Apellidos, Nombre y Firma:

1. ¿Cual de las siguientes afirmaciones es falsa?

- (a) Si $a, b \in \mathbb{R}$ y a < b, entonces $a^2 < b^2$.
- (b) Si $r, s \in \mathbb{Q}$, entonces $r + s \in \mathbb{Q}$.
- (c) Si $a, b, c \in \mathbb{R}$, a < b, y c < 0, entonces ac > bc.
- (d) $\sqrt{a^2} = |a|$, para todo $a \in \mathbb{R}$.
- (e) Si $a, b, c \in \mathbb{R}$ y a < b, entonces a + c < b + c.

2. El supremo del conjunto $A = (\mathbb{R} \setminus \mathbb{Q}) \cap (0,1)$ es:

- (a) 0
- (b) 1/2
- (c) 1
- (d) No tiene, porque es un conjuntos de números irracionales.
- (e) Cualquier número real mayor o igual que 1.

3. Del conjunto $B = \left\{ \frac{1-x^2}{1+x^2} : x \in \mathbb{R} \right\}$ podemos decir:

- (a) No tienes cotas inferiores, puesto que x recorre todos los números reales.
- (b) No tiene cotas superiores, puesto que x recorre todos los números reales.
- (c) Una cota inferior de B es -2.
- (d) Una cota superior de B es 0.
- (e) ${\cal B}$ tiene ínfimo pero no tiene supremo.

4. El conjunto de los puntos x reales que verifican |2x+1|=1 es:

- (a) $\{0\}$
- (b) $(-\infty, 0]$
- (c) $[0, \infty)$
- (d) $\{-1\}$
- (e) $\{0, -1\}$

5. El conjunto de los puntos x reales que verifican $|x^2 - 1| < 1$ es:

- (a) $(-\sqrt{2}, \sqrt{2}) \setminus \{0\}$
- (b) $(-\infty, \sqrt{2})$
- (c) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
- (d) (0,2)
- (e) $(-\sqrt{2}, \sqrt{2})$

6. Consideremos el número complejo z=1+i. Entonces z^{20} es:

- (a) $2^{20}(1+i)$
- (b) 1 i
- (c) 20(1+i)
- (d) -1
- (e) -2^{10}

- 1. Los argumentos de los números complejos $z \in \mathbb{C}$ que verifican $z^3 = i$ son
 - (a) $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$.
 - (b) π , $\frac{3\pi}{2}$, 2π .
 - (c) $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{9\pi}{6}$.
 - (d) $0, \frac{\pi}{2}, \pi$.
 - (e) No existen números complejos z que verifiquen la ecuación.
- **2.** Del polinomio en \mathbb{C} , $p(z) = z^8 + 2z^6 + z^4 + 3z^2 + 1$ podemos decir:
 - (a) Existen $w_1, ..., w_8 \in \mathbb{C}$ (no necesariamente distintos) tales que $p(z) = (z w_1) \times \cdots \times (z w_8)$.
 - (b) p(i) = p(-i) = 0
 - (c) p(z) > 0 para todo $z \in \mathbb{C}$.
 - (d) p(z) tiene una raiz real (es decir, existe $x \in \mathbb{R}$ tal que p(x) = 0).
 - (e) Ninguna de las anteriores.
- 3. ¿Cual de las siguientes afirmaciones es la correcta definición de $\lim_{x\to a} f(x) = b$?
 - (a) Existe $\varepsilon > 0$ y existe $\delta > 0$ tal que si $0 < |x a| < \delta$, entonces $|f(x) b| < \varepsilon$.
 - (b) Para todo $\delta > 0$ existe $\varepsilon > 0$ tal que si $0 < |x a| < \delta$, entonces $|f(x) b| < \varepsilon$.
 - (c) Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $0 < |x a| < \varepsilon$ entonces $|f(x) b| < \delta$.
 - (d) Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $|f(x) b| < \varepsilon$, entonces $0 < |x a| < \delta$.
 - (e) Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $0 < |x a| < \delta$, entonces $|f(x) b| < \varepsilon$.
- **4.** Considera la función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x & \text{si } x \neq 1 \\ -1 & \text{si } x = 1 \end{cases}$. Indica la afirmación correcta:
 - (a) No existe el $\lim_{x\to 1} f(x)$.
 - (b) Para todo $\varepsilon > 0$ existe $\delta := \varepsilon > 0$ tal que si $0 < |x-1| < \delta$ entonces $|f(x)-1| < \varepsilon$.
 - (c) $\lim_{x\to 1^+} f(x) \neq \lim_{x\to 1^-} f(x)$.
 - (d) $\lim_{x\to 1} f(x) = -1$
 - (e) Ninguna de las anteriores.
- 5. El conjunto de puntos $x \in \mathbb{R}$ que verifican ||x-1|+1|=2 es
 - (a) $\{0, 2\}$
 - (b) $\{2\}$
 - (c) $\{-2, 0, 2, 4\}$
 - (d) $\{-2,2\}$
 - (e) No existe ningún número real que verifique la ecuación.
- **6.** Del conjunto $A = \{x \in \mathbb{R} : \frac{(x+2)(x-1)}{x+1} > 0\}$ podemos decir que:
 - (a) Tiene mínimo y no tiene máximo.
 - (b) No tiene mínimo y tiene máximo.
 - (c) No tiene ni ínfimo ni supremo.
 - (d) Tiene ínfimo y no tiene supremo.
 - (e) Tiene ínfimo y supremo.

- 1. De la función $f(x) = \begin{cases} x^2, & \text{si } x \ge 0 \\ 1 x^2, & \text{si } x < 0 \end{cases}$ podemos decir:
 - (a) f es continua en 0.
 - (b) Existe el $\lim_{x\to 0} f(x)$.
 - (c) f es continua por la izquierda en 0.
 - (d) Existe $\varepsilon > 0$ tal que para todo $\delta > 0$ existe un punto $x \in \mathbb{R}$, $0 < |x| < \delta$, con $|f(x)| \ge \varepsilon$.
 - (e) Ninguna de las anteriores.
- 2. Considera la función f(x) = |x-1| + |x|. Indica la afirmación correcta:
 - (a) $f(x) \ge 1$ para todo $x \in \mathbb{R}$.
 - (b) f no está acotada en [0,1]; es decir el conjunto $\{f(x):x\in[0,1]\}$ no está acotado en \mathbb{R} .
 - (c) f no es continua ni en x = 0 ni en x = 1.
 - (d) Existe $\varepsilon > 0$ tal que para todo $n \in \mathbb{N}$ existe x_n verificando $0 < |x_n| < \frac{1}{n}$ y $|f(x_n) 1| > \varepsilon$.
 - (e) Niguna de las anteriores.
- 3. ¿Cual de las siguientes afirmaciones es la correcta definición de continuidad de f(x) en el punto a?
 - (a) Existe $\varepsilon > 0$ y existe $\delta > 0$ tal que si $|x a| < \delta$, entonces $|f(x) f(a)| < \varepsilon$.
 - (b) Para todo $\delta > 0$ existe $\varepsilon > 0$ tal que si $|x a| < \delta$, entonces $|f(x) f(a)| < \varepsilon$.
 - (c) Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $|x a| < \varepsilon$ entonces $|f(x) f(a)| < \delta$.
 - (d) Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $|f(x) f(a)| < \varepsilon$, entonces $|x a| < \delta$.
 - (e) Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $|x a| < \delta$, entonces $|f(x) f(a)| < \varepsilon$.
- 4. Considera la función $f(x) = e^{\cos x} \sin x$. Indica la afirmación correcta.
 - (a) $\lim_{x\to\infty} f(x) = \infty$.
 - (b) Existe $c \in (0, \frac{\pi}{2})$ tal que $e^{\cos c} \sin c = \frac{1}{2}$.
 - (c) f no es continua en x = 0.
 - (d) $\lim_{x\to-\infty} f(x) = 0$.
 - (e) Ninguna de las anteriores.
- 5. El conjunto de puntos $x \in \mathbb{R}$ que verifican $\left| \frac{x-1}{2x-1} 1 \right| < 1$ es
 - (a) (0,2)
 - (b) $(-\infty, \frac{1}{3})$.
 - (c) $(1, \infty)$.
 - (d) $(-\infty, \frac{1}{3}) \cup (1, \infty)$.
 - (e) No existe ningún número real que verifique la ecuación.
- **6.** De la función $f(x) = \begin{cases} \frac{1}{x^3}, & x > 0 \\ x^2, & x \le 0 \end{cases}$ podemos decir:
 - (a) Existe el $\lim_{x\to 0} f(x)$.
 - (b) f es continua en 0.
 - (c) Para todo M > 0 existe $\delta > 0$ tal que si $0 < x < \delta$ entonces f(x) > M.
 - (d) Para todo M > 0 existe $\delta > 0$ tal que si $0 < |x| < \delta$ entonces f(x) > M.
 - (e) Ninguna de las anteriores.

- 1. Considera la función f(x) = |x 5|. Señala la afirmación correcta.
 - (a) f no es continua en x = 5.
 - (b) No existe el $\lim_{x\to 5^+} f'(x)$.
 - (c) No existe el $\lim_{x\to 5^-} f'(x)$.
 - (d) Existe el $\lim_{x\to 5} f'(x)$.
 - (e) f no es derivable en x = 5.
- **2.** Considera la función definida en \mathbb{R} , $f(x) = \begin{cases} x^2 3, & x \ge 1 \\ \frac{1}{x-1}, & x < 1. \end{cases}$ Indica la afirmación correcta:
 - (a) f(x) es continua en x = 1.
 - (b) f es derivable en \mathbb{R} .
 - (c) Existen $\max\{f(x): x \in [-1,1]\}$ y $\min\{f(x): x \in [-1,1]\}$.
 - (d) Puesto que $f(0) = f(\sqrt{2})$, existe $c \in (0, \sqrt{2})$ tal que f'(c) = 0.
 - (e) Existe el $\lim_{x\to 1^+} f'(x)$.
- 3. Considera la función $f(x) = x + \log x$ (logaritmo neperiano). Indica la afirmación correcta.
 - (a) |f(x) f(y)| < 2|x y| para todo x, y > 1.
 - (b) Existen dos puntos distintos a, b > 0 tales que f(a) = f(b).
 - (c) f es estrictamente decreciente en $(0, \infty)$.
 - (d) f es convexa en $(0, \infty)$.
 - (e) Ninguna de las anteriores.
- 4. Considera la función $f(x) = |x^2 x|$. Indica la afirmación correcta.
 - (a) f es convexa en los intervalos $(-\infty,0)$ y $(1,\infty)$ y cóncava en (0,1).
 - (b) f es convexa en todo \mathbb{R} .
 - (c) f tiene un máximo absoluto en \mathbb{R} .
 - (d) f no tiene mínimos relativos.
 - (e) Ninguna de las anteriores.
- 5. Considera la ecuación $x^2 + \log x = 3$ (logaritmo neperiano). ¿Cuantas soluciones tiene en \mathbb{R} ?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) Infinitas
- **6.** Considera la función $f(x) = x^{2/3}$. Indica la afirmación correcta.
 - (a) $\lim_{x\to 0} f'(x) = \infty$.
 - (b) f es concava en \mathbb{R} .
 - (c) f tiene un máximo absoluto en \mathbb{R} .
 - (d) f no es derivable en x = 0.
 - (e) Ninguna de las anteriores.

- 1. Considera la función $f(t) = \begin{cases} \frac{\sin t}{t} & t \neq 0 \\ 1 & t = 0 \end{cases}$. Si definimos $F(x) = \int_0^x f(t) \, dt$, señala la afirmación correcta.
 - (a) F no es continua en x = 0.
 - (b) F es creciente en \mathbb{R} .
 - (c) F es convexa en \mathbb{R} .
 - (d) F es creciente en $(-\pi, \pi)$.
 - (e) Ninguna de las anteriores.
- **2.** ¿Cual es el lím $_{x\to 0^+}$ $x^c \log(\sin x)$ si c>0?
 - (a) $0 \text{ si } 0 < c < 1; \infty \text{ si } c \ge 1.$
 - (b) 1.
 - (c) 0.
 - (d) No existe.
 - (e) 2.
- 3. Considera una función f acotada e integrable en [a,b] ¿Cual de las siguientes afirmaciones es INCORRECTA?
 - (a) $|\int_{a}^{b} f(x) dx| \ge \int_{a}^{b} |f(x)| dx$.
 - (b) Si $m \le f(x) \le M$ para todo $x \in [a, b]$, entonces $m(b a) \le \int_a^b f(x) dx \le M(b a)$.
 - (c) Si $f(x) \ge 0$ para todo $x \in [a, b]$, entonces $\int_a^b f(x) dx \ge 0$.
 - (d) Si g es integrable en [a, b] y $f(x) \leq g(x)$ para todo $x \in [a, b]$, entonces $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.
 - (e) $\int_a^b f(x) dx = \sup\{L(P, f) : P \text{ partición de } [a, b]\} = \inf\{U(P, f) : P \text{ partición de } [a, b]\}$. (Recuerda que L(P, f) es la suma inferior de f correspondiente a la partición P y U(P, f) es la suma superior de f correspondiente a la partición P).
- 4. Considera la función $f(x) = x^2$. Indica la afirmación INCORRECTA.
 - (a) $\int_0^1 x^2 dx = \lim_{n \to \infty} \left(\frac{1}{n} \frac{1}{n^2} + \frac{1}{n} \frac{2^2}{n^2} + \dots + \frac{1}{n} \frac{(n-1)^2}{n^2} + \frac{1}{n} \frac{n^2}{n^2} \right)$.
 - (b) $\int_0^1 x^2 dx = \lim_{n \to \infty} \left(\frac{1}{n} \cdot 0 + \frac{1}{n} \frac{1}{n^2} + \dots + \frac{1}{n} \frac{(n-2)^2}{n^2} + \frac{1}{n} \frac{(n-1)^2}{n^2} \right)$.
 - (c) $\int_0^1 x^2 dx = \lim_{n \to \infty} \left(\frac{1}{n} \left(\frac{0 + \frac{1}{n}}{2} \right)^2 + \frac{1}{n} \left(\frac{\frac{1}{n} + \frac{2}{n}}{2} \right)^2 + \frac{1}{n} \left(\frac{\frac{2}{n} + \frac{3}{n}}{2} \right)^2 + \dots + \frac{1}{n} \left(\frac{\frac{n-1}{n} + \frac{n}{n}}{2} \right)^2 \right) =$
 - $= \lim_{n \to \infty} \left(\frac{1}{n} \frac{1}{(2n)^2} + \frac{1}{n} \frac{3^2}{(2n)^2} + \frac{1}{n} \frac{5^2}{(2n)^2} + \dots + \frac{1}{n} \frac{(2n-1)^2}{(2n)^2} \right).$
 - (d) $\int_0^1 x^2 dx = \lim_{n \to \infty} \left(\frac{1}{n^2} \frac{1}{n^2} + \frac{1}{n^2} \frac{2^2}{n^2} + \dots + \frac{1}{n^2} \frac{(n-1)^2}{n^2} + \frac{1}{n^2} \frac{n^2}{n^2} \right)$.
 - (e) $\int_0^1 x^2 dx = \lim_{n \to \infty} \left(\frac{1}{2n} \cdot 0 + \frac{1}{2n} \frac{1}{(2n)^2} + \frac{1}{2n} \frac{2^2}{(2n)^2} \cdots + \frac{1}{2n} \frac{(2n-2)^2}{(2n)^2} + \frac{1}{2n} \frac{(2n-1)^2}{(2n)^2} \right)$.
- 5. Considera la función $f(x) = \begin{cases} x^2 + 1 & x \le 0 \\ (1 + \frac{1}{x})^{x^2} & x > 0 \end{cases}$. Indica la afirmación correcta.
 - (a) No existe el $\lim_{x\to 0^+} f(x)$.
 - (b) f no es continua en 0.
 - (c) No existe el $\lim_{x\to 0^+} f'(x)$.
 - (d) f no es diferenciable en x = 0.
 - (e) Ninguna de las anteriores.

6. Considera la función $f(x) = x(\operatorname{arctg}(\log x) - \frac{\pi}{2})$. Indica la afirmación correcta.

- (a) $\lim_{x\to\infty} f(x) = +\infty$.
- (b) $\lim_{x\to\infty} f(x) = -\infty$
- (c) No existe $\lim_{x\to\infty} f(x)$.
- (d) $\lim_{x\to\infty} f(x) = 0$.
- (e) $\lim_{x\to\infty} f(x) = 1$.

- 1. Considera la función $f(t) = \begin{cases} \frac{1-\cos t}{t^2} & t \neq 0\\ \frac{1}{2} & t = 0 \end{cases}$. Entonces
 - (a) Existe la integral impropia $\int_{-\infty}^{\infty} f(x)dx$, y es divergente.
 - (b) Existe la integral impropia $\int_{-\infty}^{\infty} f(x)dx$, y es convergente.
 - (c) No existe el $\lim_{t\to\infty} \int_0^t f(x)dx$.
 - (d) No existe el $\lim_{t\to-\infty} \int_t^0 f(x)dx$.
 - (e) Ninguna de las anteriores.
- 2. Considera la función $f(x) = \frac{1}{(x-1)^p}$. Entonces,
 - (a) La integral impropia $\int_1^\infty f(x)dx$ converge si $p \leq 1$ y diverge si p > 1.
 - (b) La integral impropia $\int_1^\infty f(x)dx$ converge si p>1 y diverge si $p\leq 1$.
 - (c) La integral impropia $\int_1^\infty f(x)dx$ converge si p > 0.
 - (d) No existe la integral impropia $\int_1^\infty f(x)dx$.
 - (e) La integral impropia $\int_{1}^{\infty} f(x)dx$ diverge si p > 0.
- 3. Indica la afirmación INCORRECTA.
 - (a) Si $f:[a,z]\to\mathbb{R}$ es integrable para todo $a\leq z<\infty$ y $\lim_{z\to\infty}\int_a^z|f(x)|dx=L\in\mathbb{R}$, entonces existe la integral impropia $\int_a^\infty f(x)dx$ y es convergente.
 - (b) Si $f:[a,z]\to\mathbb{R}$ es integrable para todo $a\leq z<\infty$ y $\lim_{z\to\infty}\int_a^z f(x)dx=L\in\mathbb{R}$, entonces existe la integral impropia $\int_a^\infty |f(x)|dx$ y es convergente.
 - (c) Supongamos que $0 \le f(x) \le g(x)$ para todo $x \in [a,b)$, que f y g son integrable en [a,z] para todo $a \le z < b$, y que existe la integral impropia $\int_a^b f(x) dx$ y es divergente. Entonces existe la integral impropia $\int_a^b g(x) \, dx$ y es divergente.
 - (d) Supongamos que $0 \le f(x) \le g(x)$ para todo $x \in [a,b)$, que f y g son integrable en [a,z] para todo $a \le z < b$, y que existe la integral impropia $\int_a^b g(x)dx$ y es convergente. Entonces existe la integral impropia $\int_a^b f(x)\,dx$ y es convergente.
 - (e) Supongamos que $0 \le |f(x)| \le g(x)$ para todo $x \in (a,b]$, que f y g son integrables en [z,b] para todo $a < z \le b$, y que existe la integral impropia $\int_a^b g(x)dx$ y es convergente. Entonces existe la integral impropia $\int_a^b f(x)\,dx$ y es convergente.
- 4. El área de la región limitada por las funciones f(x) = 2x + 1 y $g(x) = x^2$ entre x = 0 y x = 4 es:
 - (a) $\int_0^{1+\sqrt{2}} (2x+1-x^2) dx + \int_{1+\sqrt{2}}^4 (x^2-2x-1) dx$.
 - (b) $\int_{1-\sqrt{2}}^{1+\sqrt{2}} (2x+1-x^2) dx$.
 - (c) $\int_0^{1+\sqrt{2}} (x^2 2x 1) dx + \int_{1+\sqrt{2}}^4 (2x + 1 x^2) dx$.
 - (d) $\int_0^4 (x^2 2x 1) dx$.
 - (e) $\int_0^4 (2x+1-x^2) dx$.

- **5.** El volumen del sólido generado al girar alrededor del eje x, la región limitada por las funciones $f(x) = x^2$ y $g(x) = \sqrt{x}$ entre x = 0 y x = 1 es:
 - (a) $\int_0^1 (x^2 \sqrt{x}) dx$.
 - (b) $\int_0^1 \pi (x^2 \sqrt{x})^2 dx$.
 - (c) $\int_0^1 (\sqrt{x} x^2) dx$.
 - (d) $\int_0^1 \pi(x^4 x) dx$.
 - (e) $\int_0^1 \pi(x x^4) dx$.
- **6.** Indica la integral impropia que no es convergente.
 - (a) $\int_0^1 \frac{1}{\sqrt{x}} dx$.
 - (b) $\int_0^1 \frac{1}{\sqrt{1-x}} dx$.
 - (c) $\int_{1}^{\infty} \frac{1}{x^{3/2}} dx$.
 - (d) $\int_{-\infty}^{0} \frac{1}{x^4+1} dx$.
 - (e) $\int_0^1 \frac{1}{x(x^8+1)} dx$.

- 1. Considera la función $f(x) = |x \sin x|$ en el intervalo $[-\pi, \pi]$. Entonces:
 - (a) f es estrictamente creciente.
 - (b) f es estrictamente decreciente.
 - (c) f es cóncava en $(-\pi\pi)$.
 - (d) f es derivable en x = 0.
 - (e) Ninguna de la anteriores.
- 2. El $\lim_{x\to 0} \frac{\sin(\arctan \operatorname{tg} x)}{\log(1-x)}$
 - (a) no existe,
 - (b) es -1,
 - (c) es -2,
 - (d) es 0,
 - (e) es 1.
- **3.** Considera la función $f:[0,2]\to\mathbb{R}, f(x)=\sqrt{x(2-x)}$. Entonces:
 - (a) f alcanza el máximo absoluto en x = 0 y el mínimo absoluto en x = 1.
 - (b) f es estrictamente creciente.
 - (c) $\max\{f(x): 0 \le x \le 2\} = 2$.
 - (d) f' tiene dos asíntotas verticales, x = 0 y x = 2.
 - (e) Ninguna de la anteriores
- **4.** El volumen del sólido generado al girar alrededor del eje y la región limitada por las funciones $f(x) = 10 x^2$ y $g(x) = x^2$ entre x = 1 y x = 3 es:
 - (a) $\int_{1}^{\sqrt{5}} 2\pi x (10 2x^2) dx + \int_{\sqrt{5}}^{3} 2\pi x (2x^2 10) dx$.
 - (b) $\int_{1}^{3} 2\pi x (10 2x^2) dx$.
 - (c) $\int_1^3 2\pi x (2x^2 10) dx$.
 - (d) $\int_{1}^{3} \pi (10 2x^{2})^{2} dx$.
 - (e) $\int_{1}^{\sqrt{5}} (10 2x^2) dx + \int_{\sqrt{5}}^{3} (2x^2 10) dx$.
- **5.** Se tiene un círculo de radio r y centro (0,R) con R > r. Si se le hace girar alrededor del eje x se obtiene un sólido llamado toro, con la forma de una rosquilla. El área de la superficie del toro es:

(a)
$$\int_{-r}^{r} 2\pi (R + \sqrt{r^2 - x^2}) \sqrt{1 + \frac{x^2}{r^2 - x^2}} dx - \int_{-r}^{r} 2\pi (R - \sqrt{r^2 - x^2}) \sqrt{1 + \frac{x^2}{r^2 - x^2}} dx$$
.

(b)
$$\int_{-r}^{r} 2\pi (R + \sqrt{r^2 - x^2}) \sqrt{1 + \frac{x^2}{r^2 - x^2}} dx + \int_{-r}^{r} 2\pi (R - \sqrt{r^2 - x^2}) \sqrt{1 + \frac{x^2}{r^2 - x^2}} dx$$
.

(c)
$$\int_{-r}^{r} \pi (R + \sqrt{r^2 - x^2})^2 dx - \int_{-r}^{r} \pi (R - \sqrt{r^2 - x^2})^2 dx$$
.

- (d) $\int_{-r}^{r} \pi (R + \sqrt{r^2 x^2})^2 dx + \int_{-r}^{r} \pi (R \sqrt{r^2 x^2})^2 dx$.
- (e) Ninguna de las anteriores.

- 6. El número de soluciones de la ecuación $x^3 \log x = 1$ es:
 - (a) 0.
 - (b) 1.
 - (c) 2.
 - (d) 3.
 - (e) Infinitas

- 1. Considera una serie de números reales $\sum_{n=1}^\infty a_n$. Indica la afirmación correcta:
 - (a) Si $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$.
 - (b) Si $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 1$.
 - (c) Si $\{a_n\}_{n=1}^{\infty}$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.
 - (d) Si $\lim_{n\to\infty} a_n = 0$, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.
 - (e) Ninguna de la anteriores.
- 2. Decimos que una serie de números reales $\sum_{n=1}^{\infty} a_n$ es convergente y que su suma es $S \in \mathbb{R}$ si :
 - (a) $\lim_{n\to\infty} a_n = S$.
 - (b) la sucesión de sus sumas parciales $\{S_n\}_{n=1}^{\infty}$ converge a S, siendo $S_n = a_1 + \cdots + a_n$ para todo $n \in \mathbb{N}$.
 - (c) la sucesión de sus sumas parciales $\{S_n\}_{n=1}^{\infty}$ es creciente y está acotada superiormente por S.
 - (d) $\lim_{n\to\infty} (S_{n+1} S_n) = S$.
 - (e) Ninguna de las anteriores.
- 3. Considera dos serie de números reales $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$. Indica la afirmación <u>INCORRECTA</u>:
 - (a) Si existe $N \in \mathbb{N}$ tal que $0 \le a_n \le b_n$ para todo $n \ge N$ y $\sum_{n=1}^{\infty} b_n$ converge, entonces $\sum_{n=1}^{\infty} a_n$ converge.
 - (b) Si existe $N \in \mathbb{N}$ tal que $a_n > 0$, $b_n > 0$ para todo $n \ge N$ y $\lim_{n \to \infty} \frac{a_n}{b_n} = L \in (0, \infty)$, entonces las dos series convergen o las dos series divergen.
 - (c) Si existe $N \in \mathbb{N}$ tal que $0 \le a_n \le b_n$ para todo $n \ge N$ y $\sum_{n=1}^{\infty} a_n$ diverge, entonces $\sum_{n=1}^{\infty} b_n$ diverge.
 - (d) Si existe $N \in \mathbb{N}$ tal que $a_n > 0$, $b_n > 0$ para todo $n \ge N$ y $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, entonces las dos series convergen o las dos series divergen.
 - (e) Supongamos que existe $N \in \mathbb{N}$ tal que $a_n > 0$, $b_n > 0$ para todo $n \ge N$, que $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ y que $\sum_{n=1}^{\infty} b_n$ converge. Entonces $\sum_{n=1}^{\infty} a_n$ converge.
- 4. Cual de las siguientes series converge absolutamente?
 - (a) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{\sqrt{n^3+2}}$.
 - (b) $\sum_{n=1}^{\infty} \frac{n-1}{n^2+1}$.
 - (c) $\sum_{n=1}^{\infty} (\frac{1}{n} + \frac{1}{2^n})$.
 - (d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$
 - (e) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$.
- 5. ¿Cual de las siguientes series converge condicionalmente?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2+1}}$.
 - (c) $\sum_{n=1}^{\infty} \frac{n \sin n}{n^3 + 1}.$
 - (d) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2 + 1}$.
 - (e) $\sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{n!}$.

6. ¿Cual de las siguientes series NO es convergente?

- (a) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$.
- (b) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2}$.
- (c) $\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n+1}$.
- (d) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$.
- (e) $\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n^2 + 1}.$

Análisis Matemático. Grupo B. Soluciones a los Test

TEST 1. (a), (c), (c), (e), (a), (e).

TEST 2. (c), (a), (e), (b), (a), (d).

TEST 3. (d), (a), (e), (b), (d), (c).

TEST 4. (e), (e), (a), (a), (b), (d).

TEST 5. (d), (c), (a), (d), (e), (a).

TEST 6. (b), (b), (b), (a), (e), (e).

TEST 7. (d), (b), (d), (a), (b), (c).

TEST 8. (a), (b), (d) ó (e), (e), (b), (c).