MATEMÁTICAS BÁSICAS Temas 1, 2 y 3, Grupos de mañana

¡Justifica adecuadamente tu respuesta en cada apartado del examen!

- 1 Escribe la siguiente proposición y su negación con cuantificadores. Justifica cuál de las dos es verdadera.
- **P:** / Para cualquier número entero impar c se puede encontrar un número entero n que cumple $n^3 3n + c = 0$ /.
- **2** Demuestra por inducción que para todo n > 1 se cumple que $n! < n^n$
- **3** Sean x, y numeros reales. Demuestra que si $\sqrt{x^4 + 2x^2 + 5} \neq \sqrt{y^4 + 2y^2 + 5}$, entonces $x \neq y$.
- **4** Se considera el producto cartesiano $\mathbb{N} \times \mathbb{N}$ y el subconjunto $A \subset \mathbb{N} \times \mathbb{N}$ dado por $A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m n > 0\}.$
- a) Representa gráficamente el conjunto A.
- b) Si $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ está definida por f((m,n)) = m-n, determina f((3,2)), f((2,3)), f((1,1)) y f((2,2)). ¿Es f inyectiva? ¿Es f sobreyectiva?
- c) Describe los conjuntos $\{(m,n) \in \mathbb{N} \times \mathbb{N} : f((m,n)) = 0\}$ y $\{(m,n) \in \mathbb{N} \times \mathbb{N} : f((m,n)) = -1\}$.
- d) Prueba la siguiente proposición

P: $/(m,n) \in A$ si y sólo si $f((m,n)) \in \mathbb{N}$. /

- **5** Se consideran los conjuntos $A = \{n \in \mathbb{N} : n \ge 2\}$ y $B = \{p \in \mathbb{N} : p \text{ es primo}\}$ y definimos $f : A \to B$ asignando a cada $n \in A$ el **mayor** primo que divide a n.
 - a) Calcula f(4), f(6), f(15) y f(18). ¿Es f inyectiva? ¿Es sobreyectiva?
- b) Se considera la relación en el conjunto A dada por nRm si f(n) = f(m). Demuestra que es una relación de equivalencia en A.
- c) Determina primero la clase de equivalencia de 2 para la relación anterior (es decir, el conjunto $[2] = \{m \in A : 2Rm\}$). Describe la clase del 3.

MATEMÁTICAS BÁSICAS Temas 1, 2 y 3, Grupos de tarde

¡Justifica adecuadamente tu respuesta en cada apartado del examen!

- ${f 1}$ Los números m,n son enteros. Escribe la siguiente proposición y su negación con cuantificadores. Justifica cuál de las dos es verdadera.
- **P:** / Si para todo número natural p se cumple $m n \le p$, entonces m < n/.
- **2** Se consideran los números naturales $a_1 = 1$, $a_2 = 3$ y, para $n \ge 3$, $a_n = a_{n-1} + a_{n-2}$. Determina los números a_3, a_4 y a_5 . Demuestra por inducción completa que $a_n < (7/4)^n$, para todo $n \in \mathbb{N}$.
- **3** Demuestra marcha atrás que si $m \ge 3$, entonces $\frac{(m-1)^2}{m} \le m \frac{5}{3}$.
- **4** Para un subconjunto A del dominio de la aplicación f, se usará la notación habitual f(A) para el conjunto $\{f(a): a \in A\}$.
- a) Representa gráficamente los conjuntos $B = \{0\} \times \mathbb{Z}$ y $C = \mathbb{Z} \times \{0\}$.
- b) Sea $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ la aplicación dada por f(m,n) = 2m + 3n. Describe f(B) y f(C), con B y C los conjuntos del apartado anterior.
- c) Determina el conjunto $f(B) \cap f(C)$ y justifica que $f(B) \cap f(C) \neq f(B \cap C)$.
- **5** Sea $f: \mathbb{N} \to \mathbb{N}$ que hace corresponder a cada natural n el número de divisores de n. Por ejemplo, f(2) = 2 y f(6) = 4.
 - a) Razona si f es invectiva y si es sobrevectiva.
 - b) Determina f(12), f(31) y f(2019) [2019 = 3.673 y ambos factors son primos].
 - c) Encuentra tres elementos distintos de $f^{-1}(\{6\})$.
 - d) Determina $f^{-1}(\{2\})$.