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Chebyshev Polynomials

Let K ⊂ C be a compact set consisting of infinitely many points and

denote the supremum norm on K by ∥f∥K = supz∈K |f(z)|.

The n-th Chebyshev polynomial on K is the unique polynomial Tn(z)

which minimizes ∥Tn∥K among all monic polynomials of degree n.

The classical polynomials of least deviation from zero go back to

Chebyshev [1854]

If K = [−1, 1], then Tn(x) =
1

2n−1 cos(n arccosx).

For a general set K the Chebyshev polynomials are not know explicitly.

But for applications one is interested in sharp bounds and asymptotics.

Fekete [1923], Szegő [1924]

For any compact set K ⊂ C,
lim
n→∞

∥Tn∥1/nK = Cap(K).
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Capacity, Equilibrium Measure, Green’s Function

The Robin constant of a compact set K ⊂ C is defined by

R(K) = inf
supp(µ)⊂K, µ(K)=1

∫∫
log

1

|x− y|
dµ(x)dµ(y)

and the logarithmic capacity of K is given by Cap(K) = e−R(K).

Sets with Cap(K) > 0 are called nonpolar. For such sets the infimum is

attained on a unique measure ρK called the equilibrium measure.

If K is nonpolar, the outer domain Ω = unbounded component of C\K
supports the Green’s function - a unique positive harmonic function with

a logarithmic pole at infinity and zero boundary values q.e. on ∂Ω.

GK(z) = log
|z|

Cap(K)

(
1 + o(1)

)
as z → ∞.

The set K is called regular if GK(z) = 0 everywhere on ∂Ω.
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Lower Bounds

To simplify notation, we introduce Widom factors: Wn(K) =
∥Tn∥K

Cap(K)n
.

Szegő’s root asymptotics Wn(K)
1/n → 1 allows for sub-exponential

growth/decay of Wn(K). But it turns out that:

Szegő [1924]

For any nonpolar compact set K ⊂ C,

inf
n

Wn(K) ≥ 1.

There are sets for which the Szegő inequality is optimal (e.g., smooth

closed Jordan curves), but for K ⊂ R the sharp lower bound is larger:

Schiefermayr [2008]

For any nonpolar compact set K ⊂ R,

inf
n

Wn(K) ≥ 2.
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Upper Bounds

However, Widom factors can grow sub-exponentially:

Goncharov–Hatinoglu [2015]

For any sequence Dn ≥ 1 of sub-exponential growth (i.e. 1
n logDn → 0)

there exists a compact set K ⊂ R (a zero measure Cantor-type set) s.t.

Wn(K) ≥ Dn, n ≥ 1.

Nevertheless, for finitely connected sets we have:

Widom [1969], Totik–Varga [2015], Andrievskii [2016]

If K ⊂ C is a finite disjoint union of quasiconformal arcs/curves, then

sup
n

Wn(K) < ∞.

Example: Koch snowflake is a quasiconformal curve.

Open Problem: Is Wn(K) bounded for any connected compact set K?
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Parreau–Widom and Homogeneous Sets

A compact set K ⊂ C is called Parreau–Widom if

PW (K) =
∑

{cj : ∇GK(cj)=0}

GK(cj) < ∞.

Parreau–Widom sets K ⊂ R are necessarily of positive Lebesgue measure.

A compact set K ⊂ R is called homogeneous if there is a uniform lower

bound on its Lebesgue density:

∃δ > 0 s.t. |K ∩ (x− ε, x+ ε)| > δε ∀x ∈ K, 0 < ε < 1.

Every homogeneous set is Parreau–Widom and regular.

A canonical example of a homogeneous set is a positive measure middle

{εn}∞n=1 Cantor set, that is, [0, 1] with the middle εn-th portion removed

at step n for a summable sequence {εn}∞n=1 ⊂ (0, 1).
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Upper Bound for Parreau–Widom Sets

Christiansen–Simon–Z [2017]

If K ⊂ R is regular and Parreau–Widom, then

sup
n

Wn(K) ≤ 2 exp[PW (K)]

and the upper bound is (asymptotically) attained for a generic set.

A compact set K ⊂ C is said to have rationally independent harmonic

measures if for every decomposition K = K0 ∪ · · · ∪Kℓ into closed disjoint

sets, harmonic measures ρK(K1), . . . , ρK(Kℓ) are rationally independent.

Christiansen–Simon–Yuditskii–Z [2019]

If Wn(K) is bounded for a compact, regular set K ⊂ C with rationally

independent harmonic measures, then K is Parreau–Widom.

Open Problem: Is there a non-PW set K with bounded Wn(K)?
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Weighted Chebyshev Polynomials

Let w : K → [0,∞) be a bounded weight function which is positive at

infinitely many points of K. Then the weighted Chebyshev polynomials

Tn,w are the unique monic polynomials that minimizes ∥wTn,w∥K.

There is a root asymptotics, ∥wTn,w∥1/nK → Cap(K) if w > 0 ρK-a.e.

To simplify notation, we introduce the weighted Widom factors and the

(exponential of) Szegő/entropy integral:

Wn(K, w) =
∥wTn,w∥K
Cap(K)n

, S(K, w) = exp

[∫
logw(z) dρK(z)

]
.
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Weighted Lower Bounds

Novello–Schiefermayr–Z [2021]

For any nonpolar compact set K ⊂ C,

inf
n

Wn(K, w) ≥ S(K, w)

and the inequality is sharp even for real sets K.

Alpan–Z [2024x], Christiansen–Simon–Z [2025x]

Let K ⊂ R be a nonpolar compact set. Then

If w(x) =
∣∣∏

j
x−αj

x−βj

∣∣ with αj ∈ K, βj /∈ K,
∑

j GK(βj) < ∞, then

inf
n

Wn(K, w) ≥ 2S(K, w)

If w is continuous with at most finitely many algebraic zeros, then

lim inf
n→∞

Wn(K, w) ≥ 2S(K, w)
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Weighted Upper Bounds

Widom [1969], Christiansen–Simon–Z [2025x]

If K ⊂ C is a finite disjoint union of C2+ closed curves and w is USC,

then
lim sup
n→∞

Wn(K, w) ≤ S(K, w) exp[PW (K)]

If K ⊂ C is a finite disjoint union of C2+ arcs or K ⊂ R is regular and

Parreau–Widom and w is USC, then

lim sup
n→∞

Wn(K, w) ≤ 2S(K, w) exp[PW (K)].

Corollary: A Szegő-type Theorem in L∞L∞L∞

If K ⊂ R is regular and Parreau–Widom or K ⊂ C is a finite disjoint

union of C2+ arcs/curves and w is USC, then

inf
n

Wn(K, w) > 0 ⇐⇒
∫

logw(z)dρK(z) > −∞

and if either one holds then also supnWn(K, w) < ∞
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Some Asymptotics

Bucheker-Eichinger-Z [2025x]

If K is a C1+ Jordan region and w is USC on K, then

lim
n→∞

Wn(K, w) = S(K, w)

Lubinsky-Saff [1987], Alpan-Z [2024x]

If K is an interval and either w is USC with 1/w ∈ Lp for all p < ∞ or

w is continuous with at most finitely many zeros, then

lim
n→∞

Wn(K, w) = 2S(K, w)

Thiran–Detaille [1991], Christiansen-Eichinger-Rubin-Z

If K is an arc on the unit circle of angular opening α ∈ (0, 2π) and w is

continuous with at most finitely many algebraic zeros, then

lim
n→∞

Wn(K, w) =
[
1 + cos(α/4)

]
S(K, w)
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Finally. . .

Thank you for your attention!
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