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Abstract. We obtain several extensions of a theorem of Shevchik which asserts that if R is
a proper dense operator range in a separable Banach space E, then there exists a compact,
one-to-one and dense-range operator T : E → E such that T (E) ∩ R = {0}, and some
results of Chalendar and Partington concerning the existence of compact, one-to-one and
dense-range endomorphisms on a separable Banach space E which leave invariant a given
closed subspace Y ⊂ E, or more generally, a countable increasing chain of closed subspaces
of E.

1. Introduction

A linear subspace R of a Banach space E is said to be an operator range (in E) if there

exist a Banach space X and a bounded linear operator T : X → E such that R = T (X).

If X = E, we say that R is an endomorphism range in E. These subspaces possess

rather surprising disjointness properties. A classical theorem of von Neumann, reformu-

lated by Dixmier in terms of operator ranges (see e.g. [11, Theorem 3.6]), yields that if

R is a non-closed endomorphism range in a separable Hilbert space H, then there exists a

unitary operator T : H → H such that R and (the endomorphism range) T (R) are essen-

tially disjoint, that is, R ∩ T (R) = {0}. This theorem implies that every separable Banach

space contains a couple of dense essentially disjoint operator ranges [5, Proposition 2.6]. A

strengthening of this result was obtained by Shevchik [19], who proved that if R is a proper

dense operator range in a separable Banach space E, then there exists a compact, one-to-one

and dense-range operator T : E → E such that T (E) ∩ R = {0}. Such operator is actually

nuclear, that is, there exist sequences {en}n ⊂ E and {fn}n ⊂ E∗ (the dual space of E) such

that
∑

n≥1 ‖en‖‖fn‖ < ∞ and T (x) =
∑

n≥1 fn(x)en for all x ∈ E. It is worth to mention

that, according to a result of Bennet and Kalton [2], the operator range R in this result can

be replaced with non-barrelled dense subspaces of E. However, this assertion is not true

if R is an arbitrary (infinite-codimensional) linear subspace of E: as it was pointed out by

Drewnowski [8], every Banach space E contains a dense (barrelled) subspace V ⊂ E which

is not essentially disjoint with respect to the range of any one-to-one operator T : X → E

defined on an infinite-dimensional Banach space X. For further developments related to

essential disjointness of operator ranges, we refer to the works [6], [9], [16] and [18].
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Some other kinds of constructions, concerning the existence of compact, one-to-one and

dense-range endomorphisms on separable Banach spaces which leave invariant closed infinite-

dimensional subspaces of such spaces, were carried out by Yahagi [23], and by Chalendar

and Partington [7]. In particular, Theorem 2.1 in [7] yields that if Y is a closed infinite-

dimensional subspace of a separable Banach space E, then there exists a compact (in fact

nuclear) one-to-one and dense-range operator T : E → E such that T (Y ) is a dense subspace

of Y . A generalization of this theorem, where the subspace Y is replaced with a sequence

{Yn}n of closed subspaces of E such that Yn ⊂ Yn+1 for all n ≥ 1, was also obtained in

[7, Theorem 2.2]. For more information on the existence of operators with other striking

properties on separable Banach spaces we refer to the paper of Grivaux [14].

In this work, we establish several extensions of the aforementioned theorems of Shevchik

and Chalendar and Partington. The proofs of these results, to be stated in sections 3, 4 and 5,

rely on the existence of M -bases with some special features in separable Banach spaces, and

some stability properties of minimal sequences in Banach spaces with a “disjoint behaviour”

with respect to infinite-codimensional operator ranges, or more generally, countable unions of

infinite-codimensional operator ranges in those spaces, to which we devote the next section.

In the sequel, we denote by R(E) the family made up of all infinite-codimensional operator

ranges in a real Banach space E, and by S(E) the class of sets of the form
⋃

n≥1Rn, where

Rn are elements of R(E). It is worth to mention (see e.g. [1, Corollary 2.17]) that if R is a

proper dense operator range in a Banach space E, then R ∈ R(E).

Section 3 deals with some generalizations of Shevchik’s theorem. The first result of that

section ensures the existence of a nuclear and dense-range endomorphism T on a separable

Banach space E such that T (E) is essentially disjoint with respect to a given set R ∈ S(E)

and T ∗(E∗) (being T ∗ the adjoint operator of T ) fills a given closed separable total subspace

Z ⊂ E∗. Recall that a linear subspace F of the dual of a Banach space E is said to be

total if F is w∗-dense in E∗. The construction of the operator T in that result also yields

that T ∗(E∗) ∩ V = {0}, for a given set V ∈ S(Z). Next, we obtain two more extensions of

Shevchik’s theorem, both of which imply that if E is a separable Banach space, then for any

R ∈ S(E) and V ∈ S(E∗) there exists a nuclear, one-to-one and dense-range endomorphism

T : E → E such that T (E)∩R = {0}, T ∗(E∗)∩V = {0} and T ∗(E∗) is (not only total but)

λ-norming for E, for any given number λ ∈ (0, 1). Recall that if λ ∈ (0, 1], then a linear

subspace F ⊂ E∗ is said to be λ-norming (for E) if sup{f(x) : f ∈ F, ‖f‖ ≤ 1} ≥ λ‖x‖
for each x ∈ E. The latter result yields that if E is a separable Banach space, then for

every proper dense operator range R ⊂ E∗ there is a dense operator range V ⊂ E∗ which is

isomorphic to R and satisfies R∩ V = {0}. This (non-separable) weak version of Shevchik’s

theorem provides a refinement of a result of Plichko [18], who proved the existence of two

dense essentially disjoint operator ranges in `∞, answering a question possed by Borwein and

Tingley [3].

In Sections 4 and 5, we obtain several extensions of the aforementioned theorems of

Chalendar and Partington, which yield as well some disjointness properties of the involved

operators. In the first result of Section 4, we consider a closed infinite-dimensional and

infinite-codimensional subspace Y of a separable Banach space E, and provide conditions

on two sets R ∈ S(E) and V ∈ S(E∗) to ensure the existence of a nuclear, one-to-one and
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dense-range operator T : E → E which, among other properties, satisfies that T (Y ) = Y ,

T (E) ∩ R = {0}, T ∗(E∗) ∩ V = {0} and the subspace F = T ∗(E∗)|Y ⊂ Y ∗ (the restriction

to Y of T ∗(E∗)) is λ-norming for Y , for any given number 0 < λ < 1. We also prove that

if X and Y are quasicomplemented subspaces of a separable Banach space E (that is,

if X ∩ Y = {0} and X + Y is dense in E), then there exists a nuclear, one-to-one and

dense-range operator T : E → E such that T (X) = X, T (Y ) = Y and T (E) and T ∗(E∗)

are essentially disjoint with respect to certain sets in S(E) and S(E∗). In Section 5, we

consider an increasing sequence {Yn}n of closed subspaces of a separable Banach space E

such that dim(Yn) = dim(Yn+1/Yn) = ∞ for each n, and establish conditions on two sets

R ∈ S(E) and W ∈ S(E∗) to guarantee the existence of a nuclear, one-to-one and dense-

range operator T : E → E which, among other things, preserves the subspaces of the chain

(that is, T (Yn) = Yn for each n) and satisfies the disjointness properties T (E)∩R = {0} and

T ∗(E∗)∩W = {0} (the second property whenever the subspace ∪nYn is infinite-codimensional

in E).

The notation we use is standard. We consider real normed spaces. The symbols SE, BE

and IE stand respectively for the unit sphere, the closed unit ball and the identity operator

of a normed space E. If A is a subset of E, we denote by span(A) (or spanA), co(A) and

co(A) the linear span, the convex hull and the closed convex hull of A, respectively. If {xn}n
is a sequence in E, we write [{xn}n] for its closed linear span. The symbol A⊥ refers to the

annihilator subspace of a set A ⊂ E, that is, A⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ A}.
Analogously, given a set F ⊂ E∗, we write F⊥ = {x ∈ E : f(x) = 0 for all f ∈ F}.

2. Minimal sequences and countable unions of operator ranges

A key ingredient in the proofs of the aforementioned results is the following lemma con-

cerning the existence of minimal sequences in a Banach space with a special behaviour with

respect to countable unions of infinite-codimensional operator ranges in that space. Recall

that a sequence {xn}n in a Banach space E is said to be minimal whenever there exists a se-

quence {fn}n ⊂ E∗ such that {xn, fn}n is a biorthogonal system in E, that is, fn(xm) = δn,m,

for all n,m ≥ 1. If all the functionals fn lie in a given subspace F ⊂ E∗, then we say that

{xn}n is an F -minimal sequence. It will be convenient to introduce the following notation:

A sequence {xn}n in a Banach space E is said to have property (∗) with respect to a

subset V ⊂ E if the conditions {an}n ∈ `1 and
∑

n anxn ∈ V imply an = 0 for all n ≥ 1.

Lemma 2.1. Let (E, ‖ · ‖) be a Banach space, let X ⊂ E and F ⊂ E∗ be closed subspaces

and S ∈ S(X). If {xn}n is an F -minimal sequence in X then, for every ε ∈ (0, 1) there

exist an isomorphism ϕ : E −→ E and an F -minimal sequence {yn}n ⊂ BX such that

(1) ‖ϕ− IE‖ ≤ ε.

(2) ϕ([{xn}n]) = [{yn}n].

(3) ϕ(X) = X.

(4) ϕ∗(F ) = F .

(5) span(co({±yn}n)) ∩ S = {0}.
(6) {yn}n satisfies property (∗) with respect to S.
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In the proof of this lemma, we shall use the following strenghtening of a result of Fonf

[12, Lemma 3].

Lemma 2.2. Let {Vm}m be a sequence of symmetric closed convex and bounded sets in a

Banach space (E, ‖ · ‖) such that codimE(spanVm) = ∞ for all m ≥ 1. Then, for every

pair of sequences {vn}n ⊂ SE and {εn}n ⊂ (0,∞) there exist sequences {wn}n ⊂ SE and

{γn}n ⊂ (0,∞) satisfying
∑

n γn < 1,

‖vn − wn‖ < εn, for all n ≥ 1

and

span(co({±γnwn}∞n=1)) ∩ spanVm = {0}, for all m ≥ 1.

Proof. We may assume that Vm ⊂ 1
m
BE for all m ≥ 1, and thus

⋃
m Vm is closed and

symmetric. Let us write, for each m ≥ 1, Lm := spanVm. Because of the convexity

and symmetry of Vm we have Lm =
⋃

k≥1 kVm. Since
⋃

m Lm =
⋃

m,k kVm is a countable

union of closed sets with empty interior in E, thanks to Baire’s category theorem the set

E \ (
⋃

m Lm) is dense in E. Notice that if λ 6= 0 and w ∈ E, then λw ∈ E \ (
⋃

m Lm) if

and only if w ∈ E \ (
⋃

m Lm). Thus, the set SE \ (
⋃

m Lm) is dense in SE. So, there is

w1 ∈ SE \ (
⋃

m Lm) such that ‖w1 − v1‖ < ε1.

Now, for every m ≥ 1 we define Lm,1 = Lm and Lm,2 = span({w1}∪Lm,1). By hypothesis,

codimE(Lm,1) =∞ = codimE(Lm,2), so Lm,2 6= E. It can be checked that

Lm,2 =
⋃
k≥1

k co({±w1} ∪ Vm)

and co({±w1} ∪ Vm) is a symmetric closed convex and bounded set with empty interior.

Thus
⋃

m Lm,2 is a countable union of symmetric closed convex and bounded sets with empty

interior in E. A new appeal to Baire’s category theorem yields that the set E \ (
⋃

m Lm,2) =

E\(
⋃

m,k k co({±w1}∪Vm)) is dense in E. Also, if λ 6= 0 and w ∈ E, then λw ∈ E\(
⋃

m Lm,2)

if and only if w ∈ E \ (
⋃

m Lm,2). That is, the set SE \ (
⋃

m Lm,2) is dense in SE and there

is w2 ∈ SE \ (
⋃

m Lm,2) such that ‖w2 − v2‖ < ε2. Notice that, because of the construction,

we have span {w1, w2} ∩ (
⋃

m Lm) = {0}.
By induction, we get a sequence {wn}n ⊂ SE such that, for every n,

‖wn − vn‖ < εn and wn ∈ SE \
⋃
m

Lm,n,

where Lm,n is defined for each m ≥ 1 as

Lm,1 := Lm and Lm,n := span({wn−1}∪Lm,n−1) = span({w1, . . . , wn−1}∪Lm,n−1), for n ≥ 2.

Arguing as before we can deduce that

• Lm,n =
⋃∞

k=1 k co({±w1, . . . ,±wn−1} ∪ Vm),

• the closed convex bounded and symmetric set co({±w1, . . . ,±wn−1}∪Vm) has empty

interior in E,

• codimE(Lm,n) =∞ and

• span{w1, . . . , wn}
⋂(⋃

m Lm

)
= {0}.
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Now, for each n we set Wn := span{w1, . . . , wn} and consider the function

rn(t) := dist(tSWn ,
⋃
m

Vm) = inf{‖x− y‖ : x ∈ tSWn , y ∈
⋃
m

Vm}, for t > 0.

Since
⋃

m Vm is closed and tSWn ∩ (
⋃

m Vm) = ∅ we have dist(x,
⋃

m Vm) > 0, whenever

x ∈ tSWn and t > 0. As tSWn is compact we get rn(t) = inf{dist(x,
⋃

m Vm) : x ∈ tSWn} > 0

for all t > 0. Also, since {Wn}n is a strictly increasing sequence of sets, we have rn+1(t) ≤
rn(t) for all n ≥ 1 and all t > 0.

We claim that rn is strictly increasing. Indeed, let us fix 0 < t < t′. For every x ∈ SWn

and y ∈
⋃

m Vm we have ‖t′x − y‖ = t′‖x − y
t′
‖ = t′

t

∥∥tx− t
t′
y
∥∥, and bearing in mind that

tx ∈ tSWn and t
t′
y ∈ t

t′
(
⋃

m Vm) ⊂
⋃

m Vm it follows that

rn(t′) ≥ t′

t
rn(t) > rn(t).

Let us define, for each k ≥ 1,

γk = 2−krk(
1

k
).

Notice that rk( 1
k
) ≤ 1

k
for all k ≥ 1, and thus

∑
k≥1 γk ≤

∑
k≥1

2−k

k
< 1. Moreover, for all

n ≥ 1 we have
∞∑

k=n+1

γk =
∞∑

k=n+1

2−krk(
1

k
) ≤

∞∑
k=n+1

2−krn(
1

k
) ≤

∞∑
k=n+1

2−krn(
1

n
) = 2−nrn(

1

n
).

Now, we shall prove that

co({±γkwk}k) ∩ (
⋃
m

Vm) = {0}.

Suppose that z 6= 0 and z ∈ co({±γkwk}k). Let us fix a natural number n large enough

such that ‖z‖ > 1
n

+ 2−nrn( 1
n
). Then, for every 0 < ε < ‖z‖ − 1

n
− 2−nrn( 1

n
) there is a sum∑s

k=1 λkγkwk such that
∑s

k=1 |λk| ≤ 1 and ‖z −
∑s

k=1 λkγkwk‖ < ε, where we may assume

that s > n. In particular,∥∥∥∥∥
n∑

k=1

λkγkwk

∥∥∥∥∥ ≥
∥∥∥∥∥

s∑
k=1

λkγkwk

∥∥∥∥∥−
∥∥∥∥∥

s∑
k=n+1

λkγkwk

∥∥∥∥∥
≥ ‖z‖ − ε−

s∑
k=n+1

γk ≥ ‖z‖ − ε− 2−nrn(
1

n
) >

1

n
.

Then, for every y ∈
⋃

m Vm,

‖z − y‖ ≥

∥∥∥∥∥
n∑

k=1

λkγkwk − y

∥∥∥∥∥−
∥∥∥∥∥

s∑
k=n+1

λkγkwk

∥∥∥∥∥−
∥∥∥∥∥z −

s∑
k=1

λkγkwk

∥∥∥∥∥ ≥
≥ rn

(
‖

n∑
k=1

λkγkwk‖

)
−

s∑
k=n+1

γk − ε

≥ rn(
1

n
)− 2−nrn(

1

n
)− ε.



6 MAR JIMÉNEZ-SEVILLA AND SEBASTIÁN LAJARA

Since this inequality holds for every 0 < ε < ‖z‖ − 1
n
− 2−nrn( 1

n
), we get

‖z − y‖ ≥ rn(
1

n
)− 2−nrn(

1

n
) > 0

for all y ∈
⋃

m Vm. Therefore, z 6∈
⋃

m Vm.

The above implies that

span(co({±γkwk}∞k=1)) ∩ (
⋃
m

Lm) = {0}.

Indeed, observe that

span(co({±γkwk}∞k=1)) =
⋃
n≥1

n co({±γkwk}∞k=1).

Thus, if z ∈ span(co({±γkwk}∞k=1))∩(
⋃

m Lm) = span(co({±γkwk}∞k=1))∩(
⋃

m,s≥1 sVm), then

there exist natural numbers n0, s0 and m0 such that z ∈ (n0 co({±γkwk}∞k=1)) ∩ (s0 Vm0).

Therefore,

z

s0 n0

∈ (
1

s0
co({±γkwk}∞k=1)) ∩ (

1

n0

Vm0) ⊂ co({±γkwk}∞k=1) ∩ Vm0 = {0},

and this yields z = 0. �

Proof of Lemma 2.1. We may assume without loss of generality that ‖xn‖ = 1 for all n ≥ 1.

Let {fn}n ⊂ F be a sequence such that {xn, fn}n is a biorthogonal system in E and fix a

sequence {εn}n of positive numbers with
∑

n≥1 εn < ε. Let {Rm}m a sequence in R(E) such

that S =
⋃

m≥1Rm. We will define a sequence of subsets {Vm}m of E satisfying the hypothesis

of Lemma 2.2 and such that Rm ⊂ spanVm for every m. Fix a natural number m ≥ 1. If

the operator range Rm is closed, we consider the symmetric closed convex and bounded set

Vm = Rm ∩ BE, which obviously satisfies spanVm = Rm, and so codimE(spanVm) = ∞.

If Rm is not closed we define Em = Rm. Then, Rm is a proper dense operator range in

Em. Consider a Banach space Zm and a one-to-one operator Am : Zm → Em such that

Rm = A(Zm), and set Vm = Am(BZm). Notice that Vm has empty interior in Em (otherwise,

by the open mapping theorem, Am(Zm) = Em, which is not true). Consider the vector space

Wm = spanVm =
⋃

j≥1 jVm, and let ‖ · ‖m the norm on Wm whose closed unit ball is Vm.

Then, (Wm, ‖ · ‖m) is a Banach space (see e.g. [10, Exercise 2.22]). Moreover, because of the

boundedness of the set Vm, there is a constant Cm > 0 such that ‖x‖ ≤ Cm whenever x lies

in Vm = B(Wm,‖·‖m) (the closed unit ball of (Wm, ‖ · ‖m)). Therefore, the inclusion operator

Im : (Wm, ‖ · ‖m)→ (Em, ‖ · ‖), being ‖ · ‖ the norm in Em inherited from E, is continuous.

Consequently, Wm = spanVm is a proper dense operator range in Em, which yields that

codimEm(spanVm) =∞, and hence codimE(spanVm) =∞.

Applying now Lemma 2.2, we deduce the existence of a normalized sequence {wn}n ⊂ X

and a sequence of positive numbers {γn}n such that
∑

n≥1 γn < 1,

‖xn − wn‖ < εn‖fn‖−1 for all n ≥ 1

and

span(co({±γnwn}n)) ∩ (
⋃
m

spanVm) = {0}.
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In particular,

(2.1) span(co({±γnwn}n)) ∩ S = {0}.

Since
∑

n≥1 ‖fn‖‖wn − xn‖ ≤
∑

n≥1 εn < ε < 1, the formula

ϕ(x) = x+
∑
n≥1

fn(x)(wn − xn), x ∈ E

defines an isomorphism ϕ : E → E with ‖ϕ− IE‖ < ε. Moreover, taking into account that

{xn, fn}n is a biorthogonal system we get

ϕ(xn) = xn + (wn − xn) = wn for all n ≥ 1.

Since ϕ is an isomorphism we have ϕ([{xn}n]) = [{wn}n]. We claim that ϕ(X) = X. As

X is a closed subspace of E and {xn}n, {wn}n ⊂ X we get ϕ(X) ⊂ X. Moreover, if

x ∈ X then there is y ∈ E such that ϕ(y) = y +
∑

n≥1 fn(y)(wn − xn) = x. Therefore

y = x−
∑

n≥1 fn(y)(wn − xn) ∈ X, which yields X ⊂ ϕ(X)

Now, we shall prove that ϕ∗(F ) = F . Indeed, for each f ∈ E∗ we have

ϕ∗(f) = f +
∑
n≥1

f(wn − xn)fn.

In particular, as F is a closed subspace and {fn}n ⊂ F , we obtain ϕ∗(f) ∈ F whenever

f ∈ F , that is ϕ∗(F ) ⊂ F . On the other hand, since ϕ is an isomorphism on E we have

that ϕ∗ is an isomorphism on E∗. Thus, for every f ∈ F we can find g ∈ E∗ such that

f = ϕ∗(g) = g +
∑

n≥1 g(wn − xn)fn. Hence, g = f −
∑

n≥1 g(wn − xn)fn, and so g ∈ F .

Consequently, ϕ∗(F ) ⊂ F .

Now, for every n ≥ 1 we define

yn = γnwn and gn = γ−1n (ϕ−1)∗(fn).

It is clear that yn ∈ co({±γnwn}n), gn ∈ F and gn(yk) = δn,k for all n, k ≥ 1. So, {yn}n is

an F -minimal sequence in BX , and because of (2.1), it satisfies (5).

It remains to check that {yn}n enjoys property (∗) with respect to S. Let {an}n be a

sequence in `1 such that the vector y =
∑

n≥1 anyn lies in S. Since y ∈ span(co({±γnwn}n)),

thanks to (5) we get y = 0. Therefore, an = gn(y) = 0 for all n ≥ 1. �

Remark 2.3. It is worth noticing that in Lemma 2.1, in the case that E is a dual space, say

E = X∗ for some Banach space X, the isomorphism ϕ is the adjoint of certain isomorphism

φ : X → X. In particular, ϕ is (w∗, w∗)-continuous.

3. Essential disjointness

The purpose of this section is to establish some strenghtenings of Shevchik’s theorem. We

observe that, because of the injectivity of the operator T : E → E provided by that result,

the subspace T ∗(E∗) ⊂ E∗ is total (over E). Moreover, the compactness of T guarantees that

T ∗(E∗) is also separable. Thus, it is natural to wonder on the existence of a nuclear dense-

range operator T : E → E such that T ∗(E∗) fills a given closed total separable subspace

Z ⊂ E∗, and T (E)∩R = {0} for a given proper dense (or an infinite-codimensional) operator

range R ⊂ E. More generally, we have the following result.
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Theorem 3.1. Let E be an (infinite dimensional) separable Banach space and Z be a closed,

separable and total subspace of E∗. Then, for any R ∈ S(E) and any V ∈ S(Z) there exists

a nuclear operator T : E → E such that

(1) T (E) = E.

(2) T ∗(E∗) ⊂ Z.

(3) T ∗(Z) = Z (in particular, T is one-to-one).

(4) T (E) ∩R = {0}.
(5) T ∗(E∗) ∩ V = {0}.

In the proof of this theorem, as well as of almost all the results in this work, we shall

make use of the existence of M -bases with some special features on separable Banach spaces.

Reall that a biorthogonal system {en, e∗n}n in a (separable) Banach space E is said to be a

Markushevich basis (in short, an M-basis) of E if [{en}n] = E and span({e∗n}n)
w∗

= E∗.

For a detailed account on such bases, we refer to the monographs [15] and [22].

Proof of Theorem 3.1. According to [22, pg. 224, Theorem 8.1] (see also [15, pg. 8, Lemma

1.21]), there is an M -basis {xn, zn}n of E with [{zn}n] = Z. By Lemma 2.1, applied to the

sequence {xn}n, the set R ∈ S(E) and the subspaces X = E and F = Z, there exist a Z-

minimal sequence {yn}n ⊂ BE satisfying property (∗) with respect to R and an isomorphism

ϕ : E → E such that ϕ([{xn}n]) = [{yn}n]. Therefore, [{yn}n] = E.

Applying again Lemma 2.1, now in the space E∗, to the E-minimal sequence {zn}n, the

set V ∈ S(Z) and the subspaces X = Z and F = E, we deduce the existence of a sequence

{fn}n ⊂ BZ which is E-minimal and has property (∗) with respect to V , and an isomorphism

ψ : E∗ → E∗ such that [{ψ(zn)}n] = [{fn}n] and ψ(Z) = Z. Hence, [{fn}n] = Z.

Let us write, for each x ∈ E,

T (x) =
∑
n≥1

2−nfn(x)yn.

Since the sequences {yn}n and {fn}n are bounded, this formula defines a nuclear endomor-

phism on E. The E-minimality of {fn}n entails that yn ∈ T (E) for all n ≥ 1. Indeed, if

{en}n is a sequence in E such that {en, fn}n is a biorthogonal system then T (en) = 2−nyn,

that is, yn ∈ T (E) for all n ≥ 1. Therefore, E = [{yn}n] ⊂ T (E), and property (1) is

fulfilled.

Moreover, as

T ∗(f) =
∑
n≥1

2−nf(yn)fn for all f ∈ E∗,

we immediately get (2), and taking into account that the sequence {yn}n is Z-minimal, it

follows that fn ∈ T ∗(Z) for all n ≥ 1, so Z = [{fn}n] = T ∗(E∗).

It remains to show (4) and (5). Pick x ∈ E such that T (x) ∈ R. Since the sequence

{yn}n satisfies property (∗) with respect to R and {2−nfn(x)}n ∈ `1 we get fn(x) = 0 for all

n ≥ 1, and therefore Tx = 0. Consequently, T (E) ∩ R = {0}. Bearing in mind that {fn}n
satisfies (∗) with respect to V , the same argument entails that T ∗(E∗) ∩ V = {0}. �



OPERATOR RANGES AND ENDOMORPHISMS WITH A PRESCRIBED BEHAVIOUR 9

It is well-known (see e.g. [22, pg. 225, Lemma 8.1] or [15, pg. 8, Theorem 1.22]) that

every separable Banach space admits a closed, 1-norming and separable subspace Z ⊂ E∗.

This fact and Theorem 3.1 lead to the following result.

Corollary 3.2. If E is a separable Banach space then, for every R ∈ S(E) there exists a

nuclear, one-to-one and dense-range operator T : E → E such that T (E)∩R = {0} and the

subspace T ∗(E∗) is 1-norming for E.

The next result provides another extension of Shevchik’s theorem.

Theorem 3.3. If Y is a closed infinite-dimensional subspace of a separable Banach space

E then, for every R ∈ S(Y ), every V ∈ S(Y ∗) and every λ ∈ (0, 1) there exists a nuclear

one-to-one operator T : E → E such that

(1) T (E) ⊂ Y .

(2) T (Y ) = Y .

(3) T (E) ∩R = {0}.
(4) T ∗(E∗)|Y ∩ V = {0}.
(5) T ∗(E∗)|Y is λ-norming for Y .

(6) In addition, if Y ∗ is separable, then the operator T can be built so that T ∗(E∗)|Y = Y ∗.

(7) In addition, if E∗ is separable, then the operator T can be built so that T ∗(E∗) = E∗.

In the proof of this theorem we shall use a result of Singer [20, Theorem 2], which asserts

that, if Y is an infinite-dimensional and infinite-codimensional closed subspace of a separable

Banach space E and {y∗n}n ⊂ Y ∗ is a total sequence (that is, such that span({y∗n}n) is total

over Y ), then there exists a sequence {fn}n ⊂ E∗ such that fn|Y = y∗n for each n and {fn}n
is total over E. We shall also need the following variant of this result.

Lemma 3.4. Let E be a Banach space with separable dual, let Y be a closed subspace of E

and {y∗n}n a sequence in Y ∗ such that [{y∗n}n] = Y ∗. Then, there exists a sequence {fn}n in

E∗ such that fn|Y = y∗n for each n and [{fn}n] = E∗.

Proof. Since (E/Y )∗ identifies with Y ⊥ ⊂ E∗ and E∗ is separable so is Y ⊥, and there is a

dense sequence {z∗n}n in Y ⊥. For every n, let us consider a linear continuous extension to E

of the functional y∗n, and denote it by h∗n ∈ E∗. For convenience, let us relabel the sequence

{h∗n}n in the form {h∗m,j}m,j∈N. Since for every fixed m,

z∗m +
h∗m,j

j‖h∗m,j‖
j→∞−−−→ z∗m,

we have z∗m ∈ [{z∗k +
h∗k,j

j‖h∗k,j‖
: k, j ∈ N}], thus for every m, j we get

h∗m,j ∈ [{z∗k +
h∗k,i

i‖h∗k,i‖
: k, i ∈ N}].

Let us define, for every m, j,

fm,j := j‖h∗m,j‖z∗m + h∗m,j.

Clearly, fm,j|Y = h∗m,j|Y and [{fk,j : k, j ∈ N}] = [{z∗k +
h∗k,j

j‖h∗k,j‖
: k, j ∈ N}]. Let us check that

[{z∗k}k ∪ {h∗k,j}k,j] = E∗. Let us rewrite {h∗m,j}m,j as {h∗n}n by reverting the first relabeling.
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Fix f ∈ E∗ and take ε > 0. Since Y ∗ = [{y∗n}n], there is a finite linear combination
∑

i aiy
∗
i

such that ‖f |Y −
∑

i aiy
∗
i ‖ < ε, that is,

‖f |Y −
∑
i

aih
∗
i |Y ‖ < ε.

Since Y ∗ is isometrically isomorphic to the quotient space E∗/Y ⊥, there exists a functional

g ∈ Y ⊥ such that ‖f −
∑

i aih
∗
i − g‖ < ε. On the other hand, as {z∗n}n is dense in Y ⊥, there

is a finite linear combination
∑

j bjz
∗
j with ‖g −

∑
j bjz

∗
j ‖ < ε. Therefore,

‖f −
∑
i

aih
∗
i −

∑
j

bjz
∗
j ‖ < 2ε.

Thus, f ∈ [{z∗k}k ∪ {h∗k,j}k,j]. Finally, we rewrite {fm,j}m,j as {fn}n by reverting the first

relabeling, which yields fn|Y = h∗n|Y = y∗n for each n, and the proof is finished. �

Proof of Theorem 3.3. According to [15, pg. 8, Theorem 1.22] (see also [22, pg. 226, Corollary

8.1]) there is an M-basis {en, e∗n}n of Y such that the subspace [{e∗n}n] ⊂ Y ∗ is 1-norming

for Y . Fix a number 0 < ε < 1 such that (1− 3ε)/(1 + ε) > λ. Thanks to Lemma 2.1, there

exist an isomorphism ϕ : Y → Y with ‖ϕ − IY ‖ < ε and a minimal sequence {yn}n ⊂ BY

which enjoys property (∗) with respect to R and satisfies [{yn}n] = [{ϕ(en)}n] = Y.

Evidently, the functionals y∗n := (ϕ−1)∗(e∗n) ∈ Y ∗ (n ≥ 1) constitute a Y -minimal se-

quence. Applying Lemma 2.1 to this sequence, we deduce the existence of an isomorphism

ψ : Y ∗ → Y ∗ with ‖ψ−IY ∗‖ < ε and a Y -minimal sequence {v∗n}n ⊂ BY ∗ satisfying property

(∗) with respect to V and [{v∗n}n] = [{ψ(y∗n)}n].

Since ‖ϕ∗− IY ∗‖ < ε we have ‖(ϕ∗)−1‖ ≤ 1/(1− ε). Thus, the isomorphism τ : Y ∗ → Y ∗

defined as τ = ψ ◦ (ϕ∗)−1 satisfies

‖τ‖ ≤ (1 + ε)/(1− ε)

and

‖τ − IY ∗‖ ≤ ‖(ϕ∗)−1‖‖ψ − ϕ∗‖ ≤ ε(1− ε)−1(‖ψ − IY ∗‖+ ‖ϕ∗ − IY ∗‖) < 2ε(1− ε)−1.

The last two inequalities imply that the subspace [{v∗n}n] ⊂ Y ∗ is 1−3ε
1+ε

-norming, and hence

λ-norming. In particular, the sequence {v∗n}n is total over Y , and thanks to [20, Theorem

2], we obtain a total sequence {fn}n ⊂ E∗ such that fn|Y = v∗n for all n ≥ 1.

At this point, we consider the nuclear operator T : E → E defined by the formula

T (x) =
∞∑
n=1

2−n(1 + ‖fn‖)−1fn(x)yn, x ∈ E.

It is clear that T satisfies (1). Moreover, if x ∈ kerT then
∑

n≥1 2−n(1+‖fn‖)−1fn(x)yn = 0.

Because of the minimality of the sequence {yn}n we obtain fn(x) = 0 for all n ≥ 1, and taking

into account that {fn}n is total over E we get x = 0. Therefore, T is one-to-one. Observe

also that, since {fn}n is Y -minimal (being an extension of {v∗n}n), we have {yn}n ⊂ T (Y )

and hence [{yn}n] ⊂ T (Y ). As [{yn}n] = Y and T (Y ) ⊂ Y we get T (Y ) = Y , and assertion

(2) is proved.

To check (3), pick x ∈ E such that T (x) ∈ R. Then,
∑

n≥1 2−n(1 + ‖fn‖)−1fn(x)yn ∈ R.

As {yn}n has property (∗) with respect to R we obtain fn(x) = 0 for all n ≥ 1, and thus

T (x) = 0.



OPERATOR RANGES AND ENDOMORPHISMS WITH A PRESCRIBED BEHAVIOUR 11

To prove (4) and (5), consider a sequence {gn}n ⊂ E∗ such that {yn, gn}n is a biorthogonal

system in E (recall that {yn}n is minimal). Since T ∗(f) =
∑

n≥1 2−n(1 + ‖fn‖)−1f(yn)fn for

all f ∈ E∗ we have T ∗(gn) = 2−n(1 + ‖fn‖)−1fn for each n ≥ 1, thus

(3.2) span({fn}n) ⊂ T ∗(E∗).

fn|Y = v∗n for all n ≥ 1 we get span({v∗n}n) ⊂ T ∗(E∗)|Y , and therefore,

(3.3) [{v∗n}n] ⊂ T ∗(E∗)|Y .

Since T ∗(f)|Y =
∑

n≥1 2−n(1 + ‖fn‖)−1f(yn)v∗n for all f ∈ E∗, {yn}n is bounded and the

sequence {v∗n}n satisfies property (∗) with respect to V , it follows that T ∗(E∗)|Y ∩ V = {0}.
Also, since [{v∗n}n] ⊂ Y ∗ is λ-norming for Y , so is T ∗(E∗)|Y .

Now, assume that Y ∗ is separable. Then the initial M -basis {en, e∗n}n of Y can be chosen

to be shrinking, that is, [{e∗n}n] = Y ∗ (see e.g. [15, pg. 8, Theorem 1.22]). Since ϕ∗ and

ψ are isomorphisms on Y ∗ and [{v∗n}n] = [{ψ ◦ (ϕ∗)−1(e∗n)}n], taking into account (3.3) we

obtain Y ∗ = [{v∗n}n] ⊂ T ∗(E∗)|Y , and assertion (6) is proved.

To finish, suppose that E∗ is separable. As before, we can assume that the sequence {e∗n}n
is linearly dense in Y ∗, hence {v∗n}n ⊂ Y ∗ is also linearly dense in Y ∗. Therefore, by Lemma

3.4, the corresponding extension {fn}n ⊂ E∗ of {v∗n}n can be chosen so that [{fn}n] = E∗,

and using (3.2) we get T ∗(E∗) = [{fn}n] = E∗. �

Next, we establish a dual counterpart of the previous theorem.

Theorem 3.5. Let E be a separable Banach space. If Z is a w∗-closed infinite-dimensional

subspace of E∗ then, for any R ∈ S(E) and any V ∈ S(Z) there exists a nuclear operator

T : E → E such that

(1) T (E) = E.

(2) T ∗(E∗) ⊂ Z.

(3) T ∗(Z) is w∗-sequentially dense in Z.

(4) T (E) ∩R = {0}.
(5) T ∗(E∗) ∩ V = {0}.
(6) In addition, if Z is separable, then property (3) may be replaced with T ∗(Z) = Z.

In the proof of this theorem, we shall use the following lemma.

Lemma 3.6. Let E be a separable Banach space. If Z is a w∗-closed infinite-dimensional

subspace of E∗ then there exists a biorthogonal system {xn, zn} ⊂ E×Z such that [{xn}n] = E

and the subspace [{zn}n] is w∗-sequentially dense in Z. If in addition, Z is separable, then

[{zn}n] = Z.

Proof. Let Q : E → E/Z⊥ be the quotient map and τ : Z → (E/Z⊥)∗ the isometric (w∗, w∗)-

isomorphism from Z onto E/Z⊥ that assigns to each z ∈ Z the functional τ(z) ∈ (E/Z⊥)∗

defined as 〈τ(z), Q(x)〉 = z(x), x ∈ E. According to [15, pg. 8, Theorem 1.22] (see also

[22, pg. 226, Corollary 8.1]) there exist sequences {en}n ⊂ E and {gn}n ⊂ (E/Z⊥)∗ such

that {Q(en), gn}n is an M -basis of E/Z⊥ and [{gn}n] is norming for E/Z⊥. In particular,

thanks to a well-known result of Banach (see e.g. [4, Theorem V.12.11]), [{gn}n] is w∗-

sequentially dense in (E/Z⊥)∗. Let us write, for each n ≥ 1, zn = τ−1(gn). Then, [{zn}n] is
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w∗-sequentially dense in Z. On the other hand, by a result of Singer [21, Theorem 3], there

is a sequence {xn}n ⊂ E such that [{xn}n] = E and Q(xn) = Q(en) for all n ≥ 1. It is

clear that zn(xm) = gn(Q(em)) = δn,m for each n,m ≥ 1, that is, {xn, zn}n is a biorthogonal

system. Moreover, in the case that Z is separable, the M -basis {Q(xn), gn}n of E/Z⊥ can

be chosen to be shrinking, that is, [{gn}n] = (E/Z⊥)∗, and hence [{zn}n] = Z. �

Proof of Theorem 3.5. By the previous lemma, there is a biorthogonal system {xn, zn}n ⊂
E × Z such that [{xn}n] = E and [{zn}n] is w∗-sequentially dense in Z. Applying now

Lemma 2.1 to the sequence {xn}n, we can find a Z-minimal sequence {yn}n ⊂ BE which

enjoys property (∗) with respect to R and satisfies [{yn}n] = E. Another appeal to that

lemma (applied to the sequence {zn}n) yields a sequence {fn}n ⊂ BZ which is E-minimal,

has property (∗) with respect to V and satisfies that [{fn}n] is w∗-sequentialy dense in Z.

Moreover, if Z is separable, the initial biorthogonal system {xn, zn}n can be chosen so that

[{zn}n] = Z, and hence [{fn}n] = Z.

The arguments in the proof of Theorem 3.3 yield that the operator T : E → E defined

by the formula

T (x) =
∞∑
n=1

2−nfn(x)yn, x ∈ E

satisfies the required properties. Indeed, the E-minimality of the sequence {fn}n implies

that yn ∈ T (E) for all n ≥ 1, hence E = [{yn}n] = T (E). The inclusion T ∗(E∗) ⊂ Z is

obvious. Moreover, by the Z-minimality of {yn}n we get fn ∈ T ∗(Z) for each n ≥ 1. As

[{fn}n] is w∗-sequentially dense in Z, so is T ∗(Z), and in the case that Z is separable we

get Z = T ∗(Z). Finally, since {yn}n and {fn}n have property (∗) with respect to R and V

respectively, we obtain (4) and (5). �

Applying Theorem 3.3 with Y = E (or Theorem 3.5 with Z = E∗) we obtain at once the

following result.

Corollary 3.7. If E is an (infinite dimensional) separable Banach space then, for every

couple of elements R ∈ S(E) and V ∈ S(E∗) and any number 0 < λ < 1 there exists a

nuclear one-to-one dense-range operator T : E → E such that

(1) T (E) ∩R = {0}.
(2) T ∗(E∗) is λ-norming for E.

(3) T ∗(E∗) ∩ V = {0}.
(4) In addition, if E∗ is separable, then assertion (2) may be replaced with T ∗(E∗) = E∗.

The former corollary leads to the following statement.

Corollary 3.8. If E is an (infinite dimensional) separable Banach space then, for any

two operator ranges R ∈ R(E), V ∈ R(E∗) and any ε > 0, there exists an isomorphism

ϕ : E → E such that ϕ(R) ∩R = {0}, ϕ∗(V ) ∩ V = {0} and ‖ϕ− IE‖ < ε.

Proof. The previous corollary guarantees the existence of a one-to-one and dense-range op-

erator T : E → E such that T (E) ∩ R = {0} and T ∗(E∗) ∩ V = {0}. We can assume

without loss of generality that ‖T‖ < ε. Hence, the operator ϕ = I − T is an isomorphism
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on E and ‖ϕ − IE‖ < ε. Pick x ∈ R ∩ ϕ(R). Then x = u − T (u) for some u ∈ R, that is,

T (u) = u− x ∈ R. Thus T (u) ∈ R ∩ T (R), therefore T (u) = 0, so (by the injectivity of T ),

u = 0, and consequently x = 0. Moreover, as T (E) = E we have that T ∗ is one-to-one, and

arguing as before we obtain ϕ∗(V ) ∩ V = {0}. �

In [3, Problem 8], Borwein and Tingley asked if, for a given Banach space E, in particular

for E = `∞, there exist two dense operator ranges R and V in E such that R ∩ V = {0}.
Plichko [18] proved that the answer is affirmative if E = `∞(Γ) for any set Γ. Taking into

account that isomorphisms in a Banach space carry proper dense operator ranges into proper

dense operator ranges in that space, Corollary 3.8 yields the following refinement of Plichko’s

result in the case that Γ is countable.

Corollary 3.9. If E is a separable Banach space, then for any proper dense operator range

R in E∗ there exists a dense operator range V ⊂ E∗ which is isomorphic to R and satisfies

V ∩R = {0}.

4. Endomorphisms preserving a closed subspace or a couple of

quasicomplements

In this section, we provide two extensions of the result of Chalendar and Partington con-

cerning the existence of nuclear, one-to-one and dense-range endomorphisms on a separable

Banach space which leave invariant a closed subspace of that space [7, Theorem 2.1]. The

first one reads as follows.

Theorem 4.1. Let E be a separable Banach space, let Y be a closed infinite-dimensional

and infinite-codimensional subspace of E, and let R ∈ S(E) and V ∈ S(E∗) such that

R ∩ Y ∈ S(Y ), V |Y ∈ S(Y ∗) and V ∩ Y ⊥ ∈ S(Y ⊥).

Then, for any λ ∈ (0, 1) there exists a nuclear one-to-one dense-range operator T : E → E

such that

(1) T (Y ) ⊂ Y and T (Y ) = Y .

(2) T ∗(Y ⊥) ⊂ Y ⊥ and T ∗(Y ⊥) is w∗-sequentially dense in Y ⊥.

(3) T (E) ∩R = {0}.
(4) T ∗(E∗) ∩ V = {0}.
(5) T ∗(E∗)|Y is λ-norming for Y .

(6) T ∗(E∗)|Y ∩ V |Y = {0}.
(7) In addition, if (E/Y )∗ or Y ∗ is separable, then properties (2) and (5) can be replaced

respectively with

T ∗(Y ⊥) = Y ⊥ and T ∗(E∗)|Y = Y ∗.

(8) In addition, if E∗ is separable, then the operator T can be built so that T ∗(E∗) = E∗.

Proof. According to Theorem 3.3, there exists a nuclear one-to-one operator A : E → E

with the following properties:

(a) A(E) ⊂ Y and A(Y ) = Y .

(b) A(Y ) ∩R = {0}.
(c) A∗(E∗)|Y is λ-norming for Y (and A∗(E∗)|Y = Y ∗ is Y ∗ is separable).
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(d) A∗(E∗)|Y ∩ V |Y = {0}.
Notice that the requirements R ∩ Y ∈ S(Y ) and V |Y ∈ S(Y ∗) are essential to achieve

that A(Y ) ∩R = {0} and A∗(E∗)|Y ∩ V |Y = {0}.
Since R ∈ S(E), there are operator ranges Rn ∈ R(E) such that R =

⋃
nRn. By

[5, Proposition 2.2], the subspace A(E) + Rn is an operator range in E for every n ≥ 1.

Moreover, since A(E) ∩ R = {0} (thus A(E) ∩ Rn = {0} for all n ≥ 1) and A(E) is not

closed, thanks to [5, Theorem 2.4] it follows that A(E) + Rn is not closed for every n ≥ 1.

Hence, codimE (A(E) + Rn) = ∞ for all n ≥ 1, and therefore A(E) + Rn ∈ R(E). This

yields A(E) +R =
⋃

n(A(E) +Rn) ∈ S(E).

Moreover, taking into account that V ∩ Y ⊥ ∈ S(Y ⊥), an appeal to Theorem 3.5, with

Z = Y ⊥, entails the existence of another nuclear operator B : E → E such that

(e) B(E) = E.

(f) B(E) ∩ (A(E) +R) = {0}.
(g) B∗(E∗) ⊂ Y ⊥, B∗(Y ⊥) is w∗-sequentially dense in Y ⊥ (and B∗(Y ⊥) = Y ⊥ if Y ⊥ is

separable).

(h) B∗(E∗) ∩ V = {0}.
We shall prove that the operator T = A + B satisfies the required properties. The

nuclearity of A and B yields that T is nuclear as well. Moreover, because of (a) and (g) we

get, respectively, kerA∗ = Y ⊥ and kerB = Y . From the latter it follows that T (y) = A(y) for

all y ∈ Y , hence, by (a), T (Y ) ⊂ Y and T (Y ) = Y , and property (1) is checked. Analogously,

as kerA∗ = Y ⊥, using (g) we deduce that T ∗(Y ⊥) = B∗(Y ⊥) ⊂ Y ⊥ and T ∗(Y ⊥) = B∗(Y ⊥)

is w∗-sequentially dense in Y ⊥, thus (2) is also fulfilled.

Before proving that T is one-to-one and dense-range, let us check that

(4.4) T−1(Y ) ⊂ Y

and

(4.5) (T ∗)−1(Y ⊥) ⊂ Y ⊥.

Firstly, if x ∈ T−1(Y ) then, by (a), B(x) ∈ Y . Therefore, for all f ∈ Y ⊥ we have

0 = f(B(x)) = B∗(f)(x). So, x ∈ [B∗(Y ⊥)]⊥, and bearing in mind that B∗(Y ⊥)
w∗

= Y ⊥ we

get x ∈ Y , thus (4.4) is proved. Secondly, if f ∈ (T ∗)−1(Y ⊥), then T ∗(f) ∈ Y ⊥ and because

of (g), A∗(f) ∈ Y ⊥. Now, by (a), A∗(f) = 0. Since kerA∗ = Y ⊥ we get f ∈ Y ⊥ and (4.5) is

also checked.

Now, pick x ∈ E with T (x) = 0. Then, by (4.4), x ∈ T−1(Y ) ⊂ Y , so T (x) = A(x), hence

A(x) = 0, and the injectivity of A yields x = 0. Analogously, if f ∈ E∗ and T ∗(f) = 0, then

f ∈ (T ∗)−1(Y ⊥) ⊂ Y ⊥. As kerA∗ = Y ⊥ we get A∗(f) = 0, and taking into account that,

because of (e), B∗ is injective, we get f = 0. So, T ∗ is injective as well, and consequently,

T (E) = E.

Let us check (3). Choose a vector x ∈ E with T (x) ∈ R. Then B(x) = −A(x) + T (x) ∈
A(E) +R. Thus, by (f), B(x) = 0, that is, x ∈ kerB = Y and therefore, A(x) = T (x) ∈ R.

A new appeal to (b) yields A(x) = 0, consequently x = 0.

To prove (4), pick f ∈ E∗ such that T ∗(f) ∈ V . Then T ∗(f)|Y ∈ V |Y , and taking into

account that B∗(f) ∈ Y ⊥ we have T ∗(f)|Y = A∗(f)|Y ∈ V |Y . From (d) it follows that
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A∗(f)|Y = 0, thus T ∗(f)|Y = 0, i.e. T ∗(f) ∈ Y ⊥, and thanks to (4.5) we get f ∈ Y ⊥. So,

T ∗(f) = B∗f and hence B∗(f) ∈ V . Using now (h) we obtain B∗(f) = 0, and the inyectivity

of B∗ yields f = 0. Thus, (4) is fulfilled.

Now, since B∗(E∗) ⊂ Y ⊥ we get T ∗(E∗)|Y = A∗|Y . So properties (5) and (6) follow

immediately from (c) and (d).

Let us prove (7). If (E/Y )∗ is separable then (recall property (g)) the operator B can

be constructed so that B∗(Y ⊥) = Y ⊥. Taking into account that kerA∗ = Y ⊥, we get

T ∗(Y ⊥) = B∗(Y ⊥) = Y ⊥. Analogously, if Y ∗ is separable then, by property (c), we may

assume that the operator A satisfies A∗(E∗)|Y = Y ∗, thus T ∗(E∗)|Y = A∗(E∗)|Y = Y ∗.

Finally, if E∗ is separable, then Y ⊥ and Y ∗ are separable as well. Thus, the operator

T can be chosen to satisfy both T ∗(Y ⊥) = Y ⊥ and T ∗(E∗)|Y = Y ∗. Therefore, for any

f ∈ E∗ and any ε > 0 there is g ∈ E∗ such that ‖(f − T ∗(g))|Y ‖ < ε, and bearing in mind

that Y ∗ is isometrically isomorphic to E∗/Y ⊥ and T ∗(Y ⊥) = Y ⊥ we can find h ∈ Y ⊥ with

‖f − T ∗(g)− T ∗(h)‖ < ε. Consequently, T ∗(E∗) = E∗, and property (8) is proved. �

Remark 4.2. Notice that if R is a subset of E of the form R := R1 +R2, where R1 ∈ S(Y )

and R2 ∈ S(E) satisfy R2 ∩ Y = {0}, then R ∩ Y = R1 ∈ S(Y ). Moreover, if Q : E∗ → Y ∗

denotes the restriction map, then for any V1 ∈ S(Y ⊥), any V2 ∈ S(E∗) with V2 ∩ Y ⊥ = {0},
and any W ∈ S(Y ∗), the set

V := V1 + V2 ∩Q−1(W )

satisfies that V ∩ Y ⊥ = V1 ∈ S(Y ⊥) and V |Y = (V2 ∩ Q−1(W ))|Y . Moreover, V ∈ S(E∗).

Indeed, since V1 =
⋃

n V1,n, V2 =
⋃

n V2,n and W =
⋃

nWn with V1,n ∈ R(Y ⊥), V2,n ∈ R(E∗)

and Wn ∈ R(Y ∗) respectively for all n ≥ 1, we get

V =
⋃

k,n,m

(V1,k + V2,n ∩Q−1(Wm)).

So it is enough to check that V ∈ R(E∗) whenever V = V1+V2∩Q−1(W ) for any V1 ∈ R(Y ⊥),

V2 ∈ R(E∗) with V2∩Y ⊥ = {0}, and any W ∈ R(Y ∗). First, it is clear that codim(V ) =∞.

Moreover, as W is an operator range in Y ∗, thanks to [5, Proposition 2.1] we have that W

admits a complete norm ‖ · ‖1 such that ‖y∗‖1 ≥ ‖y∗‖ whenever y∗ ∈ W . It is easy to check

that the formula

||f || = ‖f‖E∗ + ‖Qf‖1, f ∈ Q−1(W )

defines a complete norm on the vector space Q−1(W ). Thus, a new appeal to [5, Proposition

2.1] guarantees that Q−1(W ) is an operator range in E∗. Therefore, V ∈ R(E∗).

We point out that the requirement V |Y ∈ S(Y ∗) in Theorem 4.1 has been used only

to achieve property (6), more precisely, T ∗(E∗)|Y ∩ V |Y = {0}. Thus, if X and Y are

infinite-dimensional quasicomplemented closed subspaces of the separable space E then, as

X ∩ Y = {0} and X⊥ ∩ Y ⊥ = {0}, for any R1 ∈ S(X), R2 ∈ S(Y ), V1 ∈ S(X⊥) and

V2 ∈ S(Y ⊥) there exists a nuclear, one-to-one and dense-range operator T : E → E such

that

T (Y ) = Y, T (E) ∩ (R1 +R2) = {0} and T ∗(E∗) ∩ (V1 + V2) = {0}.
The next result guarantees the existence of an operator T : E → E which, in addition to

these properties, satisfies T (X) = X. Although in contrast with Theorem 4.1, we loss the
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normingness property of T ∗(E∗)|Y over Y . Bearing in mind that, by the classical theorem

of Murray and Mackey [17], every closed subspace of a separable Banach space admits a

quasicomplement, this result provides another extension of [7, Theorem 2.1].

Theorem 4.3. If X and Y are closed infinite-dimensional quasicomplemented subspaces

of a separable Banach space E then, for any R1 ∈ S(X), R2 ∈ S(Y ), V1 ∈ S(X⊥) and

V2 ∈ S(Y ⊥) there exists a nuclear one-to-one dense-range operator T : E → E such that

(1) T (X) and T (Y ) are dense subspaces of X and Y , respectively,

(2) T ∗(X⊥) and T ∗(Y ⊥) are w∗-dense subspaces of X⊥ and Y ⊥, respectively,

(3) T (E) ∩ (R1 +R2) = {0} and T ∗(E∗) ∩ (V1 + V2) = {0}.

Proof. Lemma 2.1, applied separately in the subspaces X and Y , ensures the existence of

minimal sequences {xn}n ⊂ BX and {yn}n ⊂ BY satisfying property (∗) with respect to R1

and R2 respectively, and such that [{xn}n] = X and [{yn}n] = Y . Another use of Lemma

2.1 (in X⊥ and Y ⊥) yields E-minimal sequences {fn}n ⊂ BX⊥ and {gn}n ⊂ BY ⊥ which

enjoy property (∗) with respect to V1 and V2 respectively, and satisfy span {fn}n
w∗

= X⊥

and span {gn}n
w∗

= Y ⊥. It is clear that the formulas

A(u) =
∞∑
n=1

2−ngn(u)xn and B(u) =
∞∑
n=1

2−nfn(u)yn, u ∈ E

define nuclear endomorphisms on E.

We shall show that the operator T = A + B has the specified properties. First, since

A and B are nuclear, so is T . Let us check property (1). The construction of A and

B immediately yields that the subspaces X and Y are T -invariant. Let us prove that

T (X) = X. Because of the E-minimality of {gn}n, there is a sequence {un}n in E such that

{un, gn}n is a biorthogonal system. Thus, for every fixed n ≥ 1 we have

(4.6) A(un) = 2−nxn.

Since the sum X + Y is dense in E, there exist sequences {x̃k}k ⊂ X and {ỹk}k ⊂ Y such

that lim
k
‖un − (x̃k + ỹk)‖ = 0. Bearing in mind that the operator A vanishes on Y , we get

lim
k
‖A(un)−A(x̃k)‖ = lim

k
‖A(un)− T (x̃k)‖ = 0, hence A(un) ∈ T (X), and because of (4.6)

we have xn ∈ T (X) for all n ≥ 1. Taking into account that [{xn}n] = X and T (X) ⊂ X it

follows that T (X) = X. The same argument yields T (Y ) = Y .

Let us check (2). Notice that A∗(f) =
∑

n 2−nf(xn)gn and B∗(f) =
∑

n 2−nf(yn)fn for

all f ∈ E∗. This yields X⊥ and Y ⊥ are T ∗-invariant subspaces of E∗. Moreover, using the

minimality of the sequence {yn}n, arguing as before we obtain fn ∈ T ∗(X⊥) = B∗(X⊥) ⊂ X⊥

for all n ≥ 1. Thus X⊥ = span({fn}n)
w∗

= T ∗(X⊥)
w∗

. Proceeding identically we get

Y ⊥ = T ∗(Y ⊥)
w∗

.

Notice also that property (1) and the denseness of X + Y in E entail that T (E) = E.

Moreover, since X ∩Y = {0} it follows that X⊥+ Y ⊥ is w∗-dense in E∗. This and assertion

(2) imply that T ∗(E∗)
w∗

= E∗, which is equivalent to the injectivity of T .

It remains to check (3). Take u ∈ E such that T (u) ∈ R1+R2. Then A(u)+B(u) = r1+r2
for some r1 ∈ R1 and r2 ∈ R2. Hence A(u) − r1 = r2 − B(u). Since X ∩ Y = {0}, we get
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A(u)− r1 = 0 = r2−B(u). Thus, A(u) = r1 ∈ R1 and B(u) = r2 ∈ R2. As {xn}n and {yn}n
satisfy property (∗) with respect to R1 and R2 respectively, we obtain A(u) = B(u) = 0.

Consequently, T (x) = 0, and so T (E) ∩ (R1 + R2) = {0}. The same argument yields that

T ∗(E∗) ∩ (V1 + V2) = {0}. �

5. Endomorphisms preserving chains of closed subspaces

In this section, we shall refine the previous techniques to give a partial extension of

Theorem 4.1 when the subspace Y ⊂ E is replaced with a countable chain of closed subspaces

{Yn}n of E such that Yn ⊂ Yn+1 for all n ≥ 1. This result provides also a strenghtening

of the result of Chalendar and Partington concerning the existence of a nuclear, one-to-one

and dense range operator endomorphism on E preserving each Yn [7, Theorem 2.2].

We point out that if R ∈ R(E) and A : F → E is any operator from a Banach space

F to E such that R = A(F ) =
⋃

m≥1mA(BF ), then the arguments given in the proof of

Lemma 2.1 yield codimE

(
spanA(BF )

)
=∞, and thus spanA(BF ) ∈ R(E). Let us mention

that the subspace spanA(BF ) is independent of the selection of F and A, and only depends

on R. We omit the proof of this assertion because it is not needed in the proof of the next

theorem. This fact allows us to define the operator range

R+ = spanA(BF ).

Evidently, R ⊂ R+ for every R ∈ R(E). The reverse inclusion is fulfilled for instance in

the following cases:

• If R is a closed infinite-codimensional subspace of E.

• If R is the image of an operator A : F → E defined on a reflexive Banach space F

(in particular if R is an endomorphism range on a reflexive space).

Indeed, in the first case, as R is the image of the identity operator I : R→ R we clearly

have R ∈ R(E) and R+ = R. On the other hand, if there exist a reflexive Banach space F

and an operator T : F → E such that T (F ) = R then, because of the weak compactness

of the ball BF , the set T (BF ) is weakly closed in E, hence T (BF ) = T (BF ), and thus

T (F )+ = T (F ).

Analogously, if R ∈ S(E) we will refer as R+ to any countable union of subspaces Un of

E of the form Un = spanAn(BFn), where Rn = An(Fn) ∈ R(E), Fn is a Banach space and

An : Fn → E is an operator for every n ≥ 1, and R =
⋃

nRn ∈ S(E), i.e. R+ =
⋃

nR
+
n .

Again, the set R+ is independent of the selection of the operator ranges Rn ∈ R(E) satisfying

R =
⋃

nRn, and only depends on R. We also omit the proof of this assertion because we

will not need it.

The main result of this section reads as follows.

Theorem 5.1. Let E be a separable Banach space, let {Yn}n be a chain of closed subspaces

of E such that dim(Y1) = dim(Yn+1/Yn) =∞ for all n ≥ 1, let Y =
⋃

n Yn and consider sets

R ∈ S(E) and W ∈ S(E∗) such that:

(a) R+ ∩ Yn ∈ S(Yn) for all n ≥ 1,

(b) W |Y1 ∈ S(Y ∗1 ), and W |Yn ∩ Y ⊥n−1|Yn ∈ S(Y ⊥n−1|Yn) if n ≥ 2.

(c) In the case that E/Y is infinite-dimensional, W ∩ Y ⊥ ∈ S(Y ⊥).
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Then there exists a nuclear and one-to-one operator T : E → E with the following

properties:

(1) T (Yn) = Yn for all n ≥ 1.

(2) T (Y ) = Y .

(3) T (E) = E.

(4) T (E) ∩R = {0}.
(5) T ∗(E∗)|Yn ∩W |Yn = {0} for all n ≥ 1 and T ∗(E∗)|Y ∩W |Y = {0}.
(6) If dim(E/Y ) =∞ then T ∗(E∗) ∩W = {0}.
(7) T ∗(Y ⊥) is a w∗-sequentially dense subspace of Y ⊥, and T ∗(Y ⊥) = Y ⊥ whenever Y ⊥

is separable.

(8) If Y ∗n is separable for some n ≥ 1 then T ∗(E∗)|Yn = Y ∗n .

(9) If Y ∗ is separable then T ∗(E∗)|Y = Y ∗.

(10) If E∗ is separable then T ∗(E∗) = E∗.

If condition (a) is replaced with the weaker condition (a’): “R ∩ Yn ∈ S(Yn) for all

n ≥ 1”, then all assertions (1)-(10) remain true with the exception of (4), which becomes:

(4’) T (Yn) ∩R = {0} for all n and T (E \ Y ) ∩R = {0}.

In order to prove Theorem 5.1 we will need the following lemmas.

Lemma 5.2. Let {Vm}m be a sequence of symmetric closed convex and bounded sets in

a Banach space E and {Kj}j ⊂ BE be a sequence of symmetric compact and convex sets

satisfying

(
⋃
m

span(Vm)) ∩ (
n∑

j=1

Kj) = {0}

for all n ≥ 1. Then, there exist constants 0 < γj ≤ 1 such that
∑

j≥1 γj <∞ and

(
⋃
m

spanVm) ∩ span (
∞∑
j=1

γjKj) = {0}.

Proof. We may assume that K1 6= {0} and Vm ⊂ 1
m
BE for all m ≥ 1, so

⋃
m Vm is closed

(and symmetric). Denote t0 = max{‖v‖ : v ∈ K1} > 0. For each n ≥ 1 we consider the

function rn : (0, t0]→ [0,∞) defined as

rn(t) = inf

{
‖x− y‖ : x ∈ (K1 + · · ·+Kn) ∩ tSE, y ∈

⋃
m

Vm

}
, 0 < t ≤ t0.

If x ∈ (K1 + · · · + Kn) ∩ tSE for some 0 < t ≤ t0 then, by the hypothesis, x 6∈
⋃

m Vm,

and since
⋃

m Vm is closed we get dist(x,
⋃

m Vm) = inf{‖x − y‖ : y ∈
⋃

m Vm} > 0. As

(K1 + · · · + Kn) ∩ tSE is compact we derive that rn(t) > 0 for each 0 < t ≤ t0. Also, since

{K1 + · · · + Kn}∞n=1 is an increasing sequence of symmetric compact and convex sets, we

have that rn+1(t) ≤ rn(t) for all n ≥ 1 and all 0 < t ≤ t0.

We claim that the function rn is strictly increasing. Indeed, take 0 < t < t′ ≤ t0. For

every x ∈ (K1 + · · ·+Kn) ∩ t′SE and every y ∈
⋃

m Vm we have

t

t′
x ∈ [

t

t′
(K1 + · · ·+Kn)] ∩ tSE ⊂ (K1 + · · ·+Kn) ∩ tSE
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and t
t′
y ∈ t

t′
(
⋃

m Vm) ⊂
⋃

m Vm. Therefore,

‖x− y‖ =
t′

t

∥∥∥∥ tt′x− t

t′
y

∥∥∥∥ ≥ t′

t
rn(t),

and consequently, rn(t′) ≥ t′

t
rn(t) > rn(t).

Now, let us fix the smallest natural number n0 such that 1
n0
< t0, and define

γj = 3−jt0 if 1 ≤ j ≤ n0 and γj = 2−jrj(
1

j
) for j > n0.

Notice that, for every j > n0, rj(
1
j
) ≤ ‖vj − 0‖ ≤ 1

j
, being vj any point in K1 ∩ 1

j
SE, and

thus
∑

j≥1 γj ≤
∑n0

j=1 γj +
∑∞

j=n0+1 2−j 1
j
< t0. Moreover, for every n ≥ n0 we have

∞∑
j=n+1

γj =
∞∑

j=n+1

2−jrj(
1

j
) ≤

∞∑
j=n+1

2−jrn(
1

j
) ≤

∞∑
j=n+1

2−jrn(
1

n
) = 2−nrn(

1

n
).

Now, we shall prove that

(5.7) (
∑
j≥1

γjKj) ∩ (
⋃
m≥1

Vm) = {0}.

Suppose that z 6= 0 and z ∈
∑

j γjKj. So there are points kj ∈ Kj such that z =
∑

j γjkj.

Now, let us fix a natural number n ≥ n0 such that ‖
∑n

j=1 γjkj‖ ≥
1
n
. Notice that

‖
∑n

j=1 γjkj‖ ≤
∑n

j=1 γj‖kj‖ ≤
∑n

j=1 γj < t0 and
∑n

j=1 γjkj ∈ K1 + · · · + Kn. Thus, for

every y ∈
⋃

m Vm we have

‖z − y‖ ≥

∥∥∥∥∥
n∑

j=1

γjkj − y

∥∥∥∥∥−
∥∥∥∥∥
∞∑

j=n+1

γjkj

∥∥∥∥∥ ≥
≥ rn

(
‖

n∑
j=1

γjkj‖

)
−

∞∑
j=n+1

γj‖kj‖ ≥ rn

(
‖

n∑
j=1

γjkj‖

)
−

∞∑
j=n+1

γj ≥

≥ rn(
1

n
)− 2−nrn(

1

n
).

Therefore, ‖z − y‖ ≥ rn( 1
n
)− 2−nrn( 1

n
) > 0 for all y ∈

⋃
m Vm and derive that z 6∈

⋃
m Vm.

To finish, pick z ∈ span(
∑

j γjKj)∩ (
⋃

m span(Vm)) = (
⋃

p∈N p
∑

j γjKj)∩ (
⋃

m,s∈N sVm).

Then, there are natural numbers p0, s0 and m0 such that z ∈ (p0
∑

j Kj) ∩ (s0 Vm0). Thus

z

p0s0
∈ (

1

s0

∑
j≥1

γjKj) ∩
1

p0
Vm0 ⊂ (

∑
j≥1

γjKj) ∩ Vm0 = {0},

and thanks to (5.7) we get z = 0. �

By iterating Lemma 5.2 we can derive the next one.

Lemma 5.3. Let E be a Banach space and let {Kj}j be a sequence of symmetric compact

and convex sets of BE satisfying Km ∩ (
∑n

j=m+1Kj) = {0} for all m ≥ 1 and all n > m.

Then, there exists a sequence {γj}j≥2 ⊂ (0, 1] such that
∑

j≥2 γj <∞ and

span(Km) ∩ span (
∞∑

j=m+1

γjKj) = {0} for all m ≥ 1.
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Proof. First, we notice that span(K1) ∩ (
∑n

j=2Kj) = {0} for all n ≥ 2. Indeed, if z ∈
span(K1) ∩ (

∑n
j=2Kj) then, since span(K1) =

⋃∞
s=1 sK1, there is a natural number s such

that z ∈ (sK1) ∩ (
∑n

j=2Kj). So, z
s
∈ K1 ∩ (1

s
(
∑n

j=2Kj)) ⊂ K1 ∩ (
∑n

j=2Kj) = {0} and

z = 0. Applying Lemma 5.2, we deduce the existence of a sequence {γ1,j}j≥2 ⊂ (0, 1] such

that
∑

j≥2 γ1,j <∞ and

span(K1) ∩ span(
∑
j≥2

γ1,jKj) = {0}.

The previous argument yields that if n ≥ 3 then span(K2) ∩ (
∑n

j=3Kj) = {0}, and taking

into account that
∑n

j=3 γ1,jKj ⊂
∑n

j=3Kj, we obtain span(K2) ∩ (
∑n

j=3 γ1,jKj) = {0}. A

new appeal to Lemma 5.2 yields a sequence {γ2,j}j≥3 ⊂ (0, 1] such that
∑

j≥3 γ2,j <∞ and

span(K2) ∩ span(
∑
j≥3

γ2,jγ1,jKj) = {0}.

We proceed inductively. In them-th step, since span(Km) ∩ (
n∑

j=m+1

γm−1,j · . . . · γ1,jKj) = {0}

for all n ≥ m+ 1, we can apply Lemma 5.2 to get a sequence {γm,j}j≥m+1 ⊂ (0, 1] such that∑
j≥m+1 γm,j <∞ and

span(Km) ∩ span(
∑

j≥m+1

γm,j · . . . · γ1,jKj) = {0}.

Finally, let us define, for each j ≥ 2, γj := γj−1,j · . . . · γ1,j. Clearly,
∑

j≥2 γj <∞. If m ≥ 1

then for each j > m ≥ 1 we have γj ≤ γm,j · · · γ1,j and thus,

span(Km) ∩ span(
∞∑

j=m+1

γjKj) ⊂ span(Km) ∩ (
∞∑

j=m+1

γm,j · · · γ1,jKj) = {0},

as we wanted. �

We are able to prove the main result of this section.

Proof of Theorem 5.1. The operator T : E → E will be sum of a norm-convergent series

of nuclear endomorphisms on E. The construction of these endomorphisms relies mainly on

the next statement.

Claim. For each n ≥ 1 there exist a minimal sequence {yn,j}j ⊂ BYn and a Yn-minimal

sequence {s∗n,j}j ⊂ BY ⊥n−1
such that, if Kn and K ′n denote the symmetric compact convex

sets

Kn = co({±2−jyn,j}j) ⊂ BYn and K ′n = co({±2−js∗n,j}j) ⊂ BY ⊥n−1
,

and Tn : E → E is the nuclear operator defined by the formula

Tn(x) =
∑
j≥1

4−js∗n,j(x)yn,j, x ∈ E,

then the following properties hold:

(an) span (Kn) ∩
(
R+ + span

(∑n−1
i=0 Ki

))
= {0}, where K0 = {0}.

(bn) span (K ′n|Yn) ∩
(
W |Yn + span

(∑n−1
i=0 K

′
i|Yn

))
= {0}, where K ′0 = {0}.
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(cn) Tn(Yn) = Yn and kerTn = Yn−1, where Y0 = {0}.
(dn) If (Yn/Yn−1)

∗ is separable then T ∗n(Y ⊥n−1)|Yn = Y ⊥n−1|Yn .

Moreover:

(?) If Y ∗ is separable and q : E∗ → Y ∗ denotes the restriction map, then the operator

(q ◦ T ∗1 )∗ : Y ∗∗ → E∗∗ is one-to-one.

(??) If E∗ is separable, then the operator T ∗∗1 : E∗∗ → E∗∗ is one-to-one.

The construction proceeds inductively. Since R+ ∩ Y1 ∈ S(Y1), thanks to Lemma 2.1

(applied in Y1 to any minimal linearly dense sequence {e1,j}j in Y1), there exists a sequence

{y1,j}j ⊂ BY1 such that [{y1,j}j] = Y1 and R+ ∩ span(co ({±y1,j}j)) = {0}. From the latter

we get

R+ ∩ span
(
co({±2−jy1,j}j

)
) = {0},

and property (a1) is satisfied.

Another appeal to Lemma 2.1 (applied in Y ∗1 , to any total Y1-minimal sequence {e∗1,j}j ⊂
Y ∗1 ) gurantees the existence of a total and Y1-minimal sequence {v∗1,j}j ⊂ Y ∗1 such that

W |Y1 ∩ span(co({±v∗1,j}j)) = {0}, in particular

W |Y1 ∩ span(co({±2−jv∗1,j}j)) = {0}.

Moreover, if Y ∗1 is separable the sequence {e∗1,j}j can be chosen so that [{e∗1,j}j] = Y ∗1 , thus

[{v∗1,j}j] = Y ∗1 .

Using now [20, Theorem 2], we obtain a sequence {g1,j}j ⊂ E∗ which is total over E and

satisfies g1,j|Y1 = v∗1,j for all j ≥ 1. Let us write, for each j ≥ 1,

s∗1,j = (1 + ‖g1,j‖)−1g1,j.

Then {s∗1,j}j is a Y1-minimal sequence in BE∗ that is total over E and satisfies

W |Y1 ∩ span
(
co({±2−js∗1,j|Y1}j)

)
⊂ W |Y1 ∩ span

(
co({±2−jv∗1,j}j)

)
= {0},

thus (b1) is also fulfilled. Properties (c1) and (d1) can be achieved as in the proof of Theorem

3.3. Indeed, since {s∗1,j}j is Y1-minimal and [{y1,j}j] = Y1 we get T1(Y1) = Y1. Furthermore,

the minimality of {y1,j}j and the fact that {s∗1,j}j is total over E entail that kerT1 = {0},
and (c1) is proved. Moreover, if Y ∗1 is separable, the sequence {v∗1,j}j satisfies [{v∗1,j}j] = Y ∗1 ,

and so [{s∗1,j|Y1}j] = Y ∗1 . In addition, by the minimality of {y1,j}j we have {s∗1,j}j ⊂ T ∗1 (E∗),

and thus T ∗1 (E∗)|Y1 = [{s∗1,j|Y1}j] = Y ∗1 .

Let us check (?). First, we observe that if Y ∗ is separable, the sequence {s∗1,j}j can be

chosen so that (apart of being total over E) satisfies

(5.8) [{s∗1,j|Y }j] = Y ∗

Indeed, according to Lemma 3.6, there is a sequence {h1,j}j ⊂ Y ∗ such that [{h1,j}j] = Y ∗

and h1,j|Y = v∗1,j for all j ≥ 1. Thus, an appeal to [20, Theorem 2] yields a sequence

{g1,j}j ⊂ E∗ which is total over E and satisfies g1,j|Y = h1,j (and hence g1,j|Y1 = v∗1,j) for

all j ≥ 1. Therefore, the functionals s∗1,j = (1 + ‖g1,j‖)−1g1,j ⊂ BE∗ constitute a sequence

satisfying (5.8).
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Next, take y∗∗ ∈ Y ∗∗. For each f ∈ E∗ we have

〈(q ◦ T ∗1 )∗ (y∗∗), f〉 =
∑
j≥1

4−jf(y1,j) y
∗∗ (s∗1,j|Y ) ,

hence

(q ◦ T ∗1 )∗ (y∗∗) =
∑
j≥1

4−jy∗∗
(
s∗1,j|Y

)
y1,j,

where each y1,j is identified with a functional in E∗∗ via the canonical map E → E∗∗. Thus,

if (q ◦ T ∗1 )∗(y∗∗) = 0 then, thanks to the minimality of {y1,j}j we obtain y∗∗
(
s∗1,j|Y

)
= 0 for

all j ≥ 1. Taking into account (5.8) we get y∗∗ = 0, and assertion (?) is proved. The proof

of property (??) follows in the same way.

Now, fix n > 1 and assume that for each 1 ≤ i ≤ n−1 there exist sequences {yi,j}j ⊂ BYi

and {s∗i,j}j ⊂ BY ⊥i−1
satisfying the specified properties. An appeal to Lemma 3.6 (with Yn

instead of E and Z = Y ⊥n−1|Yn ⊂ Y ∗n ) ensures the existence of sequences {wn,j}j ⊂ Yn
and {w∗n,j}j ⊂ Y ⊥n−1|Yn such that {wn,j, w

∗
n,j}j is a biorthogonal system, [{wn,j}j] = Yn and

span {w∗n,j}j is w∗-sequentially dense in Y ⊥n−1|Yn . Moreover, in the case that (Yn/Yn−1)
∗ is

separable, [{w∗n,j}j] = Y ⊥n−1|Yn .

Since
∑n−1

i=1 Ki is a symmetric compact and convex subset of Yn−1 and R+ ∩ Yn ∈ S(Yn),

according to [13, Lemma 3.3] we have

span (
n−1∑
i=1

Ki) + (R+ ∩ Yn) ∈ S(Yn).

Notice that {wn,j}j is a Y ⊥n−1-minimal sequence in E. Therefore, by Lemma 2.1 (applied to

that sequence and the subspaces Yn ⊂ E and Y ⊥n−1 ⊂ E∗), there is a Y ⊥n−1-minimal sequence

{yn,j}j ⊂ BYn such that [{yn,j}j] = Yn and(
R+ + span (

n−1∑
i=1

Ki)

)
∩ span (co({±yn,j}j)) = 0.

The latter clearly implies (an).

Now, bearing in mind that W |Yn ∈ S(Y ⊥n−1|Yn), a new appeal to Lemma 2.1 (applied to the

Yn-minimal sequence {w∗n,j}j ⊂ Y ⊥n−1|Yn) yields a Yn-minimal sequence {v∗n,j}j ⊂ Y ⊥n−1|Yn such

that span({v∗n,j}j) is w∗-sequentially dense in Y ⊥n−1|Yn and W |Yn ∩ span (co({±v∗n,j}j)) = {0}.
In particular,

(5.9) W |Yn ∩ span (co({±2−jv∗n,j}j)) = 0.

Moreover, if (Yn/Yn−1)
∗ is separable we can assume that [{v∗n,j}j] = Y ⊥n−1|Yn .

Let {s∗n,j}j be a sequence in E∗ such that s∗n,j|Yn = v∗n,j and ‖s∗n,j‖ = ‖v∗n,j‖ for all

j ≥ 1. We shall show that the set K ′n = co({±2−js∗n,j}j) satisfies (bn). Pick w ∈ W and

z ∈ span (
∑n−1

i=1 K
′
i) such that

(5.10) (w + z)|Yn ∈ span (K ′n|Yn).

Take functionals z1 ∈ K ′1, . . . , zn−1 ∈ K ′n−1 and scalars a1, . . . , an−1 such that z =
∑n−1

i=1 aizi.

Firstly, we shall prove that z = 0. We can assume that ai 6= 0 for each 1 ≤ i ≤ n− 1. Since

K ′i ⊂ Y ⊥i−1 for each 2 ≤ i ≤ n− 1, it follows that
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z|Y1 = a1z1|Y1 , z|Y2 = a1z1|Y2 + a2z2|Y2 , . . . , z|Yn−1 =
n−1∑
i=1

aizi|Yn−1 .

On the other hand, from (5.10) we get (w + z)|Y1 = 0, thus z|Y1 = −w|Y1 ∈ W |Y1 .

Since, by the inductive hypothesis, span
(
K ′1|Y1

)
∩W |Y1 = {0} we have z|Y1 = 0, therefore

z1|Y1 = 0. Moreover, as limj 2−js∗1,j = 0 we can find scalars λj such that
∑

j≥1 |λj| ≤ 1 and

z1 =
∑

j≥1 λj2
−js∗1,j (see e.g. [10, Exercise 3.86]). Consequently∑

j≥1

λj2
−js∗1,j|Y1 = z1|Y1 = 0.

Since {s∗1,j|Y1}j is a Y1-minimal sequence in Y ∗1 it follows that λj = 0 for all j ≥ 1, so z1 = 0,

and hence z =
∑n−1

i=2 aizi. Iterating this process we obtain zi = 0 for each 1 ≤ i ≤ n − 1,

and thus z = 0. From this and (5.10) we get

w|Yn ∈ span
(
K ′n|Yn

)
∩W |Yn = span

(
co({±2−jv∗n,j}j)

)
∩W |Yn ,

and thanks to (5.9) we have w|Yn = 0. Hence (w + z)|Yn = 0, as we wanted.

It remains to show that the operator Tn : E → E satisfies (cn) and (dn). This follows

as in the proof of Theorem 3.5. Since {s∗n,j}j is Yn-minimal and {yn,j}j is Y ⊥n−1-minimal we

obtain respectively yn,j ∈ Tn(Yn) and s∗n,j ∈ T ∗n(Y ⊥n−1) for all j ≥ 1, hence

span({yn,j}j) ⊂ Tn(Yn) and span({v∗n,j}j) = span({s∗n,j|Yn−1}j) ⊂ T ∗n(Y ⊥n )|Yn−1 .

As [{yn,j}j] = Yn and span({v∗n,j}j) is w∗-sequentially dense in Y ⊥n−1|Yn we deduce that

Tn(Yn) = Yn and T ∗n(Y ⊥n−1|Yn) is w∗-sequentially dense (and hence w∗-dense) in Y ⊥n−1|Yn . The

latter yields kerTn = Yn−1. Finally, if (Yn/Yn−1)
∗ is separable then [{s∗n,j|Yn}j] = [{v∗n,j}j] =

Y ⊥n−1|Yn , thus T ∗n(Y ⊥n−1|Yn) = Y ⊥n−1|Yn , and the claim is proved.

Notice that if n ≥ 1 then

Tn(x) =
∑
j≥1

4−js∗n,j(x)yn,j =
∑
j≥1

2−js∗n,j(x)(2−jyn,j) ∈ ‖x‖Kn for all x ∈ E

and

T ∗n(f) =
∑
j≥1

2−jf(yn,j)(2
−js∗n,j) ∈ ‖f‖K ′n for all f ∈ E∗.

On the other hand, according to property (an) we get

R+ ∩ (
n∑

i=1

Ki) = {0} for all n ≥ 1 and Km ∩ (
n∑

i=m+1

Ki) = {0} for all n > m ≥ 1.

Thus, taking into account that R+ is the union of a sequence of symmetric closed convex

and bounded sets, the first equality and Lemma 5.2 ensure the existence of a sequence

{γn}n≥1 ⊂ (0, 1] such that
∑

n≥1 γn <∞ and

(5.11) R+ ∩ span (
∑
n≥1

γnKn) = {0}.



24 MAR JIMÉNEZ-SEVILLA AND SEBASTIÁN LAJARA

Analogously, Lemma 5.3 yields a sequence {γ′n}n≥2 ⊂ (0, 1] such that
∑

n≥2 γ
′
n <∞ and

(5.12) span(Kn) ∩ span (
∑

i≥n+1

γ′iKi) = {0} for all n ≥ 1.

Before performing the endomorphism T , we need to build one more symmetric compact

convex set Kω ⊂ BE and one more nuclear endomorphism Tω : E → E with the following

properties:

(aω)
(
R+ + span (

∑
n≥1 γnKn)

)
∩ span (Kω) = {0}.

(bω) Tω(E) + Y is dense in E and Tω(x) ∈ ‖x‖Kω for all x ∈ E.

(cω) T ∗ω(Y ⊥) is a w∗-sequentially dense subspace of Y ⊥ (hence kerTω = Y ), and if Y ⊥ is

separable, T ∗ω(Y ⊥) = Y ⊥.

(dω) If dim(E/Y ) =∞ then T ∗ω(E∗) ∩W = {0}.

To prove this assertion we assume first that dim(E/Y ) = ∞. As
∑

n≥1 γnKn is a sym-

metric compact convex subset of Y and R+ ∩ Y ∈ S(Y ), thanks to [13, Lemma 3.3] we

have R+ + span (
∑

n≥1 αnKn) ∈ S(Y ). Thus, proceeding as in the proof of the claim (with

n ≥ 2) we obtain a minimal sequence {xj}j ⊂ BE such that [{xj}j] = E and the set

Kω = co({±2−jxj}j) satisfies (aω). As in addition, W ∩ Y ⊥ ∈ S(Y ⊥), we can find an E-

minimal sequence {s∗j}j ⊂ BY ⊥ such that span({s∗j}j) is w∗-sequentially dense in Y ⊥ and

W ∩ span (co{±2−js∗j}j) = {0}. Arguing as before we deduce that the operator Tω : E → E

defined for each x ∈ E as

Tω(x) =
∑
j≥1

4−js∗j(x)xj

satisfies (bω), (cω) and (dω).

On the other hand, if dim(E/Y ) = d < ∞ there exist linearly independent vectors

u1, . . . , ud ∈ E such that Y + span ({uj}dj=1) = E. Lemma 2.1 (applied to any minimal

sequence in E containing {uj}dj=1) yields another linearly independent set {x1, . . . , xd} ⊂ BE

such that
(
R+ + span (

∑
n≥1 γnKn)

)
∩ span ({xj}dj=1) = {0} and Y + span ({xj}dj=1) = E. In

particular, the set Kω = co ({±xj}dj=1) accomplishes (aω). Moreover, if {s∗1, . . . , s∗d} is any

basis of Y ⊥ then the operator

Tω(x) =
d∑

j=1

2−js∗j(x)xj, x ∈ E

clearly satisfies (bω) and (cω), and the assertion is proved.

Now, we are able to construct the operator T . Let us write α1 = γ1 and αn = γnγ
′
n if

n > 1, where {γn}n≥1 and {γ′n}n≥2 are the sequences in (0, 1] coming from equalities (5.11)

and (5.12). Taking into account that {yn,j}j ⊂ BYn and {s∗n,j}j ⊂ BE∗ for each n ≥ 1, and∑
n≥1 αn <∞, the formula

T (x) = Tω(x) +
∑
n≥1

αnTn(x) = Tω(x) +
∑
n≥1

∑
j≥1

αn4−js∗n,j(x)yn,j, x ∈ E
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defines a nuclear endomorphism on E. Moreover, if a vector x ∈ E satisfies T (x) = 0, then

Tω(x) = −
∑

n≥1 αnTn(x). Thus,

Tω(x) ∈ span (Kω) ∩ span
(∑
n≥1

αnKn

)
⊂ span (Kω) ∩ span

(∑
n≥1

γnKn

)
,

and thanks to property (aω) we get Tω(x) = 0. Consequently
∑

n≥1 αnTn(x) = 0, thus

α1T1(x) = −
∑

n≥1 αnTn(x), and hence

T1(x) ∈ span(K1) ∩ span
(∑
n≥2

αnKn

)
⊂ span(K1) ∩ span

(∑
n≥2

γ′nKn

)
.

Using (5.12) we obtain T1(x) = 0, and taking into account that kerT1 = {0} we get x = 0,

therefore T is injective.

Next, we shall prove properties (1)− (10).

(1) Fix n ≥ 1. Since kerTk = Yk−1 ⊃ Yn whenever k > n and kerTω = Y ⊃ Yn, we have

T (y) =
n∑

k=1

αkTk(y) for each y ∈ Yn,

and bearing in mind that Tk(E) ⊂ Yn for k ≤ n we obtain T (Yn) ⊂
∑n

k=1 Tk(Yn) ⊂ Yn.

To show that T (Yn) = Yn we proceed inductively. As Y1 = T1(Y1) and T (Y1) = T1(Y1)

we get Y1 = T (Y1), and the assertion is proved if n = 1. Now, assume that T (Yn−1) = Yn−1
for some n > 1. We only need to check that Yn ⊂ T (Yn). For every y ∈ Yn we have

αnTn(y) = T (y)−
∑n−1

k=1 αkTk(y), therefore

Tn(Yn) ⊂ T (Yn) +
n−1∑
k=1

Tk(Yn) ⊂ T (Yn) + Yn−1 = T (Yn) + T (Yn−1) ⊂ T (Yn),

and taking into account that Tn(Yn) = Yn we obtain Yn ⊂ T (Yn).

(2) Since kerTω = Y we have T (y) =
∑

n≥1 αnTn(y) whenever y ∈ Y , and bearing in

mind that Tn(E) ⊂ Yn ⊂ Y for all n ≥ 1 we get T (Y ) ⊂ Y . On the other hand, as by

property (1), Yn = T (Yn) ⊂ T (Y ) for all n ≥ 1, it follows that Y ⊂ T (Y ), so T (Y ) = Y .

(3) For each x ∈ E we have

Tω(x) = T (x)−
∑
n≥1

αnTn(x) ∈ T (E) + T (E) = T (E),

consequently Tω(E) ⊂ T (E). As by the previous property, T (Y ) = Y , we get

Tω(E) + Y ⊂ T (E) + T (Y ) = T (E),

and taking into account that Tω(E) + Y is dense in E we obtain E ⊂ T (E).

(4) Pick x ∈ E such that T (x) ∈ R+. Then

Tω(x) = T (x)−
∑
n≥1

αnTn(x) ∈ R+ + span
(∑
n≥1

αnKn

)
.
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Thus

Tω(x) ∈ span (Kω) ∩
(
R+ + span

(∑
n≥1

αnKn

))
,

therefore Tω(x) = 0, that is, T (x) =
∑

n≥1 αnTn(x). Hence T (x) ∈ ‖x‖
∑

n≥1 γnKn, so

T (x) ∈ R+ ∩ span
(∑

n≥1 γnKn

)
, and hence T (x) = 0.

(5) Since kerTk ⊃ Yn whenever k > n ≥ 1 and kerTω = Y , we have

T ∗(f)|Yn =
n∑

k=1

αkT
∗
k (f)|Yn for all n ≥ 1 and f ∈ E∗.

Thus, if a functional f ∈ E∗ satisfies T ∗(f)|Y1 ∈ W |Y1 then T ∗1 (f)|Y1 ∈ W |Y1 , therefore

T ∗1 (f)|Y1 ∈ W |Y1 ∩ span(K ′1|Y1), and hence T ∗1 (f)|Y1 = 0.

Now, fix n ≥ 2 and choose f ∈ E∗ such that T ∗(f)|Yn ∈ W |Yn . Then,

αnT
∗
n(f)|Yn = T ∗(f)|Yn−

n−1∑
j=1

αjT
∗
j (f)|Yn ∈ span

(
K ′n|Yn

)
∩

(
W |Yn + span

(n−1∑
i=1

K ′i|Yn

))
= {0},

that is, T ∗n(f)|Yn = 0, hence f |Tn(Yn) = 0, and therefore f |Tn(Yn)
= 0. Since Tn(Yn) = T (Yn)

it follows that f |T (Yn) = 0, that is, T ∗f |Yn = 0. Consequently T ∗(E∗)|Yn ∩W |Yn = 0.

It remains to check that T ∗(E∗)|Y ∩ W |Y = 0. Choose f ∈ E∗ with T ∗(f)|Y ∈ W |Y .

Then, for each n ≥ 1 we have T ∗(f)|Yn ∈ W |Yn , and hence T ∗(f)|Yn = 0. Since
⋃

n Yn is

dense in Y it follows that T ∗(f)|Y = 0.

(6) Firstly, we observe that if f ∈ Y ⊥ then T ∗n(f)|Yn = 0 for all n ≥ 1, and therefore

T ∗(f) = T ∗ω(f). So T ∗(Y ⊥) = T ∗ω(Y ⊥). Now, suppose that the space E/Y is infinite-

dimensional, and take f ∈ E∗ such that T ∗(f) ∈ W . Then T ∗(f)|Y ∈ W |Y for each n ≥ 1,

and because of the previous property we get T ∗(f)|Y = 0. Hence f |T (Y ) = 0, so (by (2))

f |Y = 0, consequently T ∗(f) = T ∗ω(f) ∈ T ∗ω(E∗), and bearing in mind that T ∗ω(E∗)∩W = {0}
we get T ∗(f) = 0.

(7) Since T ∗(Y ⊥) = T ∗ω(Y ⊥), this assertion is an immediate consequence of property (cω).

(8) We proceed inductively. If Y ∗1 is separable then T ∗1 (E∗)|Y1 = Y ∗1 , and bearing in mind

that T ∗(E∗)|Y1 = T ∗1 (E∗)|Y1 we get T ∗(E∗)|Y1 = Y ∗1 .

Now, suppose that Y ∗n is separable for some n ≥ 2, and assume that T ∗(E∗)|Yn−1 = Y ∗n−1.

Fix a functional u∗ ∈ Y ∗n and pick ε > 0. By the inductive hypothesis, there is v∗ ∈ E∗

satisfying ‖u∗|Yn−1 − T ∗(v∗)|Yn−1‖ < ε. Since Y ∗n−1 isometrically identifies with the quotient

space Y ∗n /(Y
⊥
n−1|Yn), from the latter inequality we deduce the existence of a new functional

w∗ ∈ Y ⊥n−1 such that

(5.13) ‖u∗ − T ∗(v∗)|Yn − w∗|Yn‖ < ε.

On the other hand, as T ∗n(Y ⊥n−1)|Yn = Y ⊥n−1|Yn , there is z∗ ∈ Y ⊥n−1 such that

‖T ∗n(z∗)|Yn − w∗|Yn‖ < ε.



OPERATOR RANGES AND ENDOMORPHISMS WITH A PRESCRIBED BEHAVIOUR 27

Observe that T ∗(z∗)|Yn = αnT
∗
n(z∗)|Yn . Indeed, for each k ≤ n − 1 we have Tk(E) ⊂ Yn−1,

and taking into account that z∗ ∈ Y ⊥n−1 it follows that T ∗k (z∗) = 0. Hence

T ∗(z∗)|Yn =
n−1∑
k=1

αkT
∗
k (z∗)|Yn + αnT

∗
n(z∗)|Yn = αnT

∗
n(z∗)|Yn .

Therefore, ‖α−1n T ∗(z∗)|Yn − w∗|Yn‖ < ε. Combining this inequality with (5.13) we obtain

‖u∗ − T ∗(v∗ + α−1n z∗)|Yn‖ ≤ ‖u∗ − T ∗(v∗)|Yn − w∗|Yn‖+ ‖w∗|Yn − T ∗(α−1n z∗)|Yn‖ < 2ε.

Thus, u∗ ∈ T ∗(E∗)|Yn , and consequently T ∗(E∗)|Yn = Y ∗n .

(9) Assume that Y ∗ is separable, and let q : E∗ → Y ∗ be the restriction map. Then,

according to (?), the operator (q ◦ T ∗1 )∗ : Y ∗∗ → E∗∗ is one-to-one. We shall show that

(q ◦T ∗)∗ : Y ∗∗ → E∗∗ is one-to-one as well. Since T ∗ω(E∗) ⊂ Y ⊥ we have q ◦T ∗ω = 0, therefore

(q ◦ T ∗)∗(y∗∗) =
∑
n≥1

αn(q ◦ T ∗n)∗(y∗∗) for all y∗∗ ∈ Y ∗∗.

Thus, if a functional y∗∗ ∈ Y ∗∗ satisfies (q ◦ T ∗)∗(y∗∗) = 0 then

α1(q ◦ T ∗1 )∗(y∗∗) = −
∑
n≥2

αn(q ◦ T ∗n)∗(y∗∗).

But for each n ≥ 1,

(q ◦ T ∗n)∗(y∗∗) =
∑
j≥1

4−jy∗∗
(
s∗n,j|Yn

)
yn,j

(where the vectors yn,j are identified with elements in E∗∗), hence (q ◦ T ∗n)∗(y∗∗) ∈ ‖y∗∗‖Kn.

Consequently

(q ◦ T ∗1 )∗(y∗∗) ∈ span (K1) ∩ span
(∑
n≥2

αnKn

)
⊂ span (K1) ∩ span

(∑
n≥2

γ′nKn

)
.

So (q ◦ T ∗1 )∗(y∗∗) = 0, and thus y∗∗ = 0. Consequently (q ◦ T ∗)∗ is an injective operator, and

therefore (q ◦ T ∗)(E∗) is a dense subspace of Y ∗, that is, T ∗(E∗)|Y = Y ∗.

(10) The proof of this assertion can be achieved either arguing as in the previous one, by

showing that the operator T ∗∗ : E∗∗ → E∗∗ is one-to-one via property (??), or combining

assertions (7) and (9), since by the separability of E∗, T ∗(Y ⊥) = Y ⊥ and T ∗(E∗)|Y = Y ∗.

Finally, if condition (a) is replaced with the weaker condition (a’): “R ∩ Yn ∈ S(Yn)

for all n ≥ 1”, then every step in the proof holds true with the exception of property

R+ ∩ span (
∑

n≥1 γnKn) = {0} (equality (5.11)), which has been needed only in the proof

of assertion (4). Instead, if (a’) holds, we can achive assertion (4’): “T (Yn) ∩ R = {0} for

all n and T (E \ Y ) ∩ R = {0}”. Indeed, in this case and along the proof, the set R+ is

replaced with R (with the exception of equality (5.11)), and if y ∈ Yn, then Tk(y) = 0 for

k > n and Tω(y) = 0. So T (Yn) ⊂ span(
∑n

k=1 αnKn). Since R ∩ (
∑n

i=1Ki) = {0} we get

that T (Yn) ∩ R = {0} for all n. Also, if z ∈ E \ Y , then T (z) = Tω(z) ∈ spanKω. Since

R ∩Kω = {0}, we get T (z) = 0, which yields T (E \ Y ) = {0}. �
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We end this paper with a pair of examples describing natural situations in which condition

(a) in Theorem 5.1 is fulfilled.

Example 5.4. Let {Yn}n be an increasing sequence of closed subspaces of a separable

Banach space E satisfying the conditions of Theorem 5.1, and set Y0 = {0}. For each n ≥ 1,

consider an arbitrary sequence {Yk,n}k of closed infinite-codimensional subspaces of Yn such

that Yk,n ∩Yn−1 = {0} for all k ≥ 1. As we already mentioned, Yk,n ∈ R(Yn) and Y +
k,n = Yk,n

for every k ≥ 1. Thus, the set R =
⋃

n,k≥1 Yk,n is an element of S(E) satisfying R+ = R and

R ∩ Yn =
⋃

k≥1 Yk,n ∈ S(Yn) for each n ≥ 1.

Example 5.5. Let {Yn}n be an increasing sequence of closed subspaces of a separable

Banach space E satisfying the conditions of Theorem 5.1, and set Y0 = {0}. For each n ≥ 1,

we shall construct a proper dense operator range Rn in Yn such that

Rn ∩ Yn−1 = {0} and R+
n = Rn.

Since Yn−1 ∈ R(Yn), there is a nuclear, one-to-one and dense-range operator An : Yn → Yn
such that An(Yn) ∩ Yn−1 = {0}. On the other hand, as it is well-known, the separability

of E yields a nuclear, one-to-one and dense-range operator Bn : `2 → Yn. Consider the

composition Tn = An ◦Bn : `2 → Yn, and define

Rn = Tn(`2).

Then, Rn is a proper dense operator range in Yn, hence Rn ∈ R(E). Moreover, bearing in

mind that An(Yn)∩ Yn−1 = {0} we get Rn ∩ Yn−1 = {0}. On the other hand, because of the

reflexivity of `2 we have R+
n = Rn for each n ≥ 1. In particular, the set R =

⋃
nRn satisfies

R+ ∩ Yn = Rn ∈ R(Yn) ⊂ S(Yn) for each n ≥ 1.

More in general, if we consider for each n ≥ 1 a sequence of proper and dense operator

ranges {Rk,n}k ⊂ Yn with the previous properties (that is, Rk,n∩Yn−1 = {0} and R+
k,n = Rk,n

for every k ≥ 1), then the set R :=
⋃

n,k≥1Rk,n lies in S(E) and satisfies R+ = R and

R ∩ Yn ∈ S(Yn) for all n ≥ 1.
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Departamento de Matemáticas, Escuela Técnica Superior de Ingenieros Industriales,
Universidad de Castilla-La Mancha, 02071 Albacete, Spain

Email address: sebastian.lajara@uclm.es


