂B it happens
that A and B are relatively homeomorphic.
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Surprisingly enough, the answers to these questions are all negative in the finite-
dimensional setting, as we will show later on (see examples 2.13, 2.14 and 2.15
below).

However, in infinite dimensions things turn less complicated, topologically speak-
ing. The following theorem answers the above question in the affirmative, providing
a full classification of starlike bodies in terms of the homotopy type of their bound-
aries in infinite-dimensional Banach spaces.

Theorem 2.7. Let X be an infinite-dimensional Banach space and let A, B be
starlike bodies in X, with boundaries ∂A and ∂B. The following statements are
equivalent:

(1) ∂A has the same homotopy type as ∂B
(2) ∂A and ∂B are homeomorphic
(3) A and B are relatively homeomorphic.

The proof involves infinite-dimensional topology, see [22]. The bodies A and B,
and their boundaries ∂A and ∂B are manifolds modelled on the separable Hilbert
space (in the sequel those manifolds will be called Hilbert manifolds). A fundamen-
tal theorem of infinite-dimensional topology states that two Hilbert manifolds are
homeomorphic provided they have the same homotopy type. Since A and B are con-
tractible, in fact, they are homeomorphic to X. Moreover, ∂A and ∂B are instances
of the so-called Z-sets in A and B, respectively. The fact that ∂A and ∂B have the
same homotopy type implies that they actually are homeomorphic. Then, by the
homeomorphism extension theorem for Z-sets, any homeomorphism h : ∂A → ∂B
extends to a homeomorphism H of A onto B. Finally, it is easy to extend H to a
self-homeomorphism of X. We refer the reader to [10] for the details. ¤

The starlike bodies of a Banach space X are, in some sense, in one-to-one corre-
spondence with the closed subsets K (resp. the open subsets U) of the unit sphere
S of X. Let A be a starlike body in X. Let r : X \{0} → S be the radial retraction.
Clearly, S(A) = r(ccA \ {0}) is a closed subset of S such that ccA = [0,∞)S(A),
the cone over S(A), while r(∂A) = S \ S(A) is an open subset of S. As it is easily
seen below, a closed subset K of S gives rise to a starlike body whose characteristic
cone is the cone over K.

Proposition 2.8. Let K be a closed subset of S, there exists a starlike body A = AK

such that S(A) = K. If X is separable and Cp smooth, then we may require that the
body A is Cp smooth as well.

Proof. Take any continuous function λ : S → [0, 1] with λ−1(0) = K. Define
ψ(x) = ‖x‖λ( x

‖x‖) for x 6= 0 and ψ(0) = 0. We see that ψ : X → [0,∞) is a
positively homogeneous continuous function with ψ−1(0) = [0,∞)K. It is enough
to set A = ψ−1([0, 1]). In the smooth case, if X is Cp smooth, there exists a
bounded Cp smooth starlike body whose charcteristic cone is {0} [27]. Let µ stand
for the Minkowski functional of this body. Using the fact that X admits Cp smooth
partitions of unity, one can find a continuous function λ : X → [0, 1] which is Cp

smooth off λ−1(0) = [0,∞)K. Define ψ(x) = µ(x)λ( x
µ(x)) for x 6= 0 and ψ(0) = 0.

Clearly, ψ : X → [0,∞) is a positively homogeneous continuous function which is
Cp smooth off ψ−1(0) = [0,∞)K. Set A = ψ−1([0, 1]). ¤
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Remark 2.9. The smooth assertion holds true if one replaces the separability as-
sumption by the existence of Cp smooth partitions of unity.

For a fixed closed set K ⊂ S, all (smooth) starlike bodies of the form AK are
relatively (diffeormorphic) homeomorphic. In the infinite-dimensional setting, as a
consequence of theorem 2.7, we also have:

Corollary 2.10. For two closed sets K1, K2 ⊂ S in an infinite-dimensional Banach
space X, the starlike bodies AK1 and AK2 are relatively homeomorphic if and only
if the complements S \K1 and S \K2 have the same homotopy type.

Proof. This is a consequence of theorem 2.7 because the boundary of AKi is home-
omorphic to S \Ki, i = 1, 2. ¤

We do not know what necessary and sufficient conditions for Ki, i = 1, 2 one has
to impose in order their complements in S have the same homotopy type. If K is a
Z-set in S (e.g., K is compact), then the complement of K is homeomorphic to S;
hence, in such a case AK is relatively homeomorphic to the unit ball. If K1 is a one-
point set and K2 is a small closed ball intersected with S, then K1 is a Z-set, while
B2 is not a Z-set, but the complements of K1 and K2 have the same homotopy type
(they are contractible), and therefore AK1 and AK2 are relatively homeomorphic
(with the unit ball). The following example shows that the contractibility of K1 and
K2 does not suffice to obtain the same homotopy type of their complements.

Example 2.11. Let K1 ⊂ S be a one point set and K2 = S ∩ X0, where X0 is a
codimension 1 vector subspace of X. Then, K1 and K2 are contractible, but the
complement of K2 is disconnected, while the complement of K1 is contractible (even
homeomorphic to X). We see that AK1 is relatively homeomorphic to the unit
ball in X, while ccAK2 = X0 and, consequently, AK2 is relatively homeomorphic
to X0 × [−1, 1], which, in turn, (having disconnected boundary in X0 × R) is not
homomorphic to the unit ball in X.

The finite-dimensional case
Below we provide several examples showing that corollary 2.10 and theorem 2.7

cannot be extended in any reasonable way for a finite-dimensional space X.

Example 2.12. Let S = S1 and B be the unit sphere and the unit ball in X = R2,
respectively. Consider two compacta K1 and K2 in S; K1 is a copy of an infinite
convergent sequence space and K2 is a copy of the Cantor set. Then, the bodies
AK1 and AK2 (having their boundaries homeomorphic) are not homeomorphic.

To see this it suffices to notice that each AKi is homeomorphic to B \ Ki. It
is then clear that any nonisolated point of K1 has a basis of neighborhoods (in
AK1) that can be chosen to be topologically different from any neighborhood of any
point of K2. We can obviously make those starlike bodies to be real-analytic, so an
improvement in smothness is not any help. ¤

In higher dimensions, one can provide more regular examples.

Example 2.13. Let S = S2 be the unit sphere in X = R3. Consider C1 = U1 ∪
U2 ∪ U3, where U1 = {(x, y, z) ∈ S||z| < 1/8}, U2 = {(x, y, z) ∈ S||z − 1| < 1/8},
and U3 = −U2, and C2 = U1 ∪ U2 ∪ U ′

3, where U ′
3 = {x, y, z) ∈ S|z − 1/2| <

1/8, y > 0}. Letting Ki = S \Ci, i = 1, 2, we see that the boundaries of the starlike
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bodies AKi (being homeomorphic to Ci) are homeomorphic. However, there is no
homeomorphism of AK1 onto AK2 .

In R4, we have the following.

Example 2.14. Let S = S3 be the unit sphere in X = R4. Let K be the (doubled)
Fox-Artin arc in S, that is, K is a topological arc whose complement is a contractible
3-manifold which is not homeomorphic to R3, see [49], p. 68. Then, for a starlike
body A = AK , ccA is a cone over an arc, therefore, it is contractible. Moreover,
AK is not homeomorphic to a half-space in R4 though both bodies have contractible
boundaries.

In general, for every n ≥ 4, the sphere S = Sn−1 in X = Rn contains an open
contractible (n − 1)-manifold U that is not homeomorphic to Rn−1. One can take
U to be the so-called Whitehead manifold. In each dimension, there are continuum
many pairwise non-homeomorphic such objects. While the complement S3 \ U is
a continuum that is not contractible, for n > 4, always one can pick U so that
Sn−1 \ U is a contractible (n − 1)-manifold. To see this, let M be a contractible
(n − 1)-manifold with non-simply connected boundary; the existence of M is due
to N.H.A. Newman for n > 5 (see [35]), and due to B. Mazur and V. Poenaru
for n = 5. Gluing together two copies of M along their boundaries we obtain the
double space N , which is a topological copy of Sn−1 (cf. [1], p. 2, items (4) and
(9)). The complement of one copy of M in N is just the interior of the other copy,
which yields a requested manifold U . Since U is not simply connected at infinity,
U is not homeomorphic to Rn−1; moreover, the manifold U , being the interior of a
contractible manifold, is itself contractible.

Example 2.15. Write K = S \ U . Any starlike body AK in Rn, n > 4, has both
ccAK and ∂AK contractible. However, AK is not homeomorphic to a half-space.

3. Smooth Lipschitz contractibility of boundaries of starlike bodies
in infinite dimensions

The well known Brouwer’s fixed point theorem states that every continuous self-
map of the unit ball of a finite-dimensional Banach space admits a fixed point. This
is equivalent to saying that there is no continuous retraction from the unit ball onto
the unit sphere, or that the unit sphere is not contractible (the identity map on the
sphere is not homotopic to a constant map). This result is no longer true in infinite
dimensions (see [22]). In [47] B. Nowak showed that for several infinite-dimensional
Banach spaces Brouwer’s theorem fails even for Lipschitz mappings, and in [17] Y.
Benyamini and Y. Sternfeld generalized Nowak’s result for all infinite-dimensional
normed spaces, establishing that for every infinite-dimensional space (X, ‖ · ‖) there
exists a Lipschitz retraction from the unit ball BX = {x ∈ X : ‖x‖ ≤ 1} onto the
sphere SX = {x ∈ X : ‖x‖ = 1}, and that SX is Lipschitz contractible. In recent
years a lot of work has been done on smoothness and Lipschitz properties in Banach
spaces (see [27, 16]). Following this trend it is natural to ask whether Nowak-
Benyamini-Sternfeld’s results can be sharpened so as to get Cp smooth Lipschitz
retractions of the unit ball onto the sphere of every infinite-dimensional Banach
space whose norm is Cp smooth.

The main result of this section tells us that this is indeed possible. In fact we
generalize those results in two ways. Not only do they hold for the smooth category
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but also for a wider class of objects than balls and spheres, namely, that of bounded
starlike bodies and their boundaries. Indeed, for every infinite-dimensional Banach
space with a Cp Lipschitz bounded starlike body A (where p = 0, 1, 2, . . . ,∞), there
is a Cp Lipschitz retraction of A onto its boundary ∂A, and ∂A is also Cp Lipschitz
contractible.

Before stating this result let us recall a few topological definitions. Let M , N
be closed subsets of a Banach space X. We will say that two maps f, g : M −→ N
are Cp Lipschitz homotopic provided there exist an open subset U of X containing
M , an ε > 0, and a Cp smooth mapping H : (−ε, 1 + ε) × U −→ X such that
the restriction of H to [0, 1] × M is a Lipschitz homotopy joining f to g, that is,
H : [0, 1] × M −→ N is Lipschitz continuous and satisfies H(0, x) = f(x) and
H(1, x) = g(x) for all x ∈ M . Moreover we will demand that H(t, x) = f(x) for
t ≤ 0, x ∈ M , and H(t, x) = g(x) for t ≥ 1, x ∈ M . With this definition, ‘being
Cp Lipschitz homotopic’ endows the set of Cp Lipschitz mappings from M into N
with an equivalence relationship (one can join Cp smooth homotopies without losing
smoothness or Lipschitzness). A closed subset M of X is said to be Cp Lipschitz
contractible if the identity map on M is Cp Lipschitz homotopic to a constant map
on M . For instance, it is easy to check that every Cp Lipschitz starlike body A is Cp

Lipschitz contractible. It is also easy to see that every two maps on a (Cp Lipschitz)
contractible set are always (Cp Lipschitz) homotopic (they are both homotopic to a
constant). Finally, we will say that r : A −→ ∂A is a Cp smooth Lipschitz retraction
from the starlike body A onto its boundary provided there exist an open subset U
of X containing A and a Cp smooth mapping R : U −→ X such that R fixes all
the points of ∂A, and the restriction of R to A is Lipschitz continuous and coincides
with r.

Theorem 3.1. Let X be an infinite-dimensional Banach space and let A be a Cp

Lipschitz bounded starlike body. Then:
(1) The boundary ∂A is Cp Lipschitz contractible.
(2) There is a Cp Lipschitz retraction from A onto ∂A.
(3) There is a Cp Lipschitz map T : A −→ A with no approximate fixed points,

that is, inf{‖x− T (x)‖ : x ∈ A} > 0.

As a corollary we obtain the following generalization of Benyamini-Sternfeld’s
theorem:

Corollary 3.2. Let (X, ‖·‖) be an infinite-dimensional Banach space with an equiv-
alent norm ‖ · ‖ which is Cp smooth, and let BX and SX be its unit ball and unit
sphere respectively. Then

(1) SX is Cp Lipschitz contractible.
(2) There is a Cp Lipschitz retraction of BX onto SX .
(3) There is a Cp Lipschitz map T : BX −→ BX with no approximate fixed

points.

If one is not interested in the Lipschitz property, it is a trivial consequence of the
main result in [2] that the sphere SX is Cp contractible and there are Cp smooth
retractions from BX onto SX . Unfortunately, the deleting diffeomorphisms obtained
in [2, 9] are not Lipschitz, and corollary 3.2 cannot be deduced by using those results.
As a matter of fact, corollary 3.2 provides a new result even in the case X = `2 with
the usual hilbertian norm.
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The general scheme of the proof of theorem 3.1 follows that of [17], which is
in turn a generalization with some modifications of Nowak’s approach [47]. The
proofs in [17, 47] are already involved in themselves and in our case they are even
more complicated with the difficulties peculiar to smooth maps and starlike bodies.
That is why we omit the proof of theorem 3.1 in the Lipschitz case; we refer the
interested reader to [4]. However, if one drops the Lipschitz condition, a simpler
proof is available, as we will see in the following section.

4. The failure of Rolle’s and Brouwer’s theorems in
infinite-dimensions

Rolle’s theorem in finite-dimensional spaces states that, for every bounded open
subset U of Rn and for every continuous function f : U −→ R such that f is
differentiable in U and constant on the boundary ∂U , there exists a point x ∈ U
such that f ′(x) = 0. Unfortunately, Rolle’s theorem does not remain valid in infinite
dimensions. It was S. A. Shkarin [50] that first showed the failure of Rolle’s theorem
in superreflexive infinite-dimensional spaces and in non-reflexive spaces which have
smooth norms. The class of spaces for which Rolle’s theorem fails was substantially
enlarged in [12], where it was also shown that an approximate version of Rolle’s
theorem remains nevertheless true in all Banach spaces. In fact, as a consequence of
the existence of diffeomorphisms deleting points in infinite-dimensional spaces (see
[2, 9]), it is easy to see that Rolle’s theorem fails in all infinite-dimensional Banach
spaces which have smooth norms [3].

Of course, Rolle’s theorem is trivially true in the Banach spaces which do not
have any smooth bumps (if X is such a space then every function on X satisfying
the hypothesis of Rolle’s theorem must be a constant). Thus, in many infinite-
dimensional Banach spaces, Rolle’s theorem is either false or trivial, depending on
the smoothness properties of the spaces considered. In this setting, it does not
seem too risky to conjecture, as it was done in [12], that Rolle’s theorem should fail
in an infinite-dimensional Banach space if and only if our space has a C1 smooth
bump function. However, none of the results quoted above allows to completely
characterize the spaces for which Rolle’s theorem fails. What makes the problem
difficult is that the spaces are not assumed to be separable, nor even to have smooth
norms. As shown by R. Haydon [38], there are (nonseparable) Banach spaces with
smooth bump functions which possess no equivalent smooth norms. Besides, it is
natural to demand that the smooth bumps which do not satisfy Rolle’s theorem be
Lipschitz whenever smooth Lipschitz bumps are available in the space considered,
and this requirement makes the problem even more delicate.

In spite of those difficulties, the above conjecture has recently proved to be right
[13], thus providing an interesting characterization of smoothness in Banach spaces.

Theorem 4.1. Let X be an infinite-dimensional Banach space which has a Cp

smooth (Lipschitz) bump function. Then there exists another Cp smooth (Lipschitz)
bump function f : X −→ [0, 1] with the property that f ′(x) 6= 0 for every x ∈
int(supp f).

Here, as in the whole section, 1 ≤ p ≤ ∞, and suppf denotes the support of f , that
is, suppf = {x ∈ X : f(x) 6= 0}. Let us recall that b : X −→ R is said to be a bump
function on X provided b is not constantly zero and b has a bounded support.

From this result it is easily deduced the following
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Corollary 4.2. Let X be an infinite-dimensional Banach space. The following
statements are equivalent.

(1) X has a Cp smooth (and Lipschitz) bump function.
(2) There exist a bounded contractible open subset U of X and a continuous

function f : U −→ R such that f is Cp smooth (and Lipschitz) in U , f = 0
on ∂U , and yet f ′(x) 6= 0 for all x ∈ U , that is, Rolle’s theorem fails in X.

(3) There exist a Cp smooth (and Lipschitz) function f : X −→ [0, 1] and a
bounded contractible open subset U of X such that f = 0 precisely on X \U
and yet f ′(x) 6= 0 for all x ∈ U .

To complete the picture of Rolle’s theorem in infinite-dimensional Banach spaces,
let us quote the positive result from [12] on an approximate substitute of Rolle’s
theorem, which guarantee the existence of arbitrarily small derivatives (instead of
vanishing ones) for every function satisfying (in an approximate manner) the condi-
tions of the classical Rolle’s theorem. Here, Baire category arguments can make up
for the lack of local compactness, but one has to pay an ε, as is usual in such cases.

Theorem 4.3. Let U be a bounded connected open subset of a Banach space X. Let
f : U −→ R be a bounded continuous function which is (Gâteaux) differentiable in U .
Let R > 0 and x0 ∈ U be such that dist(x0, ∂U) = R. Suppose that f(∂U) ⊆ [−ε, ε]
for some ε > 0. Then there exists some xε ∈ U such that ‖f ′(xε)‖ ≤ ε

R .

The “twisted tube” method that we developed in order to prove theorem 4.1 is
interesting in itself and, with little more work, provides a useful characterization of
Cp smoothness in infinite-dimensional Banach spaces related to the existence of a
certain kind of deleting diffeomorphisms. Namely, we have the following

Theorem 4.4. Let X be an infinite-dimensional Banach space. The following as-
sertions are equivalent.

(1) X has a Cp smooth bump function.
(2) There exists a nonempty contractible closed subset D of the unit ball BX

and a Cp diffeomorphism f : X −→ X \D so that f restricts to the identity
outside BX .

When X has a (not necessarily equivalent) Cp smooth norm this result was
already known [2, 9, 3] and, moreover, one can take for D a single point, or a
small ball. Theorem 4.4 provides a new result in the case when X possesses a
Cp smooth bump but has no Cp smooth norm. Unfortunately, it is still unknown
whether theorem 4.4 is true in full generality when D is a single point. The proof we
will give here does not clarify this question (in our proof D is nothing but a small
“twisted tube” inside BX). Nevertheless, some important applications of smooth
negligibility do not require such accurate instruments as a diffeomorphism deleting
just a single point, and it is often enough to use diffeomorphisms which remove
a small bounded set, as in the statement of theorem 4.4. Indeed, this theorem
will allow us to deduce two interesting corollaries. The first one is the failure of
Brouwer’s theorem in infinite dimensions even for smooth self-mappings of balls or
starlike bodies; this is a particular case (the non-Lipschitz one) of the main result of
the preceding section. Second, we deduce from the above characterization that the
support of the bump functions which violate Rolle’s theorem can always be assumed
to be a smooth starlike body. We will show this later on. Let us first say a few
words about the proofs of theorems 4.1 and 4.4.
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Sketch of the proofs of theorems 4.1 and 4.4
The idea behind the proof of theorem 4.1 is as follows. First we build a twisted

tube T of infinite length in the interior of the unit ball BX , with a beginning but with
no end. This twisted tube can be thought of as directed by an ever-winding infinite
path p that gets lost in the infinitely many dimensions of our space X. In technical
words, one can construct a diffeomorphism π between a straight (unbounded) half-
cylinder C and a twisted (bounded) tube T contained in BX . The tube T is going to
be the support of a smooth bump function f that does not satisfy Rolle’s theorem.
In order to define such a function f we only have to make it strictly increase in the
direction which is tangent to the leading path p at each point of the tube T . The
graph of f would thus represent an ever-ascending stairway built upon our twisted
tube, with a beginning but no end.

The spirit of the proof that (1) implies (2) in theorem 4.4 is not very different.
We will make use of the diffeomorphism π between a straight (unbounded) half-
cylinder C and a bounded twisted tube T contained in BX . If we consider a straight
closed half-cylinder C ′ contained in the interior of C and directed by the same
line as C, it is elementary that there is a diffeomorphism g : X −→ X \ C ′ so
that g restricts to the identity outside C. In fact this is true even in the plane.
Now, by composing this diffeomorphism g with the diffeomorphisms π and π−1 that
give us an appropriate coordinate system in the twisted tube T = π(C), we get a
diffeomorphism f : X −→ X \ T ′, where T ′ = π(C ′) is a smaller closed twisted tube
inside T , and f restricts to the identity outside the unit ball. The precise definition
of f would be f(x) = π(g(π−1(x))) if x ∈ T , and f(x) = x if x ∈ X \ T . If we take
D = T ′ we are done.

The following lemma guarantees the existence of bounded infinite twisted tubes
in all infinite-dimensional Banach spaces.

Lemma 4.5. There are universal constants M > 0 (large) and ε > 0 (small) such
that, for every infinite-dimensional Banach space X, if we consider the decomposi-
tion X = H⊕[z] (where H = Ker z∗ for some z∗ ∈ X∗ with z∗(z) = ‖z∗‖ = ‖z‖ = 1)
and the open half-cylinder C of diameter 2ε, directed by z, and with base on H,
C = {x + tz ∈ X : ‖x‖ < ε, t > 0}, then there exists an injection π : C −→ BX

which is a C∞ diffeomorphism onto its image. The image T = π(C) is thus a
bounded open set which we will call a bounded open infinitely twisted tube in X.
Moreover, the first derivatives of the mappings π : C −→ T and π−1 : T −→ C are
both uniformly bounded by M .

Let us give a glimpse of the idea behind the proof of this key lemma. Let (xn)∞n=0

be a normalized basic sequence in X with biorthogonal functionals (x∗n)∞n=0 ⊂ X∗
(that is, x∗n(xk) = δn,k = 1 if n = k, and 0 otherwise) satisfying ‖x∗n‖ ≤ 3. Consider
the following piecewise affine arc: p = [0, x1] ∪ [x1, x2] ∪ ... ∪ [xn−1, xn] ∪ ...; p is an
ever-twisting path that gets lost in the infinitely may dimensions of X. If we defined
T as the set of points whose distance to p is less than or equal to some suitable small
positive number then we would almost have the tube we want, only we would not
know how to get the required diffeomorphism π. With some care, by smoothing out
the broken line p and considering a neighbourhood of paths which are parallel and
close enough to the smooth p, both the tube T and the diffeomorphism π can be
constructed. We refer the reader to [13] for the details of the proof.

Let us now see what we can do with lemma 4.5.
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Proof of theorem 4.1.
Consider the diffeomorphism π : C −→ T ⊂ BX from lemma 4.5. Take a Cp

smooth (Lipschitz) non-negative bump function ϕ on H so that the support of ϕ is
contained in the base of C, that is, ϕ(x) = 0 whenever ‖x‖ ≥ ε

2 , for instance. Pick a
C∞ smooth real function µ : R −→ [0, 1] such that µ(t) = 0 for t ≤ 1, 0 < µ(t) < 1
for t > 1 and 0 < µ′(t) < 1 for all t > 1. Then define g : X = H ⊕ [z] −→ R by

g(x, t) = ϕ(x)µ(t).

It is plain that g is a Cp smooth (Lipschitz) function such that g′(x, t) 6= 0 for every
x ∈ int(suppf), that is, for every x such that g(x, t) 6= 0 (take into account that the
interior of the support of g coincides in this case with the open support of g, that is
the set of points at which g does not vanish). Indeed,

g′(x, t)(0, 1) =
∂g

∂t
(x, t) = ϕ(x)µ′(t)

and therefore g′(x, t)(0, 1) = 0 if and only if ϕ(x) = 0 or µ′(t) = 0, which happens
if and only if ϕ(x) = 0 or µ(t) = 0, that is to say, g(x, t) = 0. Now let us define
f : X −→ R by

f(y) =
{

g(π−1(y)) if y ∈ T ;
0 if y /∈ T

It is clear that f is a well defined Cp smooth (Lipschitz) function, and supp(f) =
π(supp(g)) ⊂ T , from which it follows that f has a bounded support. We claim
that f ′(y) 6= 0 whenever y ∈ int(suppf), that is, f does not satisfy Rolle’s theo-
rem. Indeed, if y ∈ int(supp f) then π−1(y) = (x, t) ∈ int(supp g) and therefore
g′(x, t)(0, 1) 6= 0. But then

f ′(y) = g′(x, t) ◦Dπ−1(y) 6= 0,

because Dπ−1(y) is a linear isomorphism. ¤
Proof of theorem 4.4.

First of all let us choose a number ε > 0, a cylinder C, a bounded twisted tube
T , and a diffeomorphism π : C −→ T from lemma 4.5.

Let B be a C∞ smooth convex body in the plane R2 whose boundary contains
the set

{(s, t) : t = −1, |s| ≤ ε

4
} ∪ {(s, t) : |s| = ε

2
, t ≥ −1 +

ε

4
},

and let qB be the Minkowski functional of B. Define B′ = 1
2B = {(s, t) : qB(s, t) ≤

1
2}. Let θ : (1

2 ,∞) −→ [0,∞) be a C∞ smooth real function so that θ′(t) < 0 for
1
2 < t < 1, θ(t) = 0 for t ≥ 1, and lim

t→ 1
2

+ θ(t) = +∞. Now define ϕ : R2\B′ −→ R2

by
ϕ(s, t) = (ϕ1(s, t), ϕ2(s, t)) = (s, t + θ(qB(s, t))).

It is elementary to check that ϕ is a C∞ diffeomorphism from R2 \ B′ onto R2 so
that ϕ restricts to the identity outside the band B.

Next, recall that since X has a Cp smooth bump then it has a Cp bounded
starlike body A as well. If X = H ⊕ [z], take W = A ∩H, which is a Cp bounded
starlike body in H, and denote by qW its Minkowski functional. We can assume
that W ⊆ B(0, 1), that is, ‖x‖ ≤ qW (x) for all x ∈ H. Let us define

ψ(x, t) = qB(qW (x), t)
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for all (x, t) ∈ X = H ⊕ [z]. It is clear that ψ is a continuous function which is
positive-homogeneous and Cp smooth away from the half-line L = {(x, t) ∈ X : x =
0, t ≥ 0}. Then the sets

U = {(x, t) ∈ X : ψ(x, t) ≤ 1}, U ′ = {(x, t) ∈ X : ψ(x, t) ≤ 1
2
}

are cylindrical Cp starlike bodies whose characteristic cones are the half-line L. If
we define

h(x, t) = (x, (ϕ−1)2(qW (x), t))
for (x, t) ∈ X = H ⊕ [z], it is not difficult to realize that h is a Cp diffeomorphism
from X onto X \ U ′ so that h restricts to the identity outside U . The inverse of h
is given by

h−1(x, t) = (x, t + θ(ψ(x, t))).
Now consider the point p0 = (0, 2) ∈ X = H ⊕ [z] and the cylindrical bodies

V := p0 +U and V ′ := p0 +U ′, and put g(x, t) = h(x, t− 2). Then g : X −→ X \V ′
is a Cp diffeomorphism such that g is the identity outside V . Note that, since
W ⊆ B(0, 1), we have that V ′ ⊂ V ⊂ C = {(x, t) ∈ X : ‖x‖ < ε, t > 0}. Let us
define

f(x) =
{

π(g(π−1(x))) if x ∈ T ;
x otherwise.

It is then clear that f is a Cp diffeomorphism from X onto X \T ′, where T ′ = π(V ′)
is a smaller closed twisted tube inside π(V ) ⊆ T , and f restricts to the identity
outside the larger tube π(V ) ⊂ T , which is contained in BX . This completes the
proof that (1) implies (2).

Conversely, if there is such an f as in (2), we can assume that f(0) 6= 0 and
take x∗ ∈ X∗ so that x∗(f(0)) 6= 0; then the function b : X −→ R defined by
b(x) = x∗(x− f(x)) is a Cp smooth bump on X. ¤

Killing singularities
Do not be afraid, this paragraph does not contain any totalitarian propaganda.

Here we will present the two promised applications of theorem 4.4, both of which
have in common the following principle: if you have a mapping with a single singular
point or an isolated set of singularities that bother you, you can just kill them by
composing your map with some deleting diffeomorphisms. In this way you obtain a
new map which is as close as you want to the old one but does not have the adverse
properties created by the singular points you eliminate.

For instance, if you want a smooth bump function g which does not satisfy
Rolle’s theorem and whose support is a smooth starlike body A, by composing the
Minkowski functional of this body with a real bump function you get a function h
whose support is A and whose derivative vanishes only at the origin and outside A;
then, by composing h with a diffeomorphism f which extracts a small set containing
the origin and which restricts to the identity outside A, you get a map g with the
required properties.

On the other hand, suppose you want a smooth retraction r from a bounded
starlike body A of a Banach space X onto its boundary ∂A. This is impossible if X
is finite-dimensional, but otherwise you can use the following trick: it is trivial that
there is a smooth retraction h from A \ {0} onto ∂A; then take a diffeomorphism
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f which removes from X a small subset containing the origin and restricts to the
identity outside A. The composition r = h ◦ f gives the required retraction.

Let us formalize these ideas.
The failure of Brouwer’s theorem in infinite dimensions, revisited.

Next we give a proof of the following particular case (the non-Lipschitz one) of
theorem 3.1. The Lipschitz case is much harder to handle because the known diffeo-
morphisms which remove points, small balls, or (as in our case) small twisted tubes
from infinite-dimensional Banach spaces are not Lipschitz, so that the deleting dif-
feomorphisms approach does not work in this case.

Corollary 4.6. Let X be an infinite-dimensional Banach space and let A be a Cp

smooth bounded starlike body. Then:
(1) The boundary ∂A is Cp contractible.
(2) There is a Cp smooth retraction from A onto ∂A.
(3) There exists a Cp smooth mapping ϕ : A −→ A without approximate fixed

points.

Proof. Let f : X −→ X \ D be the diffeomorphism from theorem 4.4. We may
assume that the origin belongs to the deleted set D and that BX ⊆ A, so that f
restricts to the identity outside A. Then the formula

R(x) =
f(x)

µA(f(x))
,

where µA is the Minkowski functional of A, defines a Cp smooth retraction from A
onto the boundary ∂A. This proves (2).

Once we have such a retraction it is easy to prove parts (1) and (3): the formula
ϕ(x) = −R(x) defines a Cp smooth self-mapping of A without approximate fixed
points. On the other hand, if we pick a non-decreasing C∞ function ζ : R −→ R so
that ζ(t) = 0 for t ≤ 1

4 and ζ(t) = 1 for t ≥ 3
4 , then the formula

H(t, x) = R((1− ζ(t))x),

for t ∈ [0, 1], x ∈ ∂A, defines a Cp homotopy joining the identity to a constant on
∂A, that is, H contracts the pseudosphere ∂A to a point. ¤

The support of the bumps that violate Rolle’s theorem.
The bump function constructed in the proof of theorem 4.1 has a weird support,
namely a twisted tube. Some readers (including the authors) might judge this fact
rather unpleasant and wonder whether it is possible to construct a bump function
which does not satisfy Rolle’s theorem and whose support is a nicer set, such as
a ball or a starlike body. To comfort ourselves let us first recall that in infinite
dimensions there is no topological difference between a tube (whether it is twisted
or not) and a ball or a starlike body (see theorems 2.1 and 2.7). Furthermore,
theorem 4.4 allows us to show that for a given Cp smooth bounded starlike body
A in an infinite-dimensional Banach space X, it is always possible to construct a
Cp smooth bump function on X which does not satisfy Rolle’s theorem and whose
support is precisely the body A.

Corollary 4.7. Let X be an infinite-dimensional Banach space with a Cp smooth
bounded starlike body A. Then there exists a Cp smooth bump function g on X
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whose support is precisely the body A, and with the property that g′(x) 6= 0 for all x
in the interior of A.

Proof. Let µA be the Minkowski functional of A. We may assume that BX ⊆ A. By
theorem 4.4 there is a closed subset D of A and a Cp diffeomorphism f : X −→ X\D
which is the identity outside A. It can be assumed that the origin belongs to D.
Then the function h : X −→ R defined by

h(x) = µA(f(x))

is Cp smooth on X, restricts to the gauge µA outside A, and has the remarkable
property that h′(x) 6= 0 for all x ∈ X (indeed, h′(x) = µ′A(f(x)) · f ′(x) is non-zero
everywhere because µ′A(y) 6= 0 whenever y 6= 0, 0 /∈ f(X), and f ′(x) is a linear
isomorphism at each point x).

Now, take a C∞ real function θ : R −→ [0, 1] such that θ(t) > 0 for t ∈ (−1, 1),
θ = 0 outside [−1, 1], θ(t) = θ(−t), θ(0) = 1, and θ′(t) < 0 for all t ∈ (0, 1). Then,
if we define g : X −→ R by

g(x) = θ(h(x)),

it is immediately checked that g is a Cp smooth bump on X which does not satisfy
Rolle’s theorem and whose support is precisely the body A. ¤

5. How small can the set of gradients of a bump be?

In this section and the following one we will be involved in trying to answer the
following natural question. If b : X −→ R is a smooth bump on a Banach space X,
how many tangent hyperplanes does its graph have? In other words, if we denote
the cone generated by its set of gradients by

C(b) = {λb′(x) : x ∈ X,λ ≥ 0},
what is the (topological) size of C(b)?

As we will see, this problem is strongly related to a similar question about the
size of the cones of tangent hyperplanes to starlike bodies in X. Namely, if A is a
smooth bounded starlike body in X, how many tangent hyperplanes does A have?
More precisely, if we denote the cone of hyperplanes which are tangent to A at some
point of its boundary ∂A by

C(A) = {x∗ ∈ X : x + Kerx∗ is tangent to ∂A at some point x ∈ ∂A},
what is the size of C(A)?

It may be helpful to make some previous general considerations about these
questions.

To begin with, as a consequence of Ekeland’s variational principle [27], it is easily
seen that if b : X → R is a Gâteaux smooth and continuous bump function on a
Banach space X then the norm-closure of b′(X) is a neighbourhood of 0 in X∗. If,
in addition, X is finite-dimensional, and b is C1 smooth, then b′(X) is a compact
neighbourhood of 0 in X∗, and in particular 0 is an interior point of b′(X).

However, as we already know, the classical Rolle’s theorem is false in a Banach
space X whenever there are smooth bumps in X, and this fact has some interesting
consequences on the question about the minimal size of the cones of gradients C(b).
Indeed, by using the main result of the preceding section, one can construct smooth
bump functions whose sets of gradients lack not only the point zero, but also any
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prescribed finite-dimensional linear subspace of the dual space, so that they violate
Rolle’s theorem in a quite strong way, as we will see later on.

If we restrict the scope of our search to classic Banach spaces, much stronger
results are available. On the one hand, if X = c0 the size of C(b) can be really
small. Indeed, as a consequence of P. Hájek’s work [40] on smooth functions on c0

we know that if b is C1 smooth with a locally uniformly continuous derivative (note
that there are bump functions with this property in c0), then b′(X) is contained in a
countable union of compact sets in X∗ (and in particular C(b) has empty interior).
On the other hand, if X is non-reflexive and has a Fréchet norm, there are Fréchet
smooth bumps b on X so that C(b) has empty interior [6, 42].

In the reflexive case, however, the problem is far from being settled. To begin
with, the cone C(b) cannot be very small, since it is going to be a residual subset of
the dual X∗. Indeed, as a consequence of Stegall’s variational principle, for every
Banach space X having the Radon-Nikodym Property (RNP) it is not difficult to
see that C(b) is a residual set in X∗. Thus, for infinite-dimensional Banach spaces
X enjoying RNP (such is the case of reflexive ones and, of course, `2) one can
hardly expect a better answer to the question about the minimal size of the cones
of gradients of smooth bumps than the following one: there are smooth bumps b on
X such that the cones C(b) have empty interior in X∗.

In this section we will settle the question as to how small the sets of gradients
C(b) can be for a smooth bump b on the Hilbert space `2. Namely, we will construct
C1 smooth bumps b on `2 so that the cones of gradients C(b) have empty interior.
Furthermore, these strange bumps can be made to uniformly approximate the norm
of `2.

As we will see in section 8, this result will allow us to answer the corresponding
question about the minimal size of the cone of tangent hyperplanes, C(A), to a
smooth starlike body A in the Hilbert space.

We begin by showing how one can use one of the main results of the preceding
section to construct smooth bump functions whose sets of gradients lack not only
the point zero, but any pre-set finite-dimensional linear subspace of the dual space,
thus violating Rolle’s theorem in a quite strong way.

Theorem 5.1. Let X be an infinite-dimensional Banach space and W a finite-
dimensional subspace of X∗. The following statements are equivalent.

(1) X has a Cp smooth (Lipschitz) bump function.
(2) X has a Cp smooth (Lipschitz) bump function f so that C(f) ∩ W = {0}

and, moreover, {f ′(x) : x ∈ int(supp(f))} ∩W = ∅.
Proof. We only need to prove that (1) implies (2). We can write X = Y ⊕ Z,
where Y = ∩w∗∈W ker w∗ and dimZ = dimW is finite. Let us pick a Cp smooth
(Lipschitz) bump function ϕ : Y −→ R such that ϕ′(y) = 0 if and only if y /∈
int(supp(ϕ)) (the existence of such a bump ϕ is guaranteed by the main theorem
of the preceding section). Let θ be a C∞ smooth Lipschitz bump function on Z so
that θ′(z) = 0 whenever θ(z) = 0. Then the function f : X = Y ⊕ Z −→ R defined
by f(y, z) = ϕ(y)θ(z) is a Cp smooth (Lipschitz) bump which satisfies {f ′(x) : x ∈
int(supp(f))} ∩W = ∅. Indeed, if (y, z) ∈ Y ⊕ Z we have

f ′(y, z) =
(
θ(z)ϕ′(y), ϕ(y)θ′(z)

) ∈ X∗ = Y ∗ ⊕ Z∗ = Y ∗ ⊕W.
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If (y, z) ∈ int(supp(f)), then θ(z)ϕ′(y) 6= 0, and hence f ′(y, z) /∈ W and C(f)∩W =
{0}. ¤

The following theorem and its corollary are the main results of this section. This
theorem is also the keystone for the construction of a smooth bounded starlike body
whose cone of tangent hyperplanes has empty interior (see section 8).

Theorem 5.2. Let ‖ · ‖ denote the usual hilbertian norm of `2. There are C1

functions fε : `2 −→ (0,∞), 0 < ε < 1, which are Lipschitz on bounded sets and
have Lipschitz derivatives, so that:

(1) limε→0 fε(x) = ‖x‖2 uniformly on `2;
(2) limε→0 f ′ε(x) = 2x uniformly on `2 (that is, the derivatives of the fε uniformly

approximate the derivative of the squared norm of `2); and
(3) the cones C(fε) generated by the sets of gradients of the fε have empty inte-

rior, and f ′ε(x) 6= 0 for all x ∈ `2, 0 < ε < 1.
Moreover, the functions ψε = (fε)1/2 are C1 smooth and Lipschitz, with Lipschitz
derivatives. Note, in particular, that limε→0 ψε = ‖ · ‖ uniformly on `2, the cones of
gradients C(ψε) have empty interior, and ψ′ε(x) 6= 0 for all x ∈ `2. Besides, for every
r > 0, the derivatives ψ′ε approximate the derivative of the norm uniformly on the
set {x ∈ `2 : ‖x‖ ≥ r} as ε goes to 0.

Corollary 5.3. There is a C1 Lipschitz bump function b on `2 (with Lipschitz
derivative) satisfying that the cone C(b) generated by its set of gradients has empty
interior, and b′(x) 6= 0 for every x in the interior of its support.

Sketch of the proofs of Theorem 5.2 and Corollary 5.3.
We will make use of the following restatement of a strong result due to S. A. Shkarin
[50].

Theorem 5.4 (Shkarin). There is a C∞ diffeomorphism ϕ from `2 onto `2 \ {0}
such that all the derivatives ϕ(n) are uniformly continuous on `2, and ϕ(x) = x for
||x|| ≥ 1.

Let us consider, for 0 < ε < 1, the diffeomorphism ϕε : `2 −→ `2 \ {0}, ϕε(x) =
εϕ(x/ε), and the function U ≡ Uε : `2 −→ R defined by U(x) = ε2 + ||ϕε(x)||2.
Now, we define the functions Un : `2 −→ R by Un(x) = 1

22n U(2nx), whenever x ∈ `2.
We identify `2 with the infinite sum

∑
2 `2 ≡ `2 ⊕2 `2 ⊕2 `2 · · · , where an element

x = (xn) belongs to
∑

2 `2 if and only if every xn is in `2 and
∑

n ||xn||2 < ∞, being
||x||2 =

∑
n ||xn||2. Then, we define the function f ≡ fε :

∑
2 `2 −→ R by

f(x) =
∑

n

Un(xn), where x = (xn)n.

It can be checked that f has the properties of the statement of theorem 5.2. We
refer the reader to [14] for the details. We only mention that in order to see that
the cones of gradients C(fε) have empty interior, it suffices to note that the set
{λf ′(x) = λ(U ′

n(xn)) : x = (xn) ∈ ∑
2 `2, λ > 0} is contained in {z = (zn) ∈ ∑

2 `2 :
zn 6= 0 for every n ∈ N}, which has empty interior in

( ∑
2 `2

)∗ =
∑

2 `2.

In order to prove Corollary 5.3, we consider a C∞ function θ : R+ −→ R, θ′(t) < 0
for t ∈ (0, 1), and supp θ = (0, 1]. Then, we can define a required bump function as
the composition b(x) = θ(f(x)). ¤
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6. How large can the range of a derivative be?

In this section we continue our study of the topological size of the cone of gra-
dients of a bump, focusing on the opposite question; namely, for a smooth bump
function b on an infinite-dimensional Banach space X, what is the maximal size of
C(b)? And what is that of b′(X)?

More generally, if X and Y are Banach spaces, let L(X,Y ) stand for the Banach
space of all bounded linear operators from X to Y . Is it possible to have a Fréchet
(resp. Gâteaux) smooth surjection f : X −→ Y such that f vanishes outside a
bounded set and f ′(X) = L(X, Y )?

We will see that, when X and Y are separable and X is infinite-dimensional,
there exists a uniformly Gâteaux smooth function f from X to Y , with bounded
support, so that f ′(X) contains the unit ball of the Banach space L(X,Y ). We
obtain as a corollary that every separable Banach space X has a uniformly Gâteaux
smooth bump b so that b′(X) contains the dual unit ball of X∗ and, as a consequence,
there is a continuous Gâteaux smooth bump g so that g′(X) = X∗. In the Fréchet
smooth case, we obtain that if a Banach space X has a Fréchet smooth bump and
densX = densL(X, Y ), then there is a Fréchet smooth function f : X −→ Y with
bounded support so that f ′(X) = L(X, Y ) . One corollary to this result is that if a
Banach space X has a Fréchet smooth bump, then X has a Fréchet smooth bump
b so that b′(X) = X∗. Another corollary states that for every separable infinite-
dimensional Banach space Y and every n ∈ N, there is a Fréchet smooth function
f : Rn −→ Y , with bounded support, so that f ′(Rn) = L(Rn, Y ).

We also provide conditions on a pair of Banach spaces X and Y which ensure
the existence of a Cp smooth surjection f : X −→ Y such that f vanishes outside
a bounded set and the derivatives of f are all surjections. We prove that if X has
a Cp smooth bump with bounded derivatives and densX = densLm

s (X; Y ) then
there exists another Cp smooth function f : X −→ Y , with bounded derivatives,
so that f vanishes outside the unit ball of X and f (k)(X) contains the unit ball of
Lk

s(X; Y ) for all k = 0, 1, ..., m (notice that this conclusion is in fact equivalent to
the assumption on X); in particular, this implies that there is also a Cp smooth
surjection b : X −→ Y so that b(k)(X) = Lk

s(X; Y ) for all k = 0, 1, ..., m. Here,
1 ≤ p ≤ ∞, m ∈ N, Lk

s(X; Y ) stands for the space of k-linear symmetric mappings
from X into Y , and densX denotes the character of density of a Banach space X.
Note in particular that for m = 0 we identify Y = L0

s(X,Y ) and we obtain a Cp

smooth surjection b from X onto Y , thus recovering a result of Bates’s [15]. For
some classical spaces X and Y , such as the `p, c0 and Lp, we also say when the
above conditions for the existence of smooth functions with surjective derivatives
are fulfilled.

Theorem 6.1. Let X and Y be separable Banach spaces, where X is infinite-
dimensional. Then, there is a uniformly Gâteaux smooth Lipschitz function b :
X −→ Y with bounded support so that b(X) contains the unit ball of Y and b′(X)
contains the unit ball of L(X,Y ). Consequently, there is also a continuous Gâteaux
smooth function g : X −→ Y with bounded support so that g and g′ are surjections,
that is, g(X) = Y and g′(X) = L(X, Y ).

A consequence of this theorem is that there is no upper bound for the range of
the set of gradients of a continuous Gâteaux smooth bump on a separable Banach
space.
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Corollary 6.2. Every separable Banach space X has a uniformly Gâteaux smooth
Lipschitz bump b such that b′(X) contains the dual unit ball BX∗. Consequently, X
has a continuous Gâteaux smooth bump g so that g′(X) = X∗.

The following result concerns Fréchet smooth functions. It was proved in [6] that
if a Banach space has a C1 smooth and Lipschitz bump, then the space has a C1

smooth and Lipschitz bump satisfying that the set of gradients covers the dual unit
ball. The proof of this result, as well as the proof given below for the Cp smooth case,
strongly rely on the existence of a smooth bump function with bounded derivatives.
This requirement allows us to obtain smooth functions with continuous surjective
derivatives. If one is not interested in the continuity of the first derivative, one can
dispense with that assumption, obtaining similar results on the existence of Fréchet
smooth bumps whose sets of gradients cover the dual unit ball. Notice that it is still
an open problem whether every Banach space with a Fréchet smooth bump has a
Fréchet smooth bump with bounded derivative as well.

Theorem 6.3. Let X be a Banach space with a Fréchet smooth bump and Y a
Banach space so that densX = densL(X,Y ). Then, there exists a Fréchet smooth
function g : X −→ Y so that g has bounded support, g′(X) = L(X,Y ) and, when X
is infinite dimensional, also g(X) = Y .

Corollary 6.4. Let X be a Banach space with a Fréchet smooth bump. Then, X
has a Fréchet smooth bump b so that b′(X) = X∗.

Corollary 6.5. Let Y be an infinite dimensional and separable Banach space and
n ∈ N. Then, there is a Fréchet smooth and Lipschitz function b : Rn −→ Y with
bounded support such that b′(Rn) contains the unit ball of the space L(Rn, Y ).

Consequently, there is a Fréchet smooth function g : Rn −→ Y with bounded
support so that g′(Rn) = L(Rn, Y ).

Next we deal with the following question. When can one construct a Cp smooth
mapping f between two Banach spaces X and Y such that f has a bounded support
and the derivatives f (k), k = 0, 1, ..., p, are all surjections (that is, f(X) = Y and
f (k)(X) = Lk

s(X;Y ) for all k = 1, ..., p, where Lk
s(X; Y ) is the space of k-linear

symmetric and continuous mappings from X into Y )?
To begin with, it should be noted that, even in the simplest case when Y = R,

there are very smooth separable Banach spaces X for which this is not possible
at all, since the spaces Lk

s(X) need not be separable for k ≥ 2 (here we denote
Lk

s(X;R) = Lk
s(X), the space of k-linear symmetric and continuous forms on X,

which is isomorphic to P(k)(X), the space of k-homogeneous and continuous poly-
nomials on X). For instance, if X = `2 then no C2 smooth bump b on X has the
property that b2(X) = L2

s(X); indeed, since b(2) is continuous and X is separable,
b(2)(X) is separable as well and hence cannot fill all of L2

s(X), which is nonseparable
(to see this, notice that the mapping a = (an) 7→ A(x, y) =

∑∞
n=1 anxnyn defines

an isometric embedding of `∞ into the space of bilinear forms on X = `2). More
generally, it is known that if X = `p then the spaces Lk

s(X) are separable if and only
if k < [p], where [p] is the integer part of p.

The above argument clearly shows that densX = densLm
s (X;Y ) is a necessary

condition for a pair of Banach spaces X and Y to have a Cp smooth function f
from X onto Y so that f (k)(X) = Lk

s(X) for all k = 0, 1, ..., m. The next result
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(which can be regarded as a generalization of both one of the main theorems in [6]
and another in [15]) tells us that if the Banach space X has a Cp smooth bump
with bounded derivatives then this condition is sufficient as well. In the following
statement we use the convention L0

s(X; Y ) = Y and f (0) = f .

Theorem 6.6. Let m, p ∈ {0, 1, 2, ...,∞}, and let X, Y be Banach spaces with
dimX = ∞. The following are equivalent:

(1) X has a Cp smooth bump function with bounded derivatives, and densX =
densLm

s (X; Y ).
(2) There is a Cp smooth function f : X −→ Y , with bounded derivatives and

bounded support, such that f (k)(X) contains the unit ball of Lk
s(X; Y ) for

every k = 0, 1, ..., m.
In particular, if X satisfies condition (1) then there is another Cp smooth function
b from X onto Y with bounded support so that its derivatives are all surjections up
to the degree m, that is, b(k)(X) = Lk

s(X; Y ), for k = 0, 1, ..., m.

Notice that when m = 0 and densX = densY we recover a particular case of a
result of S. M. Bates’s [15].

Corollary 6.7. Let X and Y be Banach spaces with densX ≥ densY , dimX = ∞,
and assume that X has a Cp smooth bump function with bounded derivatives (p =
1, 2, ...,∞). Then there is a Cp smooth surjection f : X −→ Y whose support is in
the unit ball of X; moreover, if we additionally assume that densX = densL(X,Y ),
the derivative f ′ is a continuous surjection as well, that is, f ′(X) = L(X, Y ).

When m = 1 and Y = R Theorem 6.6 yields the following improvement of one
of the main results in [6].

Corollary 6.8. Let X be an infinite-dimensional Banach space and p ∈ N ∪ {∞}.
The following are equivalent:

(1) X has a Cp smooth bump function with bounded derivatives;
(2) X has a Cp smooth bump function f , with bounded derivatives, so that f ′(X)

contains the unit ball of X∗.
In either case, there exists another Cp smooth bump b on X so that b′(X) = X∗.

It should be noted that if a Banach space X satisfies condition (1) of Theorem
6.6 for p ≥ 2 then it is superreflexive (see [27]). Let us mention that condition
densX = densLk

s(X, Y ) is strongly related to Gonzalo and Jaramillo indexes `(X),
`(Y ) and u(X), u(Y ) concerning upper and lower estimates of the Banach spaces
X and Y (see [37] and [28]). For instance, it is proved in [28] that if a Banach
space has an unconditional and shrinking basis then Lk

s(X) is separable if and only
if every T ∈ Lk

s(X) is weakly sequentially continuous which is equivalent to the fact
that the Banach space Lk

s(X) has a monomial basis. Also, it is proved that (a) if X
has a shrinking basis and (k − 1)u(X∗) < `(X), then Lk

s(X) has a monomial basis
(and thus it is separable); (b) if X has an unconditional and shrinking basis and
u(X) < k, then Lk

s(X) contains `∞.
When X is one of the classic Banach spaces c0, or `r, 1 < r < ∞, and we apply

Theorem 6.6 we get the following result.

Corollary 6.9.
(1) c0 has a Cn smooth bump b with b′(c0) = `1 if and only if n = 1.
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(2) For r an even integer, the space `r has a C∞ smooth bump b with b(k)(`r) =
Lk

s(`r) for k = 1, 2, ...,m if and only if m < r.
(3) If r is not an even integer, `r has a Cm smooth bump b with b(k)(`r) = Lk

s(`r)
for k = 1, 2, ..., m if and only if m < r.

Notice that according to a result of Hájek [40], no C2-smooth bump b on c0 has the
property that b′(c0) = `1 and assertion (1) in the above corollary follows.

The classical Banach space Lr[0, 1], r ≥ 1, contain a complemented copy of `2.
Thus L2

s(Lr[0, 1]) and contain `∞ and the best we can expect for these spaces is the
following result.

Corollary 6.10.
(1) For r an even integer the space Lr[0, 1] has a C∞ smooth bump so that

b′(Lr[0, 1]) = Lr′ [0, 1], 1/r + 1/r′ = 1.
(2) If r is not an even integer, the space Lr[0, 1] has a Cm smooth bump b so

that b′(Lr[0, 1]) = Lr′ [0, 1] if and only if m < r.

In the vector valued case let us mention that L(c0, `1) is separable, and Lk
s(`r, `q)

is separable if and only if kq < r (see [28]). Thus we obtain for these spaces the
following result.

Corollary 6.11.
(1) There is a C1 smooth function f : c0 −→ `1 with bounded support so that

f(c0) = `1 and f ′(c0) = L(c0; `1).
(2) When mq < r, there is a Cm smooth function f : `r −→ `q with bounded

support so that f (k)(`r) = Lk
s(`r; `q) for k ∈ {0, 1, ..., m}.

What about Theorem 6.6 when X and Y are finite-dimensional? In this case,
an analogous result is available which provides us with Peano functions from Rk to
Rm which in fact are derivatives of smooth functions.

Proposition 6.12. For every k, m ∈ N, there exists a C1 smooth Lipschitz function
f : Rk −→ Rm so that f vanishes outside a bounded set and the unit ball of L(Rk,Rm)
is contained in f ′(Rk). In particular, for every m ∈ N there is a continuous path
g : [0, 1] −→ Rm whose image contains the unit ball of Rm and so that g is the
derivative of a C1 smooth Lipschitz path f : [0, 1] −→ Rm.

As for the proofs of these results, all we can say here is that they are all alike, in
fact the main ideas are always the same, but the various technical details involved
in each of them make it impossible to give a general proof that applies in all the
cases. As a sample, let us prove theorem 6.6.

Proof of theorem 6.6
It is clear that (2) implies (1). Let us see that (1) implies (2) too. Assume that

densX = densLm
s (X; Y ) = κ. Then it is easily seen that densX = densLk

s(X; Y ) =
κ for all k with 0 ≤ k ≤ m. It is enough to see that for any k with 0 ≤ k ≤ m
there exists a Cp smooth function g : X −→ Y with support on BX so that g(k)(X)
contains the unit ball of Lk

s(X; Y ). Indeed, once this is shown, we can take a
disjoint sequence of balls of the same diameter, 2r, contained in the unit ball BX ,
say B(zn, r), n = 0, 1, 2, 3, ..., and Cp smooth functions b0, b1, b2, ..., bm, with support
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in BX and taking values in Y , so that b
(k)
k (X) contains the unit ball of Lk

s(X; Y ) for
every k; then the function f : X −→ Y defined by

f(x) =
m∑

k=0

rk bk(
x− zk

r
)

is clearly a Cp smooth bump with the property that f (k)(X) = b
(k)
k (X) contains the

unit ball of Lk
s(X; Y ) for every k.

So let us prove that for a fixed k with 0 ≤ k ≤ p there exists a Cp smooth
function g : X −→ Y with support on BX so that g(k)(X) contains the unit ball of
Lk

s(X; Y ).
Since X has a Cp bump function with bounded derivatives, by composing it with

a suitable real function, we can obtain a Cp function h : X → [0, 1] such that for
some M ≥ 3 and 0 ≤ M0 ≤ M1 ≤ ... ≤ Mj ≤ Mj+1 ≤ ..., we have h(x) = 1
whenever ‖x‖ ≤ 2, h(x) = 0 if ‖x‖ ≥ M , and ‖h(j)‖∞ = supx∈X ‖h(j)(x)‖ ≤ Mj .
Let us fix ε, where 0 < 2Mε < 1

2 , and select a 2Mε-separated collection of points
(zα)α∈Γ in 1

2BX with card(Γ) = κ = densX. The balls B(zα,Mε), α ∈ Γ, are all
disjoint and contained in B = BX . We define chains of balls

U s
j := B(α1,α2,...,αj) = zα1 + εzα2 + ... + εj−1zαj + εjB

for s = (α1, α2, ..., αj , ...) ∈ ΓN. There is a bijection between the chains of balls (U s
j )

and the set of sequences ΓN; besides, the intersection of any chain of these balls
consists exactly of the point ∩∞j=1B(α1,α2,...,αj) =

∑∞
j=1 εj−1zαj .

Now, since dens(Lk
s(X;Y )) = card(Γ), we can take a family (Qα)α∈Γ which

is dense in the unit ball of Lk
s(X; Y ), and a corresponding family (Pα)α∈Γ of k-

homogeneous polynomials from X into Y so that Qα is the kth derivative of Pα for
each α. Notice that in the case k = 0 we are dealing with a dense subset (yα)α∈Γ of
Y .

Next, for every n ≥ 1 we can define δn = εn2−1, and

gn(x) =
∑

(α1,α2,...,αn)∈Γn

δnh
(x−∑n

i=1 εi−1zαi

εn

)
Pαn(x)

for all x ∈ X. It is clear that gn is Cp smooth with bounded derivatives, and its
support is in B. Notice also that every x ∈ X has a neighbourhood Vx so that all
but one of the terms in the sum defining gn(y) are zero for y ∈ Vx. Besides, we
have that g

(k)
n (B(α1,α2,...,αn)) = δnQαn for all (α1, α2, ..., αn) ∈ Γn. Bearing in mind

that the ith derivative of h is uniformly bounded by Mi, the construction of gn, and
the fact that if a k-homogeneous polynomial P has its kth derivative Q bounded
by 1 then all the derivatives of P are bounded by 1 as well (this is an immediate
inductive application of the mean value theorem), we can estimate the norm of the
jth derivative of gn as follows

‖g(j)
n (x)‖ ≤ δn

j∑

i=0

(
j
i

)
Mi

εni
≤ δnε−njMj

j∑

i=0

(
j
i

)
≤ 2jMjε

n(n−j)−1

for all x ∈ X and n ∈ N, and for every j with 0 ≤ j ≤ p.
Since the series

∑∞
n=1 2jMjε

n(n−j)−1 are convergent for all j = 0, 1, 2, ..., this
implies that the series of derivatives

∑∞
n=1 g

(j)
n (x) converge uniformly on X (for all
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0 ≤ j ≤ p), and therefore the function g : X −→ Y defined by

g(x) =
∞∑

n=1

gn(x)

is Cp smooth with bounded derivatives, and g(j)(x) =
∑∞

n=1 g
(j)
n (x).

Let us now see that g(k)(X) contains the unit ball of Lk
s(X; Y ). By the construc-

tion of the gn and g it is clear that

g(k)(∂B(α1,...,αk)) = Qα1 + δ2Qα2 + ... + δnQαn

for every chain of balls (B(α1,...,αn))n∈N; then, for x := ∩∞n=1B(α1,α2,...,αn), by the
continuity of g(k) we get that g(k)(x) =

∑∞
n=1 δnQαn . Since (Qα)α∈Γ is dense in the

unit ball of Lk
s(X; Y ) it is clear that every Q in this ball can be written as a series

Q =
∑∞

n=1 δnQαn for some sequence (αn) ∈ ΓN, so we can conclude that g(k)(X)
contains the unit ball of Lk

s(X; Y ).

Finally, in order to obtain a Cp smooth surjection b : X −→ Y such that
b(k)(X) = Lk

s(X; Y ) for every k = 0, 1, ..., m, we only have to take a sequence
(α1, α2, ..., αn, ...) ∈ ΓN with αi 6= αj if i 6= j, a Cp smooth function f : X −→ Y

with support in BX and such that f (k)(X) contains the unit ball of Lk
s(X; Y ) for

every k = 0, 1, 2, ..., m, and put

b(x) =
∞∑

n=1

nf
(x− zαn

ε

)

for all x ∈ X. ¤

7. What does the range of a derivative look like?

While in the preceding sections we have been concerned about the topological
size of the ranges of the derivatives of a bump function, now we will look at the
shape of those ranges. Several questions arise naturally. For instance, the range of
the derivative of a C1 smooth bump on a Banach space X is obviously a connected
set containing the origin, but: Are there any restrictions on its shape? May it fail
to be simply connected?

By this time the reader may have formed an opinion of his own as to what bumps
are capable of, and he has probably guessed the following metatheorem: everything
can happen with a bump, at least in infinite dimensions. We will not disappoint his
expectations, he is right.

The first answer to such questions was provided by the work of Borwein, Fabian,
Kortezov and Loewen [23]. They constructed a C1 smooth bump b on the plane R2 so
that the range of its derivative, b′(R2) is not simply connected (for instance, a circular
corona). In fact they showed that b′(Rn) can happen to fill in any reasonably looking
closed figure containing the origin as an interior point (however, giving full details
of what reasonably looking means would not be very reasonable at this moment).
In a subsequent work [24] Borwein, Fabian and Loewen extended this result to the
infinite-dimensional setting, establishing the following theorem.
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Theorem 7.1 (Borwein-Fabian-Loewen). Let X be an infinite-dimensional Banach
space with a Lipschitz C1-smooth bump. Let Ω ⊂ X∗ be an open connected set
containing the origin and satisfying this property:

There exists a summable sequence a0, a1, a2, . . . of positive numbers
such that every η ∈ Ω̄ can be expressed as limi→∞ ξi for some sequence
0 = ξ0, ξ1, ξ2, . . . in Ω such that ‖ξi+1 − ξi‖ < ai, and that the linear
segment co {ξi, ξi+1} lies in Ω for every i = 0, 1, 2, . . ..

Then there exists a Lipschitz C1-smooth bump b : X → [0, 1] so that b′(X) = Ω.

On the other hand we have been informed that Thierry Gaspari and Robert
Deville have independently obtained several sufficient conditions for a subset of a
dual space (in any dimension, finite or infinite) to be filled in by the range of a
derivative of a C1 smooth bump [34].

Next we study the same problem in the case of higher order derivatives and, by
using theorem 6.6 above, we establish some results that generalize theorem 7.1. The
proofs we sketch here are different (even in the case of a first derivative) from the
original ones in [23, 24].

In what follows we will be using the same notation as in the preceding section.
We begin with a lemma which tells us that, for a polygonal arc P in the space of
symmetric n-linear forms Ln

s (X) one can always find a bump whose n-th derivative’s
range contains a suitable neighborhood of P and is contained in a (larger, but not
much larger) neighborhood of P . This lemma (which holds true in any dimension)
is our main tool to construct bumps with a prescribed range of derivatives.

Lemma 7.2. Let p ∈ {0, 1, ...,∞} and X be a Banach space with a Cp smooth
bump with bounded derivatives. Assume that densX = densLn

s (X), for some n ≤ p.
Consider a polygonal arc P in Ln

s (X) from 0 to any point Q. Then, there is a
constant M > 0 (which only depends on the space and not on the polygonal) so that
for any ε > 0 there exists a Cp smooth bump g with bounded derivatives and support
in the unit ball of X satisfying that

||g(k)||∞ ≤ 4ε, for k = 0, 1, ..., n− 1,

P +
ε

M
BLn

s (X) ⊂ g(n)(X) ⊂ P + 2εBLn
s (X),

and g(n)(δ BX) = Q, for some δ > 0.

Moreover, if n < i ≤ p, the i-th derivative g(i) is bounded by a constant which only
depends on i, ε, M and the length of the polygonal.

Proof. If X has a Cp smooth bump with bounded derivatives, by composing this
bump with a suitable C∞ bump on R, we obtain a Cp smooth bump b1 with bounded
image, bounded derivatives and b1(r BX) = 1, for some r > 0. For a given element
R ∈ BLn

s (X), we consider the associated polynomial S whose n-th derivative is R and

the product b2 = b1 S. Notice that b
(n)
2 (r BX) = R. On the other hand, by the main

results of the preceding section we know that X has a Cp smooth bump b3 with
bounded derivatives so that b

(n)
3 (X) contains the unit ball of Ln

s (X), denoted by
BLn

s (X). By summing b2 and a suitable translation of b3 (with disjoint support from
b1) we obtain a Cp smooth bump h so that h(n)(r BX) = R for some r ∈ (0, 1), and
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BLn
s (X) ⊂ h(n)(X). Up to elementary operations of dilation and constant multiplying

we may additionally assume that the support of b is included in the unit ball BX .
Moreover, h, h′, ...h(n) are bounded by a constant M > 1 while, for n < i ≤ p, h(i) is
bounded by a constant Mi. The constants M and Mi do not depend on the given
R ∈ BLn

s (X); they only depend on X.
Now, let P be the given polygonal arc and ε > 0. We consider in the polygonal

P the extreme points of the straight lines which form P . We shall denote this set
by {Q0 = 0, Q1, ..., Qk = Q}. By adding or removing to this set more points of the
polygonal, if necessary, we may assume that ||Qj − Qj−1|| ≤ 2ε

M , the polygonal P

is included in ∪j(Qj + 2ε
M BLn

s (X)) and k ε
M ≤ l + 1, where l denotes the length of

the polygonal P . According to our previous considerations, there are Cp smooth
bumps hj , j = 1, 2, .., k, with bounded derivatives, support in the unit ball of X,
and ||h(i)

j ||∞ ≤ 2ε for i = 0, 1, ..., n, ||h(i)
j ||∞ ≤ 2εMi

M for i = n + 1, ..., p, and

2ε

M
BLn

s (X) ⊂ h
(n)
j (X) ⊂ 2εBLn

s (X),

h
(n)
j (rBX) = Qj −Qj−1, j = 1, .., n.

We then define our bump g : X −→ R as

g(x) =
k∑

j=1

(
r/2

)(j−1)n
hj

((
2/r

)j−1
x
)
.

Notice that the support of g is included in the unit ball of X, and if we take δ = rk

2k

then g(n)(δ BX) = Q. Also,

||g(i)||∞ ≤ ||h(i)
1 ||∞ +

r

2
||h(i)

2 ||∞ + ... +
(r

2
)k−1 ||h(i)

k ||∞ ≤ 4ε, i = 0, 1..., n− 1,

and
⋃k

j=1(Qj + 2ε
M BX) ⊂ g(n)(X) ⊂ ⋃k

j=1(Qj + 2εBX). This implies that P +
ε
M BX ⊂ g(n)(X) ⊂ P + 2εBX . Finally, if n < i ≤ p, then

||h(i)||∞ ≤
k∑

j=1

2εMi

M

(2
r

)(j−1)(i−n) =
2εMi

M

(2
r )(i−n)k − 1
(2

r )(i−n) − 1

≤ 4εMi

M

(2
r

)(i−n)((l+1)Mε−1)
.

¤

Now we can easily deduce that every open connected subset of an infinite-
dimensional dual X∗ that contains the origin (and so that X has a suitable smooth
bump) can be regarded as the range of a higher order derivative of some bump.
In particular we see that there are no restrictions on the shape of the ranges of
derivatives of smooth bumps.

Theorem 7.3. Let p ∈ {0, 1, ..,∞} and X be an infinite dimensional Banach
space with a Cp smooth bump having bounded derivatives. Assume that densX =
densLn

s (X) for some n ≤ p. If U ⊂ Ln
s (X) is a given open, bounded, connected set

with 0 ∈ U , then there is a Cp smooth bump h with bounded derivatives up to the
order n so that the range of the n-th derivative h(n) is U .
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Proof. Let us consider a dense set D in U so that the cardinality of D is the density
of X. Let us define

P = {P = {Q0 = 0, Q1, ..., Qm} : where P is a polygonal within U,

m ∈ N and the vertices Q0, Q1, ..., Qm ∈ D}
Clearly card P = densX. For every rational number 0 < ε < 1 and for every
P ∈ P so that P + 2εBLn

s (X) ⊂ U , let us pick a bump gP,ε on X satisfying the
conditions of the lemma. Let us relabel the family of these bumps as {gα}α∈Γ,
where card Γ = densX.

Now consider a family of 2
3 -separated points {xα}α∈Γ in BX , and define

h(x) =
∑

α∈Γ

4−n gα

(
4(x− xα)

)
.

Let us check that the bump h fulfills the required conditions. Note that for every
x ∈ X there is at most one non-null summand in the above equation, which is the
same in a neighborhood of x. Thus, h ∈ Cp , h, h′, ..., h(n−1) are bounded by 1 and
h(n)(X) ⊂ U . Let us check that U ⊂ h(n)(X). Since U is connected and open,
then it is connected by polygonals. For any Q ∈ U , there is a polygonal P = {Q0 =
0, Q1, ..., Qm = Q} connecting 0 to Q and there is an 0 < ε < 1/2 so that P +4εBX ⊂
U . We may assume, by the density of D, that Q0, Q1, ...Qm−1 ∈ D. Also, take Q′

m ∈
D so that ||Q′

m − Q|| < ε
M . The polygonal P ′ = {Q0 = 0, Q1, ...Qm−1, Q

′
m} ∈ P

and, since P ′ + 2εBLn
s (X) ⊂ P + 4εBX ⊂ U , the associated bump gP ′,ε belongs to

the family {gα}. By the lemma we have that Q ∈ P ′+ ε
M BX ⊂ g

(n)
P ′,ε(X) ⊂ h(n)(X),

so the proof is finished. ¤
A careful modification of the above argument allows to prove the following gen-

eralization of theorem 7.1.

Theorem 7.4. Let X be an infinite dimensional Banach space with a Cn smooth
bump having bounded derivatives. Assume that densX = densLn

s (X). Let U ⊂
Ln

s (X) be a pre-fixed open, bounded, connected set with 0 ∈ U , so that for every
Q ∈ ∂U there exists a path from 0 to Q through points of U . Then, there is a Cn

smooth bump h with bounded derivatives so that the image of the n-th derivative h(n)

is the closure of U .

We will not give the proof of this result here. We only mention that the proof
bears some resemblance to that of theorem 7.6 below, which deals with the finite-
dimensional case.

Theorem 7.4 does not hold true when X is finite dimensional. Next we give an
example of an open bounded subset U ⊂ R2 containing the origin and satisfying the
condition given in theorem 7.4, so that the closure of U cannot be the range of the
first derivative of any C1 smooth bump on R2.

Example 7.5. Consider the open sets of the plane

Un = {(x, y) : 1− 1
2n

< |x| < 1− 1
2n + 1

, |y| < 2}, n ∈ N
and

U =
⋃
n

Un ∪ {(x, y) : 1 < max(|x|, |y|) < 2} ∪ {(x, y) : |x| < 1
4
, |y| < 2}.
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Obviously the closure of U satisfies the conditions required in Proposition 7.4. As-
sume the closure of U were the image of a continuously Fréchet smooth bump
b : R2 −→ R. Let us take points (an, 0) ∈ Un converging to (1, 0) ∈ ∂U . By the as-
sumption, there is a bounded sequence of points (xn, yn) so that b′(xn, yn) = (an, 0).
By compactness, we may take for granted that the sequence (xn, yn) converges to
some point (x, y). By continuity, b′(x, y) = (1, 0), and there is some δ > 0 so that
A = b′((x, y) + δB) ⊂ (1, 0) + 1

2B, where B is the unit ball of the euclidean norm in
R2. Since b′ is continuous, the set A should be connected. But this is a contradiction,
since {(xn, yn)}n≥N ⊂ A ⊂ U ∩ ((1, 0) + 1

2B) for some N ∈ N. ¤

Nevertheless, we next show that, if for every ε > 0, there is a finite collection of
open and connected subsets of U with diameter less than ε and covering U , then
U is the image of a C1 smooth bump. The above example clearly shows that if we
drop this condition the conclusion does not necessarily hold.

Theorem 7.6. Let us consider n,m ∈ N and an open bounded and connected subset
U ⊂ L(Rn,Rm) containing the origin. Assume that, for every ε > 0, there is a finite
family Fε of open (non-empty) subsets of U which covers U so that every V ∈ Fε is
connected and has diameter less than ε. Then, there is a C1 smooth and Lipschitz
function f : Rn −→ Rm with bounded support so that b′(Rn) = U .

Proof. We denote by Fk the finite open covering of U given in the hypothesis for
ε = 1

2k+4 . Now, for every open subset V ∈ Fk, we select a point T ∈ V , and denote
the set consisting of all the points obtained in this way by Fk. In order to avoid
problems of notation we may consider that the selected points are all different and
even that Fk ∩ Fj = ∅, whenever k 6= j. Notice that, for every k, the finite set Fk is
a 1

2k+4 - net of U .
Let us denote by Pk the family of all finite sequences R = {T0 = 0, T1, T2, ..., Tk}

where

(1) Tj ∈ Fj , for j = 1, ..., k,
(2) the associated open sets Vj ∈ Fj , so that Tj ∈ Vj , j = 1, ..., k, satisfy that

Vj ∩ Vj+1 6= ∅ for j = 1, ..., k − 1.

Let us observe that if a sequence R = {0, T1, ..., Tk+1} ∈ Pk+1, then R′ =
{0, T1, ..., Tk} ∈ Pk. Now, we can adapt the proof of Theorem 7.4 as follows. We
construct inductively the next family of functions from Rn to Rm:

1. For every R = {0, T1} ∈ P1 there is a polygonal PR and 0 < εR < 1/23 so
that PR + 2 εR BL(Rn,Rm) ⊂ U , where BL(Rn,Rm) stands for the closed unit ball of
L(Rn,Rm). By Lemma 7.2, there is a C1 smooth function gR : Rn −→ Rm with
support in the unit ball of X so that ||gR||∞ ≤ 4εR and there is 0 < δR < 1 so that

g′R(δR BX) = T1 − T0 = T1,

and PR +
εR

M
BL(Rn,Rm) ⊂ g′R(X) ⊂ PR + 2εR BL(Rn,Rm).

Note again that, in what follows, we do not use the first inclusion of the above
display which is the difficult one and it is deduced in Lemma 7.2 from the result [7,
Propositon 3.7].
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If the cardinal of the set P1 is p1, we fix M > 0 so that there are p1 points {xR :
R ∈ P1} in MBRn with the property that

||xR − xS || > 2, if R, S ∈ P1, R 6= S,

and xR + BRn ⊂ MBRn

2. We select for every pair (T1, T2) , where R = {0, T1, T2} ∈ P2, a polygonal PT1,T2

from T1 to T2 so that PT1,T2 is included in a ball of radius 1
24 . Indeed, consider the

associated open sets sets V1 ∈ F1 and V2 ∈ F2, so that T1 ∈ V1 and T2 ∈ V2. Then,
by assumption V1 and V2 have non empty intersection. Thus, the union V1 ∪ V2

is connected and has a diameter not bigger than 1
24 . Take 0 < εR < 1

24 so that
PT1,T2 + 2 εR BLn

s (Rn,Rm) ⊂ U .
By lemma 7.2, there is a C1 smooth function fR : Rn −→ Rm with support in the
unit ball of X so that ||fR||∞ ≤ 4εR and there is 0 < γR < 1 with

f ′R(γR BX) = T2 − T1

and T1 + f ′R(X) ⊂ PT1,T2 + 2εR BL(Rn,Rm).

Denote by δ1 = min{δR : R ∈ P1} > 0 and p2 the number of elements of F2. Then
select δ′1 > 0 small enough so that we can include p2 disjoint balls of radius δ′1
within a ball of radius δ1 . Then, we define

gR(x) = δ′1 fR

( x

δ′1

)
.

The function gR : Rn −→ Rm is C1 smooth, with support in δ′1 BRn and ||gR||∞ ≤
δ′1 4 εR ≤ 4 εR. Also, there is 0 < δR < δ′1 with

g′R(δR BX) = T2 − T1

and T1 + g′R(Rn) ⊂ PT1,T2 + 2 εR BL(Rn,Rm).

3. In general, for k ≥ 2 and for every pair (Tk−1, Tk), where R = {0, T1, ..., Tk−1, Tk} ∈
Pk, we can select a polygonal PTk−1,Tk

from Tk−1 to Tk so that PTk−1,Tk
is included

in a ball of radius 1
2k+2 . Indeed, consider the associated open sets Vk−1 ∈ Fk−1 and

Vk ∈ Fk, with Tk−1 ∈ Vk−1 and Tk ∈ Vk. Then, the open sets Vk−1 and Vk have
non empty intersection and, by assumption, they are connected. Thus, the union
Vk−1 ∪ Vk is non empty, connected and has diameter not bigger than 1

2k+2 . Take
0 < εR < 1

2k+2 so that PTk−1,Tk
+ 2 εR BL(Rn,Rm) ⊂ U .

Define δk−1 = min{δR : R ∈ Fk−1} > 0 and pk the number of elements of Fk.
Then select δ′k−1 > 0 small enough so that we can include pk disjoint balls of
radius δ′k−1 within a ball of radius δk−1. Then, by Lemma 7.2, for every R =
{0, T1, ..., Tk−1, Tk} ∈ Pk, there is a C1 smooth function gR : Rn −→ Rm whose
support is included in δ′k−1 BX satisfying that

||gR||∞ ≤ 4εR,

g′R(δR BX) = Tk − Tk−1, for some 0 < δR < δ′k−1

and Tk−1 + g′R(Rn) ⊂ PTk−1,Tk
+ 2 εR BL(Rn,Rm).

Due to the way we have selected the constants δ′k, we can choose within MBX

a family of points {xR : R ∈ Pk, k ∈ N} with the properties (for k = 1, they have
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been already selected):

||xR − xS || > 2, if R,S ∈ P1 and R 6= S,

xR + BX ⊂ M BX , if R ∈ P1

and for k ≥ 2,

||xR − xS || ≥ 2 δ′k−1, if R, S ∈ Pk,

||xR − xR′ || ≤ δk−1, if R′ ≤ R, R′ ∈ Pk−1,

(xR + δ′k−1 BX) ∩ (xS + δ′k−1 BX) = ∅, R, S ∈ Pk

(xR + δ′k−1 BX) ⊂ (xR′ + δk−1 BX), R ∈ Pk, R′ ∈ Pk−1.

Finally, as in Proposition 7.4, it can be checked that the function h : Rn −→ Rm

defined as the sum
∑∞

k=1 hk , with

hk(x) =
∑

R∈Pk

gR(x− xR), x ∈ X,

and support within MBRn , fulfills the required conditions. Notice, in particular,
that ∪kFk ⊂ h′(Rn) ⊂ U , and then U = ∪kFk = h′(Rn). ¤

8. Some geometrical properties of starlike bodies. The failure of
James’ theorem for starlike bodies

One of the deepest classical results of functional analysis is James’ theorem [41]
on the characterization of reflexivity. Let us recall what James’ theorem reads. A
Banach space X is reflexive if and only if, for a given bounded convex body B in
X, every continuous linear functional T ∈ X∗ attains its supremum on B. In this
section we investigate to what extent this fundamental result can be generalized for
starlike bodies.

There are two problems to be considered, one for each direction in the equivalence
given by James’ theorem. The difficult and more interesting part of James’ theorem
tells us that for every bounded convex body B in a nonreflexive Banach space X
there exists T ∈ X∗ so that T does not attain its supremum on B. Since B is convex
this amounts to saying that T does not attain any local extrema on B. Moreover,
if B is smooth then this means that there is some one-codimensional subspace H of
X so that the hyperplanes y + H are not tangent to B at any point y ∈ ∂B. At
this point we face two possible generalizations of this result for starlike bodies, one
for each of those formulations (which, as we just said, are equivalent in the case of
convex bodies, but not for starlike bodies). The first one yields a statement which is
true but not very interesting; we call it a “weak form of James’ theorem” for starlike
bodies:

Proposition 8.1. Let A be a bounded starlike body in a nonreflexive Banach space
X. Then there exists a continuous linear functional T ∈ X∗ such that T does not
attain its supremum on A.

However, when one considers the second formulation of the difficult part of James’
theorem, things turn out very different in the case of starlike bodies. In this new
setting it is natural to ask whether a “strong form of James’ theorem” is true for
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starlike bodies (at least when they are smooth). By a strong James’ theorem we
mean the following: if A is a bounded starlike body in a nonreflexive Banach space
X, does there exist T ∈ X∗ so that T does not attain any local extrema on A?
For a smooth starlike body A the question should even be made stronger: is there
some one-codimensional subspace H in X such that the hyperplanes z + H are not
tangent to A at any point z ∈ ∂A? Recall that in section 5 we denoted the cone
of hyperplanes which are tangent to a smooth starlike body A at some point of its
boundary ∂A by

C(A) = {x∗ ∈ X∗ : x + Kerx∗ is tangent to ∂A at some point x ∈ ∂A}.
If µA is the Minkowski functional of A, then it is clear that

C(A) = {µ′A(x) : x 6= 0}.
Hence, the above question is equivalent to the following one: if A is a smooth
bounded starlike body in a nonreflexive Banach space X, is it true that C(A) 6= X∗?
Of course, if A is a convex body then the answer is “yes”, it satisfies this strong
form of James’ theorem.

We will show that both questions have negative answers, that is, a strong James’
theorem fails for bounded starlike bodies, even when they are smooth, in (nonre-
flexive) Banach spaces:

Theorem 8.2. Let X be an infinite-dimensional Banach space. Then there exists
a bounded starlike body A ⊂ X such that every T ∈ X∗ attains infinitely many local
maxima and minima on A.

Moreover, if X has a separable dual then there exists a bounded C1 smooth starlike
body A ⊂ X with the property that C(A) = X∗.

It is worth mentioning that the result provided by theorem 6.6 is the keystone
for our proof of the “smooth” part of theorem 8.2.

In fact theorem 8.2 can be improved by showing that those weird smooth starlike
bodies that do not satisfy James’ theorem are not so scarce: every other starlike
body in an infinite-dimensional separable Banach space can be approximated in the
Hausdorff distance by such bodies. The following theorem formalizes this assertion.

Theorem 8.3. Let X be an infinite-dimensional Banach space with a separable
dual X∗. Then, for every bounded starlike body A and every ε > 0 there exists a
C1 smooth starlike body D so that |µD(x)− µA(x)| ≤ ε for all x with ‖x‖ ≤ 1, and
C(D) = X∗.

If X is separable but X∗ is not, the same conclusion holds replacing C1 smooth-
ness with Gâteaux smoothness.

Now let us consider the other direction of the equivalence given by James’ theo-
rem, the “easy” part of this result. Namely, if X is reflexive, every bounded convex
body B ⊂ X satisfies that, for every T ∈ X∗, T attains its supremum on B. Equiv-
alently, every one-codimensional subspace H of X has the property that z + H
supports and touches B at some point z ∈ ∂B. When B is smooth this means that
C(B) = X∗. Does this part of James’ theorem remain true when one replaces the
term “convex body” with “starlike body”?

The next result tells us precisely that, whatever the formulation we choose for
this part of James’ theorem, the answer to the above question is negative.
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Theorem 8.4. In the Hilbert space `2 there exist a C∞ smooth bounded starlike
body A and a one-codimensional subspace H with the property that for no y ∈ ∂A is
the hyperplane y + H tangent to A at y. In other words, C(A) 6= X∗.

It comes as no surprise that this result is a consequence of the failure of Rolle’s
theorem and the existence of deleting diffeomorphisms in infinite-dimensional Ba-
nach spaces. Indeed, James’ theorem trivially implies that the classical Rolle’s
theorem is true for the class of convex functions in a Banach space X if and only if
X is reflexive. Namely, for every Banach space X and every bounded convex body
B ⊂ X, the following statements are equivalent:

(1) X is reflexive
(2) For every continuous convex function f : B −→ R such that f = 0 on ∂B,

there exists x0 ∈ intB so that 0 ∈ ∂f(x0),
where ∂f(x) stands for the classical subdifferential of f at x, ∂f(x) = {x∗ ∈ X∗ :
f(y) − f(x) ≥ x∗(y − x) for all y}. Hence, it is only natural that the failure of the
“easy” part of James’ theorem for starlike bodies is closely related to the failure of
Rolle’s theorem for bump functions in infinite dimensions.

The next result improves the above counterexample and fully answers the ques-
tion as to how small the cone C(A) of tangent hyperplanes to a starlike body A in
the Hilbert space can be, by constructing smooth bounded starlike bodies A in `2

so that C(A) have empty interior. As a matter of fact, the family of such starlike
bodies happens to be dense.

Notice that, as in the case of bump functions, Stegall’s variational principle
implies that, if A is a bounded starlike body in a RNP Banach space then the cone
of tangent hyperplanes to A, C(A), contains a subset of second category in X, so
the best result one can get about the smallest possible size of the cone of tangent
hyperplanes to a starlike body in `2 is that there are indeed smooth bounded starlike
bodies A in `2 so that C(A) have empty interior.

Theorem 8.5. There are C1 smooth Lipschitz and bounded starlike bodies Aε in `2,
0 < ε < 1, so that:

(i) their Minkowski functionals µAε uniformly approximate the usual norm on
bounded sets, that is, limε→0 µAε = ‖ ·‖ uniformly on bounded sets of `2; and

(ii) the cones C(Aε) generated by the set of gradients of µAε have empty interior
in `2.

To finish this work, let us give a sketch of the proofs of the strongest results
stated in this section.

Sketch of the proof of theorem 8.5
We use the same notation as in the proof of theorem 5.2. Take 0 < δ < 1

and consider, for 0 < ε ≤ δ
2+M+2||ϕ(0)||||ϕ′(0)|| < δ

2 , the associated mapping fε(x) ≡
f(x) =

∑
n Un(xn), where x = (xn) ∈ ∑

2 `2. Now define Aε as the 1-level set for f ,
that is to say,

Aε ≡ A = {x ∈ `2 : f(x) ≤ 1}.
Clearly A is a closed set with boundary

∂A = {x ∈ `2 : f(x) = 1},
and we have the inclusion

(1− ε)B ⊂ A ⊂ B,
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where B denotes the unit ball of `2. It can be proved that A satisfies all the
properties of the statement. To see that the cone of tangent hyperplanes to A has
empty interior one checks the inclusion C(µA) ⊆ C(f) and, since C(f) has empty
interior, so does C(µA). We refer to [14] for the details.

Sketch of the proof of theorem 8.3
The main idea of the proof of this result is as follows. First we approximate our

starlike body A by a C1 smooth starlike body V . Then we modify V by creating
a number of suitably located small flat patches on its boundary, and upon each of
those patches we put a small C1 smooth bump whose set of gradients is large enough.
The starlike body D thus constructed will have the required properties. We will split
the most technical part of the proof into several lemmas stated without proofs (see
[7] for the details); then we will proceed with the final and more interesting part of
the proof.

Lemma 8.6. Let X be a Banach space with separable dual X∗. For every bounded
starlike body A and for every ε > 0 there exists a C1 smooth starlike body V = Vε

so that |µA(x)− µV (x)| ≤ ε for every x ∈ BX .

Lemma 8.7. Let X be a Banach space, and let A be a C1 smooth bounded starlike
body in X. For every z∗ ∈ X∗ and z ∈ X so that z∗(z) = ‖z‖ = ‖z∗‖ = 1, and for
every ε > 0, δ > 0, there exist a C1 smooth starlike body V = Vz,ε and r ∈ (0, δ) so
that:

(1) µV (x) = µA(x) for all x with ‖x‖ = 1 and ‖x − z‖ ≥ 2r; that is, A and V
coincide outside the cone {λx : λ ≥ 0, ‖x− z‖ < 2r, ‖x‖ = 1};

(2) |µV (x)− µA(x)| ≤ ε for all x ∈ BX ;
(3) µV (x) = µA(z)z∗(x) for all x such that ‖x‖ = 1 and ‖x−z‖ ≤ r; that is, ∂V

has a flat patch (of radius r/µA(z)) parallel to the hyperplane ker z∗ around
the point z′ = 1

µA(z)z ∈ ∂A.

Now, if upon the flat patch of the starlike body provided by lemma 8.7 we build
a suitable Lipschitz C1 smooth bump whose set of gradients contains two times the
unit ball of the dual of the hyperplane directing this flat patch (notice that the
existence of this bump is guaranteed by 6.6), then we obtain the following.

Lemma 8.8. Let X be an infinite-dimensional Banach space, and let A be a C1

smooth bounded starlike body in X. For every z∗ ∈ X∗ and z ∈ X so that z∗(z) =
‖z‖ = ‖z∗‖ = 1, consider the decomposition X = H⊕[z] = H×R, where H = Ker z∗.
Then, for every ε > 0, δ > 0, there exist a C1 smooth starlike body W = Wz,ε and
r ∈ (0, δ) so that:

(1) A and W coincide outside the half-cylinder {x = (h, t) ∈ X : ‖h‖ ≤ r, t > 0};
(2) |µW (x)− µA(x)| ≤ ε whenever ‖x‖ ≤ 1;
(3) For every hyperplane F not containing any vector of the cone {x = (h, t) ∈

X : |t| > 2‖h‖} there exists y ∈ ∂W ∩ {x = (h, t) ∈ X : t > 0, ‖h‖ ≤ r} such
that y + F is tangent to ∂W at y.

Let A be a bounded starlike body in X. For a given ε > 0, ε ≤ 1/8, we have to
find a C1 smooth starlike body D = Dε so that the cone of its tangent hyperplanes,
C(D), fills the dual space X∗, and

|µD(x)− µA(x)| ≤ ε
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for every x ∈ BX . Thanks to lemma 8.6, we can assume that A is C1 smooth. Let
{zα}α∈I be a ε-net on the unit sphere SX . For every α ∈ I (by the Hahn-Banach
theorem) we can choose a z∗α ∈ X∗ so that z∗α(zα) = 1 = ‖z∗α‖. Let us denote
Hα = Ker z∗α. Now, for every α ∈ I, by lemma 8.8, we can take rα > 0 and a C1

smooth starlike body Wα so that
(1) A and Wα coincide outside the half-cylinder {x = (h, t) ∈ X = Hα ⊕ [zα] :

‖h‖ ≤ rα, t > 0};
(2) |µWα(x)− µA(x)| ≤ ε whenever ‖x‖ ≤ 1;
(3) For every hyperplane F not containing any vector of the cone {(h, t) ∈ Hα⊕

[zα] : |t| > 2‖h‖} there exists y ∈ ∂Wα∩{(h, t) ∈ Hα⊕ [zα] : t > 0, ‖h‖ ≤ rα}
such that y + F is tangent to ∂Wα at y;

moreover, the rα can be chosen small enough so that the sets

∂Wα ∩ {(h, t) ∈ Hα ⊕ [zα] : ‖h‖ ≤ rα, t > 0}
are pairwise disjoint. For each α ∈ I, let us denote the gauge of Wα by µα.

Now consider the union of all these bodies,

D =
⋃

α∈I

Wα.

Let us see that D is a bounded C1 smooth starlike body. Define ψ : X → (0,∞) by

ψ(x) = inf
α∈I

µα(x).

It is obvious that ψ is positive homogeneous, and it is not difficult to check that for
every z ∈ SX there exists some δ > 0 and some α ∈ I such that ψ(x) = µα(x) for
all x ∈ SX with ‖x− z‖ < δ; since every functional µα is C1 smooth away from the
origin, this implies that ψ is C1 smooth in X \ {0}. Therefore {x ∈ X | ψ(x) ≤ 1}
is a C1 smooth starlike body, and it is easily checked that D = {x ∈ X | ψ(x) ≤ 1},
so that ψ is the Minkowski functional of D. The fact that ψ is locally some of the
µα also implies that for every x ∈ SX there is some α ∈ I so that

|ψ(x)− µA(x)| = |µα(x)− µA(x)| ≤ ε,

which shows that D approximates A as it is required.
It only remains to prove that for every hyperplane F of X there is some y ∈ ∂D

such that y + F is tangent to ∂D at y. Since for each α the bodies Wα and D are
the same inside the half-cylinder Cα = {h + tzα ∈ Hα ⊕ [zα] : ‖h‖ ≤ rα, t > 0}, all
the hyperplanes of X not containing any vector of {h+ tzα ∈ Hα⊕ [zα] : |t| > 2‖h‖}
are tangent to ∂Wα, and therefore tangent to ∂A too, at some point of ∂Wα ∩Cα =
∂D ∩ Cα. This means that the set⋃

α∈I

{T ∈ X∗ | T (h + tzα) 6= 0 for all h + tzα ∈ Hα ⊕ [zα] with |t| > 2‖h‖}

is contained in

{T ∈ X∗ | y + KerT is tangent to ∂D at some point y ∈ ∂D}.
Therefore, in order to conclude the proof we only have to check that

X∗ \ {0} =⋃

α∈I

{T ∈ X∗ | T (h + tzα) 6= 0 for all h + tzα ∈ Hα ⊕ [zα] with |t| > 2‖h‖}.
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Consider any T ∈ X∗, T 6= 0; we may assume ‖T‖ = 1. Choose z ∈ X, ‖z‖ =
1, such that T (z) > 1 − ε, and take zα such that ‖z − zα‖ ≤ ε. We have that
|T (zα)− T (z)| ≤ ‖z − zα‖ ≤ ε and hence T (zα) ≥ T (z)− ε > 1− 2ε > 0. Then, for
every h + tzα ∈ Hα ⊕ [zα] with t > 2‖h‖ > 0 we get

T (h + tzα) = T (h) + tT (zα) > T (h) + t(1− 2ε) ≥ −‖h‖+ t(1− 2ε) >

−‖h‖+ 2‖h‖(1− 2ε) = (1− 4ε)‖h‖ > 0;

and in a similar way one checks that T (h + tzα) < 0 for all h + tzα ∈ Hα⊕ [zα] with
t < −2‖h‖ < 0. Therefore T (h+ tzα) 6= 0 for all h+ tzα ∈ Hα⊕ [zα] with |t| > 2‖h‖.
This concludes the proof of theorem 8.3 in the C1 smooth case. ¤

Let us finish with the observation that, in theorem 8.3, the assumption X∗ sep-
arable can be replaced with the requirement that X has smooth partitions of unity,
and in such a case we can also improve the order of smoothness of the approximating
bodies.

Theorem 8.9. Let X be an infinite-dimensional Banach space with Cp smooth
partitions of unity. Then, for every bounded starlike body A and every ε > 0 there
exists a Cp smooth starlike body D so that |µD(x)−µA(x)| ≤ ε for all x with ‖x‖ ≤ 1,
and the cone of tangent hyperplanes to D, C(D), fills the dual space X∗.
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