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Abstract. We provide several extensions for Banach spaces with weak∗-separable dual
of a theorem of Schevchik ensuring that for every proper dense operator range R in a
separable Banach space E, there exists a one-to-one and dense-range operator such that
T (E) ∩ R = {0}. These results lead to several characterizations of Banach spaces with
weak∗-separable dual in terms of disjointness properties of operator ranges, which yield a
refinement of a theorem of Plichko concerning the spaceability of the complementary set
of a proper dense operator range, and an affirmative solution to a problem of Borwein and
Tingley for the class of Banach spaces with a separable quotient and weak∗-separable dual.
We also provide an extension to these spaces of a theorem of Cross and Shevchik, which
guarantees that for every proper dense operator range R in a separable Banach space E there
exist two closed quasicomplementary subspaces X and Y of E such that R∩ (X+Y ) = {0}.
Finally, we prove that some weak forms of the theorems of Shevchik and Cross and Shevchik
do not hold in any nonseparable weakly Lindelöf determined Banach space.

1. Introduction

A linear subspace R of a Banach space E is called an operator range if R is the image

of a bounded linear operator T : X → E, for some Banach space X. If X = E, then we

say that R is an endomorphism range in E. The class of operator ranges in a Banach

space contains the family of its closed subspaces, but it has a much more flexible structure.

This is due in part to the fact that the sum of two operator ranges in a Banach space E is

again an operator range in E (cf. [7, Proposition 2.2]). These subspaces play an important

role in several areas of Functional Analysis, in particular in Banach space Theory. In this

respect, it is worth to mention the characterization of Saxon and Wilansky of Banach spaces

with an infinite-dimensional separable quotient as those spaces which contain a proper dense

operator range [24], and the result of Bennet and Kalton in [5] ensuring that a dense linear

subspace V of a Banach space E is non-barrelled if, and only if, there exists a proper dense

operator range R in E such that V ⊂ R. For detailed accounts on operator ranges in Hilbert

and Banach spaces, we refer respectively to the works [13] and [7].

In this paper, we are concerned with some disjointness properties of operator ranges. A

classical result of von Neumann, restated by Dixmier in terms of operator ranges (cf. [13,

Theorem 3.6]) asserts that, if H is a separable Hilbert space, then for every non-closed

endomorphism range R ⊂ H there exists a unitary operator T : H → H such that T (R) and
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R are essentially disjoint, that is, T (R) ∩ R = {0}. As it has been recently shown by ter

Elst and Sauter [12], this result does not hold true if H is any nonseparable Hilbert space.

In the Banach space setting, Shevchik [25] proved that if E is a separable Banach space,

then for every proper dense operator range R in E there exists a nuclear, one-to-one and

dense-range endomorphism T : E → E such that T (E) ∩R = {0}. (Recall that an operator

T : E → Y between Banach spaces is said to be nuclear whenever there exist sequences

{yn}n in Y and {fn}n in E∗ (the dual space of E) such that
∑

n≥1 ‖fn‖‖yn‖ < ∞ and

T (x) =
∑

n≥1 fn(x)yn for all x ∈ E). In particular, for every proper dense operator range

R ⊂ E there is a dense operator range V ⊂ E which is essentially disjoint with respect

to R. In [8, Theorem 6.2], Cross and Shevchik obtained a strengthening of the latter, by

proving that if R is a proper dense operator range in a separable Banach space E, then R

is essentially disjoint with respect to an operator range of the form V = X + Y , for some

proper quasicomplementary subspaces X and Y of E (that is, such that X ∩Y = {0},
X + Y is dense in E and X + Y 6= E). This statement constitutes as well an extension in

the separable case of a result of Plichko [21] (see also [11] and [18]), who showed that if R

is a proper dense operator range in any Banach space E, then the set E \ R is spaceable

(that is, there exists a closed infinite-dimensional subspace X ⊂ E such that R∩X = {0}).
We point out that, according to the referred result in [5], the proper dense operator range

R in these statements can be replaced with any dense non-barrelled subspace. However, as

Drewnowski showed in [10], every Banach space E contains an infinite-codimensional linear

subspace V such that V ∩ T (X) 6= {0} for any one-to-one operator T : X → E defined on

an infinite-dimensional Banach space X.

Shevchik’s theorem was used by Plichko [22] to prove that a Banach space E contains a cou-

ple of dense essentially disjoint operator ranges whenever E has a fundamental biorthogonal

system (that is, a biorthogonal system {eγ, fγ}γ∈Γ ⊂ E × E∗ such that {eγ}γ∈Γ is linearly

dense in E). This result solves, for those spaces, a problem posed by Borwein and Tingley

[6, Problem 8], which asks if for any given Banach space E (with a separable quotient, in

particular if E = `∞), there exists a pair of dense essentially disjoint operator ranges in E.

In the recent paper [16], we have obtained several generalizations of Shevchik’s theorem,

which entail in particular that, if E is a separable Banach space, and R and V are respectively

(countable unions of) infinite-codimensional operator ranges in E and E∗, then for any

0 < λ < 1 there exists a nuclear, one-to-one and dense-range endomorphism T : E → E such

that T (E)∩R = {0}, T ∗(E∗)∩V = {0} (where T ∗ stands for the adjoint operator of T ) and

the linear subspace F = T ∗(E∗) ⊂ E∗ is λ-norming (that is, sup{f(x) : f ∈ BF} ≥ λ‖x‖
for all x ∈ E, being BF the closed unit ball of F ).

In this work, we provide extensions of some of the previous statements in the setting

of Banach spaces with weak∗-separable dual. We also show that some weak forms of the

theorems of Shevchik and Cross and Shevchik characterize separable Banach spaces among

weakly Lindelöf determined spaces. All the considered Banach spaces are real. Given such a

space E, we denote by R(E) the family of infinite-codimensional operator ranges in E, and

by S(E) the class of countable unions of elements from R(E). It is well-known (see e.g. [1,

Corollary 2.17]) that R(E) contains the family of proper dense operator ranges in E, which

will be denoted byRd(E). In the sequel, otherwise stated, the terms “closed subspace” and
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“separable quotient” refer to a “closed infinite-dimensional subspace” of a Banach

space and “separable infinite-dimensional quotient”, respectively.

The paper consists of four sections, apart from this Introduction. In the next one, we

obtain, for a Banach space E with weak∗-separable dual, several results concerning the

existence of endomorphisms on E having a prescribed behaviour with respect to given closed

subspaces Y ⊂ E and/or Z ⊂ E∗ and countable unions of infinite-codimensional operator

ranges in Y and/or Z, which yield generalizations of some statements in [16] and Shevchik’s

theorem. These results lead to various characterizations of the classes of Banach spaces with

weak∗-separable dual, Banach spaces with a separable quotient that have weak∗-separable

dual and separable spaces, to which the third section is devoted. In particular, we prove

that if a Banach space E has a separable quotient, then E∗ is weak∗-separable if and only

if for every R ∈ Rd(E) the set E \ R is spaceable through a closed subspace Y ⊂ E such

that E/Y is separable, if and only if for every R ∈ Rd(E) there exists an isomorphism

ϕ : E → E such that ϕ(R) ∩ R = {0}. The latter yields an affirmative solution to the

aforementioned problem of Borwein and Tingley for Banach spaces with weak∗-separable

dual and a separable quotient. As regards Plichko’s solution to this problem in [22], we

stress that under some set-theoretical assumptions, there exist Banach spaces with weak∗-

separable dual and a separable quotient lacking of fundamental biorthogonal systems (cf.

[15, p. 143]).

In Section 4, we provide several strengthenings of the former results, which involve the

existence of quasicomplementary subspaces of Banach spaces with some special features with

respect to operator ranges in those spaces. The first result of that section yields that, if E is

a Banach space with weak∗-separable dual and X is a closed subspace of E such that E/X is

separable, then for every R ∈ Rd(E) containing X there exists an isomorphism ϕ : E → E

such that R ∩ ϕ(R) = {0} while the sum X + ϕ(X) still is dense in E (in particular, the

closed subspaces X and ϕ(X) are quasicomplementary). We also show that if E is a Banach

space with weak∗-separable dual then for any couple of proper quasicomplementary subspaces

X, Y ⊂ E there exist R, V ∈ Rd(E) such that X ⊂ R, Y ⊂ V and R ∩ V = {0}. Next, we

obtain a generalization of the aforementioned result of Cross and Shevchik in [8] by showing

that if E is a Banach space with weak∗-separable dual and a separable quotient, then for

every R ∈ Rd(E) there exist two closed isomorphic quasicomplementary subspaces X, Y ⊂ E

such that E/X and E/Y are separable and R∩ (X +Y ) = {0}. Finally, we characterize the

closed subspaces X of a Banach space E with weak∗-separable dual for which there exists a

couple of quasicomplementary subspaces X, Y ⊂ E satisfying X ∩ (Y + Z) = {0}.
In the last section, we show that some of the former results do not hold in a large class

of Banach spaces with no weak∗-separable dual. In particular, we show that if E is a non-

separable weakly Lindelöf determined space, then E contains a proper dense endomorphism

range R such that R ∩ V 6= {0} whenever V is either a dense endomorphism range in E, or

a dense operator range of the form V = X + Y , for some closed subspaces X, Y ⊂ E.

The notation we use is standard. The norm of a normed space E is usually denoted

by ‖ · ‖, and the symbols SE, BE and IE stand for the unit sphere, the closed unit ball

and the identity operator of that space, respectively. Given a set A ⊂ E, we denote by

span(A) (or spanA) the linear span of A, and by A⊥ its annihilator subspace, that is,
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A⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ A}. If {xn}n is a sequence in E, we write [{xn}n] for

the closed linear span of {xn}n.

2. Endomorphisms with a prescribed behaviour

In this section we establish several generalizations for Banach spaces with weak∗-separable

dual of some results from [16] and Shevchik’s theorem. One of the main ingredients in their

proofs is the next lemma, which is proven in [16], and guarantees the existence of minimal

sequences in a Banach space with a “disjoint behaviour” with respect to countable unions of

infinite-codimensional operator ranges in that space. In order to establish this result, we fix

some terminology. Recall that a sequence {xn}n in a Banach space E is said to be minimal

whenever there exists a sequence {fn}n ⊂ E∗ such that {xn, fn}n is a biorthogonal system

in E. If all the functionals fn lie in a given subspace F ⊂ E∗, we say that {xn}n is an F -

minimal sequence. According to the terminology from [16], we say that a bounded sequence

{xn}n in a Banach space E has property (∗) with respect to a subset V ⊂ E if the

conditions {an}n ∈ `1 and
∑

n anxn ∈ V imply that an = 0 for all n.

Lemma 2.1. [16, Lemma 2.1] Let E be a Banach space, let X ⊂ E and F ⊂ E∗ be closed

subspaces and ε ∈ (0, 1). If {xn}n is an F -minimal sequence in X then, for every S ∈ S(X)

there exist an isomorphism ϕ : E −→ E and an F -minimal sequence {yn}n ⊂ BX such that:

(1) ‖ϕ− IE‖ ≤ ε.

(2) ϕ(X) = X and ϕ∗(F ) = F .

(3) ϕ(xn) and yn are collinear for each n.

(4) {yn}n satisfies property (∗) with respect to S.

It is worth to mention that the isomorphism ϕ : E → E in the former lemma can be

constructed to satisfy the following refinement of property (2): for any two linear subspaces

Y ⊂ E and G ⊂ E∗ such that X ⊂ Y and F ⊂ G we have ϕ(Y ) = Y and ϕ∗(G) = G. Indeed,

such isomorphism is of the form ϕ = IE+T where T : E → E is a nuclear operator such that

T (E) ⊂ X and T ∗(E∗) ⊂ F . From the first inclusion we get ϕ(Y ) ⊂ Y +X = Y . On the other

hand, for each y ∈ Y there exists a (unique) vector u ∈ E such that y = ϕ(u) = u + T (u),

so u = y− T (u) ∈ Y +X = Y . Consequently ϕ(Y ) = Y . Analogously, since T ∗(E∗) ⊂ F we

have ϕ∗(G) = G. This fact yields to the following refinement of Lemma 2.1 in the dual case.

Lemma 2.2. Let E be a Banach space, let X ⊂ E and F ⊂ E∗ be closed subspaces and

V ∈ S(F ). If {fn}n is an X-minimal sequence in F then, for every ε ∈ (0, 1) there exist an

isomorphism ϕ : E −→ E and an X-minimal sequence {gn}n ⊂ BF such that:

(1) ‖ϕ− IE‖ ≤ ε.

(2) ϕ(X) = X and ϕ∗(F ) = F .

(3) ϕ∗(fn) and gn are collinear for each n.

(4) {gn}n satisfies property (∗) with respect to V .

Proof. The previous lemma and the subsequent observation, applied in E∗ (with {fn}n in-

stead of {xn}n, and F instead of X), entail the existence of an isomorphism ψ : E∗ → E∗

and an X-minimal sequence {gn}n ⊂ BF such that ‖ψ− IE∗‖ < ε, ψ(F ) = F , ψ∗(Z) = Z for

each subspace Z ⊂ E∗∗ containing X, ψ(fn) and {gn}n are collinear for each n, and {gn}n
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satisfies property (∗) with respect to V . Let ϕ be the restriction of ψ∗ to E. Then ϕ(E) = E,

therefore ϕ is an isomorphism on E. It is easily checked that ϕ∗ = ψ, so properties (1), (2)

and (3) are proved. �

The next result is an analogue of Theorem 3.1 in [16] for the class of Banach spaces with

weak∗-separable dual.

Theorem 2.3. Let E be a Banach space with weak∗-separable dual, let Y be a closed subspace

of E and Z be a closed, weak∗-separable and total subspace of E∗. Then, for any V ∈ S(Y )

and any W ∈ S(Z) there exists a one-to-one nuclear operator T : E → E such that

(1) T (E) ⊂ Y .

(2) If Y is separable, then T (E) = Y .

(3) T (E) ∩ V = {0}.
(4) T ∗(E∗) ⊂ Z.

(5) If Z is separable, T ∗(E∗) = Z.

(6) T ∗(E∗) ∩W = {0}.

Proof. First, let us assume that the subspaces Y and Z are separable. According to Marku-

shevich theorem (see e.g. [15, Theorem 1.22]), Y has an M -basis, that is, there is a funda-

mental minimal sequence {xn}n ⊂ Y whose sequence {y∗n}n ⊂ Y ∗ of biorthogonal functionals

is total over Y . Lemma 2.1 (applied to the subspaces X = Y ⊂ E, F = E∗ and the M -

basis {xn}n) yields a sequence {yn}n ⊂ BY which is an M -basis of Y satisfying property (∗)
with respect to the set V . On the other hand, because of the weak∗-density of the separable

subspace Z in E∗, thanks again to [15, Theorem 1.22] we can find an E-minimal sequence

{fn}n ⊂ Z such that

(2.1) [{fn}n] = Z and [{fn}n]
w∗

= E∗,

Now, an appeal to Lemma 2.2 (applied to the E-minimal sequence {fn}n) yields a bounded

E-minimal sequence {gn}n ⊂ Z enjoying property (∗) with respect toW , and an isomorphism

ϕ : E → E such that ϕ∗([{fn}n]) = [{gn}n] and ϕ∗(Z) = Z. Thanks to (2.1) we obtain

(2.2) [{gn}n]
w∗

= E∗.

Now, consider the operator T : E → E given by the formula

T (x) =
∑
n≥1

2−ngn(x)yn, x ∈ E,

which is well-defined and continuous because the sequences {gn}n and {yn}n are bounded.

Clearly, T is nuclear and satisfies (1). Moreover, the E-minimality of {gn}n provides a se-

quence {un}n ⊂ E such that gn(um) = δn,m for all n,m. In particular, T (un) = 2−nyn,

which yields span({yn}n) ⊂ T (E), thus Y = T (E) and assertion (2) is proved. Now, pick a

vector x ∈ E such that T (x) ∈ V . Since {2−ngn(x)}n ∈ `1 and the sequence {yn}n satisfies

property (∗) with respect to V we have gn(x) = 0 for all n, hence T (x) = 0, and property

(3) is fulfilled. Since the sequence {gn}n is total over E, this argument guarantees as well

the injectivity of T . Notice also that

T ∗(f) =
∑
n≥1

2−nf(yn)gn, for all f ∈ E∗.
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Taking into account that {gn}n ⊂ Z we get T ∗(E∗) ⊂ Z. Moreover, the minimality of {yn}n
yields a sequence {hn}n ⊂ E∗ such that {yn, hn}n is a biorthogonal system. In particular,

T ∗(hn) = 2−ngn, and so gn ∈ T ∗(E∗) for all n. Consequently [{gn}n] = T ∗(E∗), and bearing

in mind that {gn}n is linearly dense in Z we deduce (5). To prove (6), take a functional

f ∈ E∗ such that T ∗(f) ∈ W . Since {gn}n enjoys property (∗) with respect to W , we have

f(yn) = 0 for all n, therefore T ∗(f) = 0, and hence T ∗(f) = 0. Thus, T ∗(E∗) ∩W = {0}.
If Y is not separable, the only modification in the above proof is that the sequence {xn}n

is chosen to be a minimal sequence in Y . In the case that Z is not separable, the only

modification in the above proof is that the sequence {fn}n is chosen to satisfy only the

second condition [{fn}n]
w∗

= E∗ in (2.1). �

As a consequence of Theorem 2.3 it follows that if E is a Banach space with weak∗-

separable dual then, for any W ∈ S(E∗) there exists a total linear subspace N ⊂ E∗ such

that N ∩W = {0}. Another application of that result yields to the following corollary.

Corollary 2.4. Let E be a Banach space with weak∗-separable dual. Then, for every couple

of elements R ∈ S(E) and V ∈ S(E∗) there exists a one-to-one nuclear operator T : E → E

such that T (E) ∩R = {0} and T ∗(E∗) ∩ V = {0}.

The next result provides another extension of Shevchik’s theorem and [16, Theorem 3.3].

As regards assertion (6) in that result, we stress that the dual of a Banach space E has a

norming sequence whenever BE∗ is weak∗-separable (cf. [9]).

Theorem 2.5. Let E be a Banach space with weak∗-separable dual, let Y be a closed subspace

of E and let q : E∗ → Y ∗ the canonical restriction mapping. Then, for any V ∈ S(Y ) and

any M ∈ S(Y ∗) there exists a one-to-one nuclear operator T : E → E such that

(1) T (E) ⊂ Y .

(2) If Y is separable, T (E) = Y .

(3) T (E) ∩ V = {0}.
(4) T ∗(E∗) ∩ q−1(M) = {0}.
(5) T ∗(E∗)|Y ∩M = {0}.
(6) If (E/Y )∗ is weak∗-separable and Y ∗ has a λ-norming sequence for Y , for some

λ ∈ (0, 1], then the subspace T ∗(E∗)|Y ⊂ Y ∗ is λ-norming for Y .

In order to prove assertion (6) in this theorem, we will need the following result of Singer

(cf. [27, Lemma 7.5, p. 207]). We give the proof for the sake of completeness.

Lemma 2.6. Let E be a Banach space with weak∗-separable dual, let Y be a closed subspace

of E such that (E/Y )∗ is weak∗-separable. If {y∗n}n ⊂ Y ∗ is a total sequence over Y then

there is a sequence {fn}n in E∗ such that fn|Y = y∗n for each n and {fn}n is total over E.

Proof. Since (E/Y )∗ identifies with Y ⊥ ⊂ E∗, by assumption there is a sequence {z∗n}n ⊂ Y ⊥

which is weak∗ dense in Y ⊥. For every n, let us consider a linear continuous extension to E

of the functional y∗n, and denote it by h∗n ∈ E∗. For convenience, let us relabel the sequence

{h∗n}n in the form {h∗m,j}m,j∈N. Since z∗m +
h∗m,j

j‖h∗m,j‖
j→∞−−−→ z∗m for every fixed m, we have

z∗m ∈ [{z∗k +
h∗k,j

j‖h∗k,j‖
: k, j ∈ N}]. Thus for every m, j we get h∗m,j ∈ [{z∗k +

h∗k,i
i‖h∗k,i‖

: k, i ∈ N}].
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Let us define fm,j = j‖h∗m,j‖z∗m + h∗m,j for every m, j. Clearly, fm,j|Y = h∗m,j|Y . and [{fk,j :

k, j ∈ N}] = [{z∗k +
h∗k,j

j‖h∗k,j‖
: k, j ∈ N}]. Let us check that {fm,j}m,j is total over E. Let us

fix x ∈ E. If x ∈ Y , since {h∗m,j}m,j is total over Y we get that there are m0, j0 satisfying

h∗m0,j0
(x) 6= 0 so fm0,j0(x) = h∗m0,j0

(x) 6= 0. Now, if x 6∈ Y , let us consider the non-zero coset

x̂ ∈ E/Y . Since {z∗m}m is total over E/Y , there is m0 such that z∗m0
(x) 6= 0. So for j0 large

enough |z∗m0
(x)| > 1

j0

h∗m0,j0
(x)

‖h∗m0,j0
‖ , which yields fm0,j0(x) 6= 0. Finally, we rewrite {fm,j}m,j as

{fn}n by reverting the first relabeling, which yields fn|Y = h∗n|Y = y∗n for each n, and the

proof is finished. �

Proof of Theorem 2.5. In the case that (E/Y )∗ is weak∗-separable and there is a sequence

{y∗n}n ⊂ Y ∗ such that [{y∗n}n] is λ-norming for Y , thanks to Lemma 2.6 we can consider

a sequence {fn}n ⊂ E∗ total over E such that [{fn|Y }] is λ-norming for Y and define

Z̃ = [{fn}n]. Otherwise we set Z̃ = E∗.

Now, let us consider a sequence {Mn}n ⊂ R(Y ∗) such that M =
⋃
nMn. Since, for each

n, Mn has infinite codimension in Y ∗ we have that q−1(Mn) has infinite codimension in E∗,

thus there is a sequence of linearly independent elements {hn,k}k ⊂ E∗ such that

span({hn,k}k) ∩ q−1(Mn) = {0}.

Define

Z = [Z̃ ∪ {hn,k}n,k] and W = q−1(M) ∩ Z.
We shall prove that W ∈ S(Z). Since W =

⋃
n q
−1(Mn) ∩ Z, it is enough to show that

q−1(Mn)∩Z ∈ R(Z) for all n. Firstly, because of the definition of Z, the subspace q−1(Mn)∩Z
has infinite codimension in Z. Secondly, since for every n, Mn is an operator range in Y ∗,

thanks to [7, Proposition 2.1], there is a complete norm ‖ · ‖Mn on Mn such that

‖y∗‖Y ∗ ≤ ‖y∗‖Mn for all y∗ ∈Mn,

where ‖ · ‖Y ∗ denotes the norm on Mn inherited from Y ∗. Let us define a new norm on

q−1(Mn) by the following expression

‖w‖n = ‖w‖E∗ + ‖q(w)‖Mn , w ∈ q−1(Mn),

being ‖ · ‖E∗ the norm on q−1(Mn) inherited from E∗. It is easy to check that ‖ · ‖n is

complete on q−1(Mn), thus using again [7, Proposition 2.1] it follows that q−1(M) is an

operator range in E∗. Therefore q−1(Mn) ∈ R(E∗) for every n, and thus q−1(M) ∈ S(E∗).

Since the intersection of two operator ranges is an operator range ([7, Proposition 2.2]), we

have q−1(Mn) ∩ Z ∈ R(Z), and thus W = q−1(M) ∩ Z ∈ S(Z), as we wanted.

Since Z is a closed, weak∗-separable and total subspace of E∗, thanks to Theorem 2.3 we

can deduce the existence of a one-to-one endomorphism T : E → E satisfying assertions

(1), (2) and (3), T ∗(E∗) ⊂ Z and T ∗(E∗) ∩W = {0}. Consequently,

T ∗(E∗) ∩ q−1(M) = T ∗(E∗) ∩
(
q−1(M) ∩ Z

)
= T ∗(E∗) ∩W = {0},

thus property (4) is also fulfilled. To prove (5) take a functional f ∈ E∗ such that T ∗(f)|Y ∈
M . Then T ∗(f) ∈ q−1(M) ∩ Z = W . So T ∗(f) ∈ T ∗(E∗) ∩ W , hence T ∗(f) = 0 and

in particular T ∗(f)|Y = 0. Therefore, T ∗(E∗)|Y ∩M = {0}. Finally, assume that (E/Y )∗

is weak∗-separable and Y ∗ has a λ-norming sequence for Y . In this case the subspace Z is
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separable and Theorem 2.3 provides the additional property T ∗(E∗) = Z. Thus, for every n, k

there is gn,k ∈ E∗ such that ‖T ∗(gn,k)− fn‖ < 1
k
, and hence ‖T ∗(gn,k)|Y − fn|Y ‖ < 1

k
. Since

the subspace [{fn|Y }] ⊂ Y ∗ is λ-norming for Y it follows that T ∗(E∗)|Y is also λ-norming

for Y , and the proof is finished. �
As a consequence of the former theorem we obtain the following result.

Corollary 2.7. Let E be a Banach space with weak∗-separable dual and let Y be a closed

subspace of E. If R ∈ S(E) and W ∈ S(E∗) satisfy R ∩ Y ∈ S(Y ) and W |Y ∈ S(Y ∗) then

there exists a nuclear one-to-one operator T : E → E such that

(1) T (E) ⊂ Y .

(2) If Y is separable, T (E) = Y .

(3) T (E) ∩R = {0}.
(4) T ∗(E∗) ∩W = {0}.
(5) T ∗(E∗)|Y ∩W |Y = {0}.
(6) If (E/Y )∗ is weak∗-separable and Y has a sequence in Y ∗ λ-norming for Y for some

λ ∈ (0, 1], then T ∗(E∗)|Y is λ-norming for Y .

Proof. Let us denote by q : E∗ → Y ∗ the canonical restriction mapping. Applying Theorem

2.5 to the subspace Y ⊂ E and the elements V = R ∩ Y ∈ S(Y ) and M = W |Y ∈ S(Y ∗),

we deduce the existence of a one-to-one nuclear operator T : E → E satisfying assertions

(1) and (2),

T (E) ∩ V = {0}, T ∗(E∗) ∩ q−1(M) = {0} and T ∗(E∗)|Y ∩ q−1(M)|Y = {0},

and (6) (the last one, assuming that (E/Y )∗ is weak∗-separable and Y ∗ has a λ-norming

sequence for Y ). Clearly, T (E) ∩ R = T (E) ∩ R ∩ Y = T (E) ∩ V = {0}, which proves (3).

As q−1(M) = q−1(q(W )) ⊃ W we obtain T ∗(E∗) ∩W = {0}. Moreover, since q−1(M)|Y =

q(q−1(q(W ))) = W |Y we get T ∗(E∗)|Y ∩ W |Y = {0}, so properties (4) and (5) are also

satisfied. �

3. Characterizations of weak star separability

In this section, we obtain several characterizations of Banach spaces with weak∗-separable

dual and separable spaces in terms of disjointness properties of operator ranges. The first

result in this direction reads as follows.

Theorem 3.1. If E is an infinite-dimensional Banach space then the following assertions

are equivalent:

(1) E∗ is weak∗-separable.

(2) For each R ∈ R(E) and each ε > 0 there exists an isomorphism ϕ : E → E such

that ‖ϕ− IE‖ < ε and ϕ(R) ∩R = {0}.
(3) For each R ∈ R(E) there is a one-to-one operator T : R→ E with T (R) ∩R = {0}.
(4) For each closed infinite-codimensional subspace X ⊂ E there exists a one-to-one

operator T : X → E such that T (X) ∩X = {0}.
(5) There exist two closed infinite-codimensional subspaces X, Y ⊂ E such that (E/X)∗

and (E/Y )∗ are weak∗-separable and X ∩ Y = {0}.



OPERATOR RANGES IN BANACH SPACES WITH WEAK STAR SEPARABLE DUAL 9

Proof. First, we establish the equivalence between assertions (1)−(4). The implication (2)⇒
(3) is obvious, and (3)⇒ (4) follows from the fact that closed subspaces of a Banach space

are operator ranges. Let us check that (1)⇒ (2) and (4)⇒ (1). Suppose that E∗ is weak∗-

separable, and fix R ∈ R(E) and ε > 0. Theorem 2.3 guarantees the existence of a one-to-one

operator T : E → E such that T (E) ∩ R = {0}. We can assume without loss of generality

that ε ∈ (0, 1) and ‖T‖ < ε, therefore the operator ϕ = IE − T is an isomorphism on

E satisfying ‖ϕ − IE‖ < ε. Pick x ∈ R ∩ ϕ(R). Then x = x′ − T (x′) for some x′ ∈ R.

Consequently, T (x′) = x′ − x ∈ R ∩ T (E), hence T (x′) = 0, and the injectivity of T entails

that x′ = x = 0. Thus, R ∩ ϕ(R) = {0}, and the implication (1)⇒ (2) is checked.

Now, we shall prove that (4)⇒ (1). Let Z be a closed separable subspace of E∗, and set

X = Z⊥ (the annihilator of Z in E). Since (E/X)∗ identifies with the weak∗-closure of Z, we

have that E/X is infinite-dimensional, that is, codimE(X) = ∞. By the hypothesis, there

exists a one-to-one operator T : X → E satisfying T (X) ∩X = {0}. Consider the operator

S : Q ◦T : X → E/X, where Q : E → E/X denotes the canonical quotient map. Bearing in

mind that T is one-to-one and T (X) ∩ X = {0} it follows that S is one-to-one. Therefore,

the range of S∗ is weak∗-dense in X∗. Since Z is separable, we have that (E/X)∗ is weak∗-

separable, thus X∗ is weak∗-separable as well. On the other hand, thanks to Lemma 2.6 it

follows that the fact of having a weak∗-separable dual is a three space property. Therefore,

E∗ is weak∗-separable, so (4)⇒ (1).

Next, we will check the implication (1)⇒ (5). Let X be any closed infinite-codimensional

subspace of E such that (E/X)∗ is weak∗-separable. Since X is an infinite-codimensional

operator range in E, according to Lemma 2.1 (applied to any minimal sequence in E), there

exists a minimal sequence {en}n ⊂ BE with property (∗) with respect to X. On the other

hand, because of the weak∗-separability of E∗, we can find a total sequence {fn}n ⊂ E∗. We

can assume that ‖fn‖ ≤ 4−n for all n. Let us write, for each u ∈ E,

ϕ(u) = u+
∑
n≥1

fn(u)en.

Since
∑

n≥1 ‖fn‖‖en‖ < 1, we have that ϕ is an isomorphism on E. Set Y = ϕ(X). Then,

the formula Φ(u + X) = ϕ(u) + Y defines an isomorphism Φ : E/X → E/Y , thus Φ∗ :

(E/Y )∗ → (E/X)∗ is a (weak∗, weak∗)-isomorphism, and taking into account that (E/X)∗

is weak∗-separable, we deduce that (E/Y )∗ is weak∗-separable as well. Now, pick a vector

x ∈ X such that ϕ(x) ∈ X. Then ϕ(x)− x ∈ X, and therefore∑
n≥1

fn(x)en ∈ X.

Since {fn(x)}n ∈ `1 and {en}n has property (∗) with respect to X we get fn(x) = 0 for all

n, and bearing in mind that {fn}n is total over E we get x = 0. Thus, X ∩ Y = {0}.
It remains to show that (5) ⇒ (1). Let X and Y be closed subspaces of E satisfying

property (5), and T : X → E/Y be the restriction to X of the quotient map Q : E → E/Y .

Since X ∩ Y = {0} we have that T is one-to-one. Thus, its adjoint T ∗ : (E/Y )∗ → X∗ has

weak∗-dense range. Because of the weak∗-separability of (E/Y )∗ we deduce that X∗ is weak∗-

separable. Since (E/X)∗ is also weak∗-separable it follows that E∗ is weak∗-separable. �
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It is not known if a Banach space with weak∗-separable dual has a separable quotient.

In fact, the separable quotient problem reduces to the case of Banach spaces with weak∗-

separable dual. The next result provides a strengthening of the former theorem in the class of

Banach spaces E which have a separable quotient (or equivalently, a proper dense operator

range). The equivalence between properties (1) and (5) in this result refines the aforemen-

tioned theorem in [21] ensuring that the complementary set of a proper dense operator range

in every Banach space is spaceable. On the other hand, the implication (1) ⇒ (4) yields a

strong answer to the problem of Borwein and Tingley in the class of Banach spaces with

weak∗-separable dual and a separable quotient. As regards the solution to this problem in

[22] for Banach spaces with a fundamental biorthogonal system, we notice that, under some

set-theoretical assumptions there exist compact sets K such that the space C(K) lacks of any

fundamental biorthogonal system while its dual space C(K)∗ is weak∗-separable. Moreover,

as every space of continuous functions, C(K) has a separable quotient (cf. [19, 23]).

Theorem 3.2. If E is a Banach space with a separable quotient, then the following assertions

are equivalent:

(1) E∗ is weak∗-separable.

(2) For each (some) closed subspace X ⊂ E such that E/X is separable and infinite-

dimensional there exists a one-to-one operator T : X → E such that T (X)∩X = {0}.
(3) For each R ∈ Rd(E) there is a one-to-one operator T : R→ E with T (R)∩R = {0}.
(4) For each R ∈ Rd(E) and each ε > 0 there exists an isomorphism ϕ : E → E such

that ‖ϕ− IE‖ < ε and ϕ(R) ∩R = {0}.
(5) For each R ∈ Rd(E) there exists a closed subspace Y ⊂ E such that E/Y is separable

and R ∩ Y = {0}.

In the proof of Theorem 3.2 we shall use the following refinement of the aforementioned

result of Saxon and Wilansky in [24].

Proposition 3.3. Let E be a Banach space and R ∈ Rd(E). Then, there exists a closed

(infinite-dimensional) subspace X ⊂ E such that E/X is separable and R + X has infinite

codimension in E.

Proof. Firstly, let us assume that E is separable. According to the result of Plichko in [21],

there is a closed infinite-dimensional subspace X ⊂ E with R ∩ X = {0}. Then, R + X is

an operator range in E, and taking into account that R is not closed and R ∩ X = {0},
according to [7, Theorem 2.4] it follows that R + X is not closed. Moreover, thanks to [1,

Corollary 2.17] we have codimE(R + X) = ∞. Now, suppose that E is not separable. Let

Z be a Banach space and T : Z → E be a bounded operator such that T (Z) = R. Define

B0 = T (BZ) ⊂ E. The construction given in [24, §1.9 - §1.10] (see also [20, proof of Theorem

3.2]) yields the existence of sequences {xn}n ⊂ SE and {fn}n ⊂ E∗, and a strictly increasing

sequence of convex bounded and symmetric sets Bn ⊂ E such that

(i) fn(xn) = 1,

(ii) fn(xk) = 0 for all k > n,

(iii) Bn = Bn−1 + {
∑n

i=1 αixi : |αi| ≤ 1},
(iv) sup

Bn−1

|fn| ≤ 2−n,



OPERATOR RANGES IN BANACH SPACES WITH WEAK STAR SEPARABLE DUAL 11

for every n, and the closed subspaceX =
⋂∞
n=1 ker fn satisfies that E/X is infinite-dimensional

and separable. Since E is nonseparable we have that X is infinite-dimensional.

Now, let us write

R1 = {x ∈ E : the sequence (nfn(x))n converges} ,

and let ‖ · ‖ be the norm of E. It is easy to see that the formula

|||x||| = ‖x‖+ sup
n

n|fn(x)|, x ∈ R1,

defines a complete norm on R1, stronger than ‖ · ‖. Therefore, thanks to [7, Proposition

2.1] we have that R1 is an operator range in E. It is clear that X ⊂ R1, and because of

inequality (iv) it also follows that R ⊂ R1, thus R +X ⊂ R1. Moreover, R1 6= E. Indeed, if

R1 = E then the sequence (nfn)n would be bounded, by the uniform boundedness principle.

But bearing in mind that (xn)n ⊂ SE and property (i) we have ‖nfn‖ ≥ n|fn(xn)| = n

for all n, a contradiction. Thus, R1 ∈ Rd(E), and hence codimE(R1) = ∞. Consequently

codimE(R +X) =∞. �

We shall also need the following result, essentially proven in [17].

Lemma 3.4. If X is a closed infinite-codimensional subspace of a Banach space E, then the

following assertions are equivalent.

(1) E/X has a separable quotient.

(2) There exists a closed subspace Z ⊂ E such that E/Z is separable, X +Z is dense in

E and X + Z 6= E.

(3) There exists R ∈ Rd(E) such that X ⊂ R.

Proof. The implication (1) ⇒ (2) is given by [17, Proposition 3.5], and (2) ⇒ (3) follows

from the fact that the sum of two operator ranges is again an operator range. Assume that

(3) is satisfied, let Q : E → E/X be the quotient map, and set R1 = Q(R). Then R1 is

a proper dense operator range in E/X (notice that, since X ⊂ R, Q(x) 6∈ Q(R) whenever

x 6∈ R), and using the aforementioned result in [24] we deduce that E/X has a separable

quotient, hence (3)⇒ (1). �

Proof of Theorem 3.2. First, we establish the equivalence between assertions (1)− (4). Since

Rd(E) ⊂ R(E) the implication (1)⇒ (4) follows from Theorem 3.1, and (4)⇒ (3) is trivial.

Assume that property (3) holds. Let X be a closed subspace of E such that E/X is

separable and infinite-dimensional. According to Lemma 3.4 there is an operator range R ∈
Rd(E) such that X ⊂ R. By our assumption, there exists one-to-one operator T : R → E

such that T (R) ∩R = {0}, in particular T (X) ∩X = {0}, so (3)⇒ (2).

Now, suppose that the parenthetic part of property (2) is satisfied. Let X be a closed

subspace of E such that E/X is separable, and let T : X → E be a one-to-one operator

such that T (X) ∩ X = {0}. Then, the operator S = Q ◦ T : X → E/X is one-to-one,

hence its adjoint S∗ : (E/X)∗ → X∗ has weak∗-dense range, and taking into account that

(E/X)∗ is weak∗-separable (being the dual of a separable space), it follows that X∗ is weak∗-

separable. Since having a weak∗-separable dual is a three-space property, we have that E∗ is

weak∗-separable, and thus (2)⇒ (1).
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Next, we shall prove that (4) ⇒ (5). Let R ∈ Rd(E). Because of Proposition 3.3 there

exists a closed subspace X ⊂ E such that E/X is separable and codimE(R + X) = ∞.

Then, the subspace V = R+X is a proper dense operator range in E. Using the hypothesis,

we deduce the existence of an isomorphism ϕ : E → E such that ϕ(V ) ∩ V = {0}. Let

Y = ϕ(X). Then Y is a closed subspace of E such that E/Y is separable (notice that the

formula Φ(u+X) = ϕ(u) + Y , u ∈ E, defines an isomorphism from E/X onto E/Y ), and

R ∩ Y ⊂ V ∩ ϕ(V ), thus Y ∩R = {0}.
To finish, we shall show that (5)⇒ (1). Consider a closed subspace X ⊂ E such that E/X

is separable and infinite-dimensional. Thanks to Lemma 3.4 there exists an operator range

R ∈ Rd(E) such that X ⊂ R. Because of our assumption we can find a closed subspace

Y ⊂ E such that E/Y is separable and R ∩ Y = {0}, in particular X ∩ Y = {0}, and using

Theorem 3.1 (5) we deduce that E∗ is weak∗-separable. �
We end this section with the next characterization of separable Banach spaces in terms of

essentially disjoint operator ranges. As regards assertion (4) in this result, we notice that,

according to a well-known theorem of Argyros, Dodos and Kanellopoulos [2], the dual of

every Banach space E has a separable quotient, and hence Rd(E
∗) 6= ∅.

Theorem 3.5. If E is a Banach space then the following assertions are equivalent:

(1) E is separable.

(2) For every R ∈ R(E), every V ∈ R(E∗) and every ε > 0 there exists an isomorphism

ϕ : E → E such that ‖ϕ− IE‖ < ε, R ∩ ϕ(R) = {0} and V ∩ ϕ∗(V ) = {0}.
(3) For every V ∈ R(E∗) and every ε > 0 there exists an isomorphism ϕ : E → E such

that ‖ϕ− IE‖ < ε and V ∩ ϕ∗(V ) = {0}.
(4) For every V ∈ Rd(E

∗) there exists an isomorphism ϕ : E → E with V ∩ϕ∗(V ) = {0}.
(5) For every weak∗-closed infinite-codimensional subspace Z ⊂ E∗ there exists an iso-

morphism ϕ : E → E such that ϕ∗(Z) ∩ Z = {0}.

Proof. The implication (1) ⇒ (2) is proved in [16, Corollary 3.8], and (2) ⇒ (3) ⇒ (4) are

obvious. Let us show that (4) ⇒ (5) ⇒ (1). Let Z be a weak∗-closed infinite-codimensional

subspace of E∗. Since E∗/Z is isomorphic to the dual space of Z⊥, according to the afore-

mentioned result in [2] it follows that E∗/Z has a separable quotient, and Lemma 3.4 yields

an operator range V ∈ Rd(E
∗) such that Z ⊂ V . Using now the hypothesis, we deduce

the existence of an isomorphism ϕ : E → E satisfying V ∩ ϕ∗(V ) = {0}. In particular

Z ∩ ϕ∗(Z) = {0}, and the implication (4)⇒ (5) is proved.

Now, assume that assertion (5) is satisfied, consider a separable infinite-codimensional

subspace Y ⊂ E and set Z = Y ⊥. Then, Z is a weak∗-closed infinite-codimensional (and

infinite-dimensional) subspace of E∗. By our assumption, there is an isomorphism ϕ : E → E

such that ϕ∗(Z) ∩ Z = {0}. Set X = ϕ−1(Y ). Since Y is separable, so is X. Moreover, as

(X + Y )⊥ =
[
ϕ−1(Y )

]⊥ ∩ Y ⊥ = ϕ∗(Y ⊥) ∩ Y ⊥ = ϕ∗(Z) ∩ Z

we get (X + Y )⊥ = {0}. Consequently, X + Y is dense in E. Since the subspaces X and Y

are separable, it follows that E is separable, thus (5)⇒ (1). �

Remark 3.6. Assertion (4) from Theorem 3.5 cannot be replaced with the weaker one “for

each V ∈ Rd(E
∗) there exists an isomorphism ψ : E∗ → E∗ with V ∩ ψ(V ) = {0}.” Indeed,
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let E be a nonseparable Banach space such that E∗∗ is weak∗-separable (an example is

E = c0(ω1), where ω1 denotes the first uncountable ordinal). According to Theorem 3.2, for

every V ∈ Rd(E
∗) there exists an isomorphism ψ : E∗ → E∗ such that ψ(V ) ∩ V = {0}.

On the other hand, if for every V ∈ Rd(E
∗) such isomorphism were a dual operator, then E

would be separable by Theorem 3.5.

4. Essentially disjoint operator ranges and quasicomplements

In this section, we establish some results which involve the existence of quasicomplemen-

tary subspaces of a Banach space with a special behaviour with respect to operator ranges

in that space, which enhance the characterizations of Banach spaces with weak∗-separable

dual and separable spaces given in the previous section. Before stating them, we need to

introduce some terminology from the recent paper [17]. We say that a closed subspace Y

of a Banach space E is a nuclearly adjacent quasicomplement of a closed subspace

X ⊂ E provided that X and Y are quasicomplementary and the restriction to Y of the

canonical quotient map Q : E → E/X is nuclear (that is, Q|Y : Y → E/X is one-to-one,

dense-range and nuclear). Two closed quasicomplementary subspaces X and Y are called

mutually nuclearly adjacent if X is nuclearly adjacent to X and Y is nuclearly adjacent

to X. Observe that, since every nuclear operator is compact, we have that if a subspace

X ⊂ E has a nuclearly adjacent quasicomplementary subspace, then E/X is separable, and

that if a subspace Y ⊂ E is a nuclearly adjacent quasicomplement of X, then the sum X+Y1

is not closed for any closed infinite-dimensional subspace Y1 ⊂ Y .

In [17, Corollary 2.12] it is shown that, if E is a Banach space with weak∗-separable

dual, then for any closed subspace X ⊂ E such that E/X is separable, each sequence

{Rk}k ⊂ R(E) with X ⊂
⋂
k≥1Rk and each ε > 0 there exists an isomorphism ϕ : E → E

with ‖ϕ− IE‖ < ε such that:

(1) ϕ(X) ∩ (
⋃
k≥1Rk) = {0} and

(2) the subspaces X and ϕ(X) are mutually nuclearly adjacent quasicomplementary.

In the case that {Rk}k reduces to only one operator range R, the construction of the

isomorphism ϕ can be carried out so that, in addition to these properties, the operator

range ϕ(R) is essentially disjoint with respect to R. More precisely, we have the following

result, which enhances as well assertion (4) from Theorem 3.2.

Theorem 4.1. Let E be a Banach space with weak∗-separable dual. If E has a separable

quotient then, for each closed subspace X ⊂ E such that E/X is separable, each R ∈ R(E)

with X ⊂ R and each ε > 0 there exists an isomorphism ϕ with ‖ϕ− IE‖ < ε such that:

(a) ϕ(R) ∩R = {0}, and

(b) the subspaces X and ϕ(X) are mutually nuclearly adjacent quasicomplementary.

Proof. Let Q be the canonical quotient map E → E/X. Since E/X is separable, there is a

sequence {un}n ⊂ E such that {Q(un)}n is an M -basis of E/X. Using Lemma 2.1 (applied

to the sequence {un}n and the operator range R), we deduce the existence of a minimal

sequence {en}n ⊂ BE, an isomorphism ψ : E → E and a sequence of (nonzero) scalars

{λn}n such that {en}n has property (∗) with respect to R and ψ(un) = λnen all n. From
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this, it easily follows that {Q(en)}n is an M -basis of E/X. On the other hand, as E∗ is weak∗-

separable, so is X∗, and [15, Theorem 1.22] yields a total X-minimal sequence {x∗n}n ⊂ X∗.

Since (E/X)∗ is weak∗-separable (being the dual of a separable space), thanks to Lemma

2.6 there is a sequence {fn}n ⊂ E∗ which is total over E and satisfies fn|X = x∗n for all n.

Choose constants cn > 0 such that
∑

n≥1 cn‖fn‖ < ε/(1 + ε). Then, the formula

ϕ(u) = u+
∑
n≥1

cnfn(u)en, u ∈ E

defines an isomorphism on E satisfying ‖ϕ− IE‖ < ε.

Pick a vector v ∈ R ∩ ϕ(R). Then, v = ϕ(u) for some u ∈ R, hence v − u ∈ R, and thus∑
n≥1

cnfn(u)en ∈ R.

Since {cnfn(u)}n ∈ `1 and the sequence {en}n satisfies property (∗) with respect to R it

follows that fn(u) = 0 for all n, and taking into account that {fn}n is total over E we get

u = 0. Therefore, v = 0, and assertion (a) is proved.

To check (b), we can follow some arguments from the proof of [17, Theorem 2.1]. We give

the details for the sake of completeness. Set Y = ϕ(X), let {xn}n be any sequence in X such

that {xn, fn}n is a biorthogonal system, and define, for each k ≥ 1, yk = ϕ(xk). Then

Q(yk) = Q

(
xk +

∑
n≥1

cnfn(xk)en

)
=
∑
n≥1

cnfn(xk)Q(en) = ckQ(ek).

Since {Q(ek)}k is linearly dense in E/X we get Q(Y ) = E/X. Therefore, X + Y is dense in

E. Moreover, as X = ϕ−1(Y ) and ϕ is the sum of the identity operator on E and a nuclear

endomorphism, thanks to [17, Lemma 2.3] we have that Q|Y is nuclear. Notice also that

ϕ−1(u) = u−
∑
n≥1

cnfn(u)ϕ−1(en) for all u ∈ E,

that is, ϕ−1 is the sum of the identity on E plus a nuclear endomorphism, and a new appeal

to [17, Lemma 2.3] entails that the restriction to X of the quotient map E → E/Y is nuclear.

Therefore, the subspaces X and Y are mutually nuclearly adjacent quasicomplements. �

In the case that E is separable, we have the following analogue of the previous result,

which yields a strengthening of Theorem 3.5.

Theorem 4.2. If E is a separable Banach space then, for each closed subspace X ⊂ E, each

R ∈ Rd(E) containing X, each V ∈ Rd(E
∗) and each ε > 0 there exists an isomorphism

ϕ : E → E with ‖ϕ− IE‖ < ε such that:

(a) ϕ(R) ∩R = {0},
(b) ϕ∗(V ) ∩ V = {0}, and

(c) the subspaces X and ϕ(X) are mutually nuclearly adjacent quasicomplementary.

Proof. Let Q : E → E/X be the quotient map, and set R1 = Q(R). Since R is a proper

dense operator range in E and X ⊂ R we have that R1 is a proper dense operator range in

E/X, and because of Lemma 2.1 (applied to any M -basis of E/X), there exists a sequence

{un}n ⊂ E such that {Q(un)}n is a bounded M -basis of E/X satisfying property (∗) with
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respect to R1. Using now [26, Theorem 3], we can find an M -basis {en}n of E (not necessarily

bounded) such that Q(en) = Q(un) for all n.

On the other hand, according to Lemma 2.6 there is an X-minimal sequence {gn}n ⊂ E∗

which is total over E. Thus, thanks to Lemma 2.2 there exists an X-minimal sequence

{fn}n ⊂ BE∗ satisfying property (∗) with respect to V , an isomorphism φ : E → E and

scalars λn 6= 0 such that fn = λnφ
∗(gn) for all n. Notice that if fn(u) = 0 for some u ∈ E

and all n, then gn(ψ(u)) = 0 for all n, and taking into account that {gn}n is total over E we

get ψ(u) = 0. Therefore u = 0, that is, {fn}n is total over E.

Now, choose scalars cn > 0 such that
∑

n≥1 cn‖en‖ < ε/(1 + ε). Then, the formula

ϕ(u) = u+
∑
n≥1

cnfn(u)en, u ∈ E

defines an isomorphism on E satisfying ‖ϕ− IE‖ < ε. Take u ∈ R such that ϕ(u) ∈ R. Then

Q(ϕ(u)) ∈ R1, thus Q(ϕ(u))−Q(u) ∈ R1, and therefore∑
n≥1

cnfn(u)Q(en) ∈ R1.

Since the sequence {Q(en)}n satisfies property (∗) with respect to R1 we obtain fn(u) = 0

for all n, and bearing in mind that {fn}n is total over E we get u = 0, thus assertion (a) is

proved. Analogously, if a functional f ∈ V satisfies ϕ∗(f) ∈ V , then∑
n≥1

cnf(en)fn = ϕ∗(f)− f ∈ V.

As {fn}n has property (∗) with respect to V and [{en}n] = E we get f = 0, so assertion (b)

is also fulfilled. Assertion (c) can be achieved arguing as in the proof of Theorem 4.1. �

The next result ensures the posibility of separating two proper quasicomplementary sub-

spaces through proper dense operator ranges.

Proposition 4.3. If E is a Banach space with weak∗-separable dual and a separable quotient,

then the following properties hold:

(1) For any R ∈ Rd(E) and any closed subspace Y ⊂ E such that R ∩ Y = {0} there

exists V ∈ Rd(E) satisfying Y ⊂ V and R ∩ V = {0}.
(2) For any two closed proper quasicomplementary subspaces X and Y of E there exist

R, V ∈ Rd(E) such that X ⊂ R, Y ⊂ V and V ∩R = {0}.

Proof. (1) Let us write R1 = R+Y . Then, R1 is a dense operator range in E. As R∩Y = {0}
and R is not closed, thanks to [7, Theorem 2.4] we have that R1 6= E, hence R1 ∈ Rd(E).

Since E∗ is weak∗-separable, using Theorem 3.2 we deduce the existence of an isomorphism

ϕ : E → E such that R1 ∩ ϕ(R1) = {0}. It is clear that ϕ(R1) ∈ Rd(E).

Now, define V = ϕ(R1) + Y. Since ϕ(R1) ∩ Y = {0}, again by [7, Theorem 2.4] we get

V ∈ Rd(E). Pick v ∈ V ∩ R. Then there exist x ∈ R1 and y ∈ Y such that ϕ(x) = y − v ∈
Y + R = R1, hence ϕ(x) ∈ ϕ(R1) ∩ R1, so ϕ(x) = 0, thus v ∈ Y ∩ R and therefore v = 0.

Consequently, V ∩R = {0}.
(2) Let us write R0 = X+Y . Since X and Y are proper quasicomplementary subspaces of

E we get R0 ∈ Rd(E), and an appeal to Theorem 3.2 yields the existence of a proper dense

operator range R1 ⊂ E such that R1 ∩R0 = {0}.
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Define R = X + R1. Since R1 ∈ Rd(E) and X ∩ R1 = {0} it follows that R ∈ Rd(E),

and taking into account that R1 ∩ R0 = {0} we get Y ∩ R = {0}. Thus, thanks to the first

assertion we deduce the existence of an operator range V ∈ Rd(E) such that Y ⊂ V and

V ∩R = {0}. �

Remark 4.4. In assertion (2) from Proposition 4.3, it is essential to assume that the quasi-

complementary subspaces X and Y are proper. Indeed, let R, V ∈ Rd(E) such that X ⊂ R

and Y ⊂ V . If X + Y = E then R+ V = E, and taking into account that R and V are not

closed it follows that R∩V 6= {0}. The latter assertion is a consequence of [7, Theorem 2.4].

As we mentioned, Cross and Shevchik [8, Theorem 6.2] proved that if E is a separable

Banach space, then for every R ∈ Rd(E) there exists a couple of closed quasicomplementary

subspaces X, Y ⊂ E such that R ∩ (X + Y ) = {0}. Next, we provide an extension of this

theorem for the class of Banach spaces with weak∗-separable dual and a separable quotient,

which yields as well another solution to the problem of Borwein and Tingley for this class of

spaces.

Theorem 4.5. Let E be a Banach space with weak∗-separable dual and a separable quotient.

If R ∈ Rd(E) then, for any ε > 0 there exist a closed subspace X ⊂ E and an isomorphism

ϕ : E → E such that ‖ϕ− IE‖ < ε, and if Y = ϕ(X) then

(1) X and Y are mutually nuclearly adjacent quasicomplementary subspaces, and

(2) R ∩ (X + Y ) = {0}.

Proof. Let R be a proper dense operator range in E. According to Proposition 3.3, there

exists a closed subspace Z ⊂ E such that E/Z is separable and R+Z has infinite codimension

in E.

Set R1 = R + Z. Then, R1 is an operator range in E, and thus R1 ∈ Rd(E). Since E∗

is weak∗-separable so is Z∗. Therefore, thanks to Theorem 4.1 there exists an isomorphism

ψ : E → E such that ‖IE − ψ‖ < ε/(1 + ε) and if F = ψ(Z), then R1 ∩ F = {0} and the

subspaces F and Z are mutually nuclearly adjacent quasicomplementary.

Set R2 = R1 +F. Then, R2 is an operator range in E. Taking into account that R1 ∩F =

{0}, F is closed in E and R1 is not closed in E, according to [7, Theorem 2.4] it follows that

R2 is not closed in E, and thus R2 ∈ Rd(E). Now, an appeal to Theorem 3.2 ensures the

existence of an isomorphism S : E → E such that ‖S‖‖S−1‖ < 1 + ε and S(R2)∩R2 = {0}.
Consider the isomorphism ϕ = S ◦ ψ ◦ S−1, and the subspaces

X = S(Z) and Y = S(F ).

Then ‖ϕ− IE‖ < ε and Y = ϕ(X). Moreover, since F is a quasicomplement of Z, it follows

that Y is a quasicomplement of X. We claim that Y is nuclearly adjacent to X. Indeed, let

Q1 : E → E/Z and Q2 : E → E/X denote the canonical quotient maps from E onto E/Z

and E/X respectively, and let Ψ : E/Z → E/X be the map defined as

Ψ(Q1(u)) = Q2(S(u)), u ∈ E.

It can be verified that Ψ is an isomorphism between E/Z and E/X. For every u ∈ E we

have Ψ
(
Q1

(
S−1(u)

))
= Q2(u), hence Q2|Y = Ψ ◦Q1|F ◦ S−1|Y . As F is a nuclearly adjacent

quasicomplement of Z we have that Q1|F is a nuclear operator, thus, Q2|Y is nuclear as
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well. Therefore, Y is nuclearly adjacent to X. The same argument yields that X is nuclearly

adjacent to Y .

To finish, notice that, since Z ⊂ R1 we have X + Y = S(Z + F ) ⊂ S(R1 + F ) = S(R2).

Therefore, if w ∈ R ∩ (X + Y ) then w ∈ R2 ∩ S(R2), and hence w = 0. Consequently

R ∩ (X + Y ) = {0}, as we wanted. �

In view of Theorem 4.5, it is natural to investigate the possibility of finding, for a closed

infinite-codimensional subspace X of a Banach space E with weak∗-separable dual E∗, a

pair of quasicomplementary subspaces Y, Z ⊂ E such that X ∩ (Y + Z) = {0}, or merely

a proper dense operator range R ⊂ E such that X ∩ R = {0}. The next result guarantees

that both properties are actually equivalent.

Theorem 4.6. Let E be a Banach space with weak∗-separable dual. If X is a closed subspace

of E with codimE(X) =∞, then the following assertions are equivalent:

(1) E/X has a separable quotient.

(2) There exists an operator range R ∈ Rd(E) such that R ∩X = {0}.
(3) There exists a pair of proper quasicomplementary subspaces Y, Z ⊂ E such that

X ∩ (Y + Z) = {0}.
(4) There exists a pair of isomorphic mutually nuclearly adjacent quasicomplementary

subspaces Y, Z ⊂ E such that X ∩ (Y + Z) = {0}.
(5) There exists a closed subspace Y ⊂ E such that X ∩ Y = {0}, E/Y is separable and

the sum X + Y is not closed.

Proof. The implications (4) ⇒ (3) ⇒ (2) are trivial. We shall show that (1) ⇒ (5) ⇒ (4)

and (2)⇒ (1). Assume that property (1) is satisfied. Since X∗ is weak∗-separable (as E∗ is)

and E/X has a separable quotient, thanks to Theorem [17, Corollary 2.9] X has a proper

quasicomplement Y such that E/Y is separable. Thus (1)⇒ (5).

Now, let Y0 ⊂ E be a closed subspace verifying property (5), and define R = X + Y0.

Then R is an operator range in E. Bearing in mind that R is not closed in E, according

to [1, Corollary 2.17] we get codimE(R) = ∞. Since E/Y0 is separable and Y0 ⊂ R, an

appeal to [17, Corollary 2.12] (or Theorem 4.1) entails the existence of a closed subspace

Y1 ⊂ E, isomorphic to Y0, such that Y1 is a nuclearly adjacent quasicomplement of Y0 and

Y1 ∩R = {0}.
Set R1 = R + Y1. Since Y0 + Y1 is dense in E we have that R1 is a dense operator

range in E, and taking into account that, by hypothesis, R is not closed in E, thanks to [7,

Theorem 2.4] it follows that R1 6= E. Consequently, R1 ∈ Rd(E). Using now Theorem 4.5

we deduce the existence of a closed subspace Y ⊂ E and an isomorphism ϕ : E → E such

that Y and Z = ϕ(Y ) are mutually nuclearly adjacent quasicomplementary subspaces and

R1 ∩ (Y + Z) = {0}. In particular, as R1 ⊃ X we obtain X ∩ (Y + Z) = {0}. Therefore

(5)⇒ (4). Finally, assume there exists R ∈ Rd(E) such that R∩X = {0}, and set V = R+X.

Since V ∈ Rd(E), Lemma 3.4 yields that E/X has a separable quotient, thus (2)⇒ (1). �

Remark 4.7. Rosenthal [23] (see e.g. [15, Theorem 5.83]) proved that if X is a closed

infinite-codimensional subspace of `∞, then the subspace X⊥ ⊂ (`∞)∗ contains a reflexive

subspace, in particular `∞/X has a separable quotient. Therefore, thanks to Theorem 4.6

there exist closed quasicomplementary subspaces Y, Z ⊂ `∞ such that X ∩ (Y + Z) = {0}.
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In the case that the space E is hereditarily indecomposable, we have the following result,

which simplifies the spaceability condition (5) of the set E \X in Theorem 4.6.

Corollary 4.8. If X is a closed infinite-codimensional subspace of an hereditarily indecom-

posable Banach space E, then the following assertions are equivalent:

(1) X is quasicomplemented in E.

(2) There exists a closed subspace Y ⊂ E such that E/Y is separable and X ∩ Y = {0}.
(3) There exist two closed mutually nuclearly adjacent quasicomplementary isomorphic

subspaces Y, Z ⊂ E such that X ∩ (Y + Z) = {0}.

Proof. Being hereditarily indecomposable, the space E has weak∗-separable dual (cf. [4,

Theorem 1.3]). Moreover, if X satisfies (1) and X1 is a quasicomplement of X, then (as

X is infinite-codimensional and E is hereditarily indecomposable) we have that X + X1

is not closed, in particular X1 is a proper quasicomplement of E, thus R = X + X1 is a

proper dense operator range in E. By Theorem 4.6, there exist isomorphic mutually nuclearly

adjacent quasicomplementary subspaces Y, Z ⊂ E such that R ∩ (Y + Z) = {0}, therefore

X ∩ (Y + Z) = {0}, and so (1) ⇒ (3). The implication (3) ⇒ (2) is trivial. On the other

hand, if a subspace Y ⊂ E satisfies (2) then, as E is hereditarily indecomposable the sum

X+Y is not closed. Thus, again by Theorem 4.6 we have that E/X has a separable quotient,

and an appeal to the Theorem of Lindenstrauss and Rosenthal (cf. [15, Theorem 5.79], see

also [17, Theorem 3.1]) yields that X is quasicomplemented in E, therefore (2)⇒ (1). �

Another application of Theorem 4.6 yields the following result.

Corollary 4.9. Let E be a Banach space with weak∗-separable dual, and let X be a closed

infinite-codimensional subspace of E. Assume there exists a closed subspace Y0 ⊂ E such

that:

(1) X ∩ Y0 = {0},
(2) E/Y0 is separable, and

(3) Y0 has a separable quotient.

Then, there exist two isomorphic mutually nuclearly adjacent quasicomplementary subspaces

Y, Z ⊂ E such that X ∩ (Y + Z) = {0}.

Proof. Let us write R = X + Y0. Then, R is an operator range in E. Assume first that

codimE(R) = ∞. Since E/Y0 is separable and Y ∗0 is weak∗-separable (as E∗ is), according

to [17, Theorem 2.1] there exists a closed subspace Z ⊂ E such that R ∩ Z = {0} and Z is

a proper quasicomplement of Y0. Set V = R + Z. Then X ⊂ V and V ∈ Rd(E). Therefore,

by Lemma 3.4, E/X has a separable quotient, and Theorem 4.6 applies.

Now, suppose that R is finite-codimensional in E. Then R is a closed subspace of E, and

R = X ⊕ Y0. Let F be a finite-dimensional subspace of E such that R ∩ F = {0} and

R + F = E. Define Y1 = Y0 + F. Since Y0 has a separable quotient, so does Y1. Taking into

account that E/X is isomorphic to Y1 it follows that E/X has a separable quotient as well,

and a new appeal to Theorem 4.6 yields the desired conclusion. �



OPERATOR RANGES IN BANACH SPACES WITH WEAK STAR SEPARABLE DUAL 19

5. Operator ranges in weakly Lindelöf determined Banach spaces

In this section, we establish the impossibility of extending some of the previous results to a

wide class of Banach spaces with no weak∗-separable dual. In particular, we show that some

weak forms of the theorems of Shevchik and Cross-Shevchik do not hold in any nonseparable

weakly Lindelöf determined space. Recall that a Banach space E is said to be weakly

Lindelöf determined (WLD, for short) if there exist a set Γ and a one-to-one (weak∗,

τp)-continuous operator T : E∗ → `c∞(Γ), where `c∞(Γ) is the space of all x ∈ `∞(Γ) with

countable support (that is, card ({γ ∈ Γ : x(γ) 6= 0}) ≤ ℵ0), and τp denotes the topology

of pointwise convergence on that space. WLD spaces constitute a large class that contains

the one of WCG (weakly compactly generated) spaces. It is well-known that if E is a WLD

space, then E is DENS, that is, the weak∗-density character of E∗ agrees with the density

character of E (cf. [15, Proposition 5.40]), and that if X is a closed subspace of E, then X

is WLD (cf. [15, Corollary 5.43]) and has a quasicomplementary subspace (cf. [15, Corollary

5.74]). From the latter and the results in [24] it follows that if E is a WLD space, then E

has a separable quotient, and Rd(E) 6= ∅. We also notice that, by the very definition, the

class of WLD spaces is stable for quotients. For more information on this class we refer to

the paper [3] and the monograph [15].

The results of the two previous sections yield the following characterization of separable

spaces among WLD spaces in terms of essential disjointness properties of operator ranges.

Fact 5.1. If E is a WLD space, then the following assertions are equivalent:

(1) E is separable.

(2) For each R ∈ Rd(E) there exists a one-to-one endomorphism T : E → E such that

T (E) ∩R = {0}.
(3) For each R ∈ Rd(E) and each ε > 0 there exists an isomorphism ϕ : E → E such

that ‖ϕ− IE‖ < ε and ϕ(R) ∩R = {0}.
(4) For each R ∈ Rd(E) there exists a closed subspace Y ⊂ E such that E/Y is separable

and R ∩ Y = {0}.
(5) For each R ∈ Rd(E) there exist two closed isomorphic mutually nuclearly adjacent

quasicomplementary subspaces Y, Z ⊂ E such that R ∩ (X + Y ) = {0}.
(6) For each closed subspace X ⊂ E of infinite codimension there exist two closed iso-

morphic mutually nuclearly adjacent quasicomplemented subspaces Y, Z ⊂ E such

that X ∩ (Y + Z) = {0}.
Proof. Since WLD spaces are DENS and have a separable quotient, the equivalence between

properties (1), (3) and (4) is a consequence of Theorem 3.2, (1) ⇒ (2) is a particular case

of Shevchik’s theorem, and (2) ⇒ (1) follows again from Theorem 3.2. The implication

(1)⇒ (5) is Theorem 4.5, and (1)⇒ (6) follows from Theorem 4.6. On the other hand, if E

contains a couple of mutually nuclearly adjacent quasicomplementary subspaces, then E∗ is

weak∗-separable (cf. [17, Corollary 2.14]), thus assertions (5) and (6) both imply (1). �

Next, we provide some refinements of Fact 5.1. In particular, we will show that a WLD

space E is separable if, and only if, for every R ∈ Rd(E) there exists a dense-range operator

T : E → E such that T (E) ∩ R = {0}. We start with an example of this situation in the

Hilbert space setting.
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Example 5.2. Let Γ be any uncountable set, consider the Hilbert space H = `2(Γ)⊕ `2(N),

let R be a proper dense operator range in `2(N), and let Q be the operator range in H

defined as Q = `2(Γ) ⊕ R. Then, there is no continuous linear operator T : H → H with

dense range such that T (H) ∩Q = {0}.

Indeed, suppose that such an operator T exists. Set W = H/ kerT and let T̂ : W → H be

the operator defined for each x̂ ∈ W as T̂ (x̂) = T (x). Then, T̂ is injective and has the same

dense range as T . Since T̂ is dense in H it follows that W is a nonseparable Hilbert space.

Now, consider the composition π◦ T̂ : W → `2(N), where π is the orthogonal projection of H

onto `2(N). Then, π ◦ T̂ : W → `2(N) is one-to-one. Indeed, if π ◦ T̂ (x) = 0 for some x ∈ W ,

then T̂ (x) ∈ `2(Γ). Since `2(Γ) ⊂ Q and T̂ (W ) ∩ Q = {0}, we have that T̂ (x) = 0 and

thus x = 0 (because of the injectivity of T̂ ). Thus, if {e∗n}n is the sequence of biothogonal

functionals associated with the canonical basis of `2(N), then the sequence {(π ◦ T̂ )∗(e∗n)}n
is total over W , therefore W is separable, a contradiction. �

Now, we state the promised result. As regards assertions (2)− (5) in the next theorem we

point out that, in general, the class of operator ranges in a Banach space is strictly larger

than the one of endomorphism ranges (cf. [7, 13]).

Theorem 5.3. If E is a WLD space, then the following assertions are equivalent:

(1) E is separable.

(2) For each proper dense endomorphism range R in E there exists a one-to-one endo-

morphism T : E → E such that T (R) ∩R = {0}.
(3) For each proper dense endomorphism range R in E there exists an endomorphism

T : E → E such that T (E) = E and T (R) ∩R = {0}.
(4) For each proper dense endomorphism range R in E there exists a closed subspace

Y ⊂ E such that E/Y is separable and R ∩ Y = {0}.
(5) For each proper dense endomorphism range R in E there exist two closed subspaces

Y, Z ⊂ E such that Y + Z is dense in E and R ∩ Y = R ∩ Z = {0}.
(6) For each closed subspace X ⊂ E with codimE X =∞ there exist two closed subspaces

Y, Z ⊂ E such that Y + Z is dense in E and X ∩ Y = X ∩ Z = {0}.

In the proof of this theorem we shall use the following easy fact.

Lemma 5.4. If E is a WLD space, then E contains a proper dense endomorphism range R

and a closed subspace X such that E/X is separable and X ⊂ R. In particular, if Z is any

closed subspace of E such that R ∩ Z = {0}, then Z is separable.

Proof. Being WLD, the space E contains a separable complemented subspace, say Y (cf.

[15, p. 105]). Consider a proper dense endomorphism range R0 in Y , let π : E → Y be a

projection onto Y and set X = ker π. Then, the sum R = R0 + X is a proper dense linear

subspace of E. Moreover, because of the separability of Y we have that E/X is separable.

On the other hand, if U0 : Y → Y is an endomorphism with U0(Y ) = R0 and U : E → E is

the operator defined as U = U0 ◦ π + (IE − π), then R = U(E), thus R is an endomorphism

range in E.

Now, consider a closed subspace Z ⊂ E such that R ∩ Z = {0}. Then X ∩ Z = {0},
therefore the restriction to Z of the quotient map Q : E → E/X is one-to-one, and taking
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into account that E/X is separable it follows that Z∗ is weak∗-separable. Since Z is a WLD

space, it is DENS, consequently Z is separable. �

Proof of Theorem 5.3. The fact that (1) implies the rest of assertions is already known. Let

us prove the reverse implications. Along the proof, the symbols R and X denote a proper

dense endomorphism range in E and a closed subspace X ⊂ R satisfying the properties

specified by the previous lemma.

Suppose that assertion (2) holds. Then there exists a one-to-one operator T : E → E

such that T (R) ∩ R = {0}, in particular T (X) ∩X = {0}. Since E/X is separable, thanks

to Theorem 3.2 we deduce that E∗ is weak∗-separable, and taking into account that every

WLD space is DENS, it follows that E is separable, thus (2)⇒ (1).

Next, assume that assertion (3) is satisfied. Let T : E → E be a dense-range operator

such that T (R)∩R = {0}. Since E/X is separable, according to [17, Corollary 2.7], we have

that X admits a separable quasicomplementary subspace, say Y . Then T (Y ) is separable.

Thus, bearing in mind that X + Y is dense in E and T (E) = E, in order to prove that E is

separable it is enough to show that T (X) is separable. Let us write T1 = T |X : X → E, and

let T̂1 : X/ kerT1 → E be the one-to-one operator defined by the formula

T̂1(x̂) = T1(x) = T (x), x̂ ∈ X/ ker T̂1.

Consider the composition S = Q ◦ T̂1 : X/ kerT1 → E/X, where Q : E → E/X denotes

the quotient map onto E/X. As T̂1 is one-to-one and T (X) ∩X = {0} it follows that S is

one-to-one. Therefore, its adjoint S∗ : (E/X)∗ → (X/ kerT1)∗ has weak∗-dense range, and

taking into account that (E/X)∗ is weak∗-separable we deduce that (X/ kerT1)∗ is weak∗-

separable as well. On the other hand, since the class of WLD spaces is stable for quotients,

we have that X/ kerT1 is WLD, hence X/ kerT1 is separable, and bearing in mind that

T̂1 (X/ kerT1) = T1(X) = T (X) we deduce that T (X) is separable, consequently (3)⇒ (1).

Now, suppose that property (4) holds. Then, there exists a closed subspace Y ⊂ E such

that E/Y is separable and R ∩ Y = {0}. By the previous lemma, Y must be separable.

Hence E is separable, so (4)⇒ (1). Now, if (5) is satisfied, then we can find closed subspaces

Y, Z ⊂ E such that the sum Y +Z is dense in E and R∩ Y = R∩Z = {0}. Lemma implies

that Y and Z are separable, and since Y +Z is dense in E we have that E is separable, too,

hence (5)⇒ (1). Following the same argument we achieve (6)⇒ (1). �
In [14, Corollary 2.6] (see also [8, Proposition 5.1]), it was shown that if H is a separable

Hilbert space, then for every R ∈ R(E) there exist two closed subspaces H0 and H1 of H

such that H = H0⊕⊥H1 and H0 ∩R = H1 ∩R = {0}. As an immediate consequence of this

result and Theorem 5.3 we obtain the following characterization of separable Hilbert spaces.

Corollary 5.5. If H is a Hilbert space, then the following assertions are equivalent:

(1) H is separable.

(2) For every R ∈ R(H) there exists an orthogonal decomposition H = H0 ⊕⊥ H1 such

that H0 ∩R = H1 ∩R = {0}.
(3) For every proper dense endomorphism range R in H there exists an orthogonal de-

composition H = H0 ⊕⊥ H1 such that H0 ∩R = H1 ∩R = {0}.
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As we mentioned in the Introduction, Plichko [22] proved that every Banach space with

a fundamental biorthogonal system contains a couple of dense essentially disjoint operator

ranges. On the other hand, Theorem 5.3 yields that if E is a nonseparable WLD space,

then there exists an operator range R ∈ Rd(E) such that R ∩ T (R) 6= {0} for any one-

to-one endomorphism T : E → E. Bearing in mind that every WLD has a fundamental

biorthogonal system (cf. [15, Theorem 5.37]), it is natural to ask if, for any WLD space

E, there exist a proper dense operator range V ⊂ E and an isomorphism (or a one-to-one

operator) T : E → E such that T (V )∩ V = {0}. The next example provides a first result in

this direction.

Example 5.6. For every set Γ and every ε > 0 there exist a proper dense endomorphism

range W in c0(Γ) and an isomorphism Φ : c0(Γ) → c0(Γ) such that ‖Φ − Ic0(Γ)‖ < ε and

Φ(W ) ∩W = {0}.

Indeed, consider c0(Γ) partitioned in the following way

c0(Γ) =

{
(xα)α∈Γ : xα ∈ c0 for all α ∈ Γ and lim

α∈Γ
‖xα‖∞ = 0

}
,

with the norm ‖(xα)α∈Γ‖∞ = supα∈Γ ‖xα‖∞. Let V be any proper dense endomorphism

range in c0. According to Theorem 3.1, there exists an isomorphism ϕ : c0 → c0 such that

‖ϕ−Ic0‖ < ε and ϕ(V )∩V = {0}. Now, let T : c0 → c0 be an operator such that T (c0) = V .

Then, the formula

T̂ ((xα)α∈Γ) = (T (xα))α∈Γ , (xα)α∈Γ ∈ c0(Γ)

defines an endomorphism T̂ : c0(Γ)→ c0(Γ). Let us write W = T̂ (c0(Γ)) . We claim that W

is dense in c0(Γ). Indeed, choose a vector (xα)α∈Γ ∈ c0(Γ) and δ > 0. Then, there are finitely

many indices α1, . . . , αn such that ‖xα‖∞ < δ for all α ∈ Γ \ {α1, . . . , αn}. Since T (c0) = c0

we can find vectors uα1 , . . . , uαn ∈ c0 such that
∥∥T (uαj

)− xαj

∥∥
∞ < δ for each j = 1, . . . , n.

Define uα = 0 if α ∈ Γ \ {α1, . . . , αn}. Then, (uα)α∈Γ ∈ c0(Γ), and ‖T̂ ((uα)α)− (xα)α‖∞ < δ.

Therefore, W is a dense endomorphism range in c0(Γ). Now, let Φ : c0(Γ) → c0(Γ) be the

operator defined by the formula

Φ ((xα)α∈Γ) = (ϕ(xα))α∈Γ , (xα)α∈Γ ∈ c0(Γ).

Since ϕ : c0 → c0 is an isomorphism we may assume that there is 0 < m ≤ 1 such that

m‖x‖∞ ≤ ‖ϕ(x)‖∞ ≤ ‖x‖∞ for all x ∈ c0.

This yields m‖(xα)α‖∞ ≤ ‖Φ ((xα)α)‖∞ ≤ ‖(xα)α‖∞, for all (xα) ∈ c0(Γ). Therefore, Φ is

an isomorphic embedding. Now, pick a vector (yα)α∈Γ ∈ c0(Γ), and set, for each α ∈ Γ,

xα = ϕ−1 (yα). Then, (xα)α ∈ c0(Γ) and Φ ((xα)α) = (yα)α, thus Φ is surjective, and so an

isomorphism. Notice also that ‖Φ− Ic0(Γ)‖ = ‖ϕ− Ic0‖ < ε. To finish, take (xα)α ∈ W such

that Φ ((xα)α) ∈ W . Then ϕ(xα) ∈ V ∩ ϕ(V ) for all α ∈ Γ. Since ϕ(V ) ∩ V = {0} we get

ϕ(xα) = 0, and thus xα = 0 for all α ∈ Γ. Consequently, Φ(W )∩W = {0}, as we wanted. �
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