Bounds for L^{∞} Extremal Polynomials

Maxim Zinchenko

Department of Mathematics and Statistics University of New Mexico

47th Summer Symposium in Real Analysis Universidad Complutense de Madrid June 16, 2025

Let $K \subset \mathbb{C}$ be a compact set consisting of infinitely many points and denote the supremum norm on K by $||f||_{\mathsf{K}} = \sup_{z \in \mathsf{K}} |f(z)|$.

The *n*-th Chebyshev polynomial on K is the unique polynomial $T_n(z)$ which minimizes $||T_n||_{\mathsf{K}}$ among all monic polynomials of degree *n*.

Let $K \subset \mathbb{C}$ be a compact set consisting of infinitely many points and denote the supremum norm on K by $||f||_{\mathsf{K}} = \sup_{z \in \mathsf{K}} |f(z)|$.

The *n*-th Chebyshev polynomial on K is the unique polynomial $T_n(z)$ which minimizes $||T_n||_{\mathsf{K}}$ among all monic polynomials of degree *n*.

The classical polynomials of least deviation from zero go back to

Chebyshev [1854]

If
$$K = [-1, 1]$$
, then $T_n(x) = \frac{1}{2^{n-1}} \cos(n \arccos x)$.

For a general set K the Chebyshev polynomials are not know explicitly.

Let $K \subset \mathbb{C}$ be a compact set consisting of infinitely many points and denote the supremum norm on K by $||f||_{\mathsf{K}} = \sup_{z \in \mathsf{K}} |f(z)|$.

The *n*-th Chebyshev polynomial on K is the unique polynomial $T_n(z)$ which minimizes $||T_n||_{\mathsf{K}}$ among all monic polynomials of degree *n*.

The classical polynomials of least deviation from zero go back to

Chebyshev [1854]

If
$$K = [-1, 1]$$
, then $T_n(x) = \frac{1}{2^{n-1}} \cos(n \arccos x)$.

For a general set K the Chebyshev polynomials are not know explicitly. But for applications one is interested in sharp bounds and asymptotics.

Let $K \subset \mathbb{C}$ be a compact set consisting of infinitely many points and denote the supremum norm on K by $||f||_{\mathsf{K}} = \sup_{z \in \mathsf{K}} |f(z)|$.

The *n*-th Chebyshev polynomial on K is the unique polynomial $T_n(z)$ which minimizes $||T_n||_{\mathsf{K}}$ among all monic polynomials of degree *n*.

The classical polynomials of least deviation from zero go back to

Chebyshev [1854]

If
$$K = [-1, 1]$$
, then $T_n(x) = \frac{1}{2^{n-1}} \cos(n \arccos x)$.

For a general set K the Chebyshev polynomials are not know explicitly. But for applications one is interested in sharp bounds and asymptotics.

Fekete [1923], Szegő [1924]

For any compact set $\mathsf{K} \subset \mathbb{C}$,

$$\lim_{n \to \infty} \|T_n\|_{\mathsf{K}}^{1/n} = \operatorname{Cap}(\mathsf{K}).$$

Capacity, Equilibrium Measure, Green's Function

The Robin constant of a compact set $\mathsf{K}\subset\mathbb{C}$ is defined by

$$\mathcal{R}(\mathsf{K}) = \inf_{\mathrm{supp}(\mu) \subset \mathsf{K}, \, \mu(\mathsf{K}) = 1} \iint \log \frac{1}{|x - y|} \, d\mu(x) d\mu(y)$$

and the logarithmic capacity of K is given by $\operatorname{Cap}(\mathsf{K}) = e^{-\mathcal{R}(\mathsf{K})}$.

Capacity, Equilibrium Measure, Green's Function

The Robin constant of a compact set $\mathsf{K} \subset \mathbb{C}$ is defined by

$$\mathcal{R}(\mathsf{K}) = \inf_{\mathrm{supp}(\mu) \subset \mathsf{K}, \, \mu(\mathsf{K}) = 1} \iint \log \frac{1}{|x - y|} \, d\mu(x) d\mu(y)$$

and the logarithmic capacity of K is given by $\operatorname{Cap}(\mathsf{K}) = e^{-\mathcal{R}(\mathsf{K})}$.

Sets with $\operatorname{Cap}(\mathsf{K}) > 0$ are called nonpolar. For such sets the infimum is attained on a unique measure ρ_K called the equilibrium measure.

Capacity, Equilibrium Measure, Green's Function

The Robin constant of a compact set $\mathsf{K} \subset \mathbb{C}$ is defined by

$$\mathcal{R}(\mathsf{K}) = \inf_{\mathrm{supp}(\mu) \subset \mathsf{K}, \, \mu(\mathsf{K}) = 1} \iint \log \frac{1}{|x - y|} \, d\mu(x) d\mu(y)$$

and the logarithmic capacity of K is given by $\operatorname{Cap}(\mathsf{K}) = e^{-\mathcal{R}(\mathsf{K})}$.

Sets with $\operatorname{Cap}(\mathsf{K}) > 0$ are called nonpolar. For such sets the infimum is attained on a unique measure ρ_K called the equilibrium measure.

If K is nonpolar, the outer domain Ω = unbounded component of $\overline{\mathbb{C}}\setminus K$ supports the Green's function - a unique positive harmonic function with a logarithmic pole at infinity and zero boundary values q.e. on $\partial\Omega$.

$$G_{\mathsf{K}}(z) = \log \frac{|z|}{\operatorname{Cap}(\mathsf{K})} (1 + o(1)) \quad \text{as} \quad z \to \infty.$$

The set K is called regular if $G_{\mathsf{K}}(z) = 0$ everywhere on $\partial \Omega$.

Lower Bounds

To simplify notation, we introduce Widom factors: $W_n(\mathsf{K}) = \frac{\|T_n\|_{\mathsf{K}}}{\operatorname{Cap}(\mathsf{K})^n}$.

Lower Bounds

To simplify notation, we introduce Widom factors: $W_n(\mathsf{K}) = \frac{\|T_n\|_{\mathsf{K}}}{\operatorname{Cap}(\mathsf{K})^n}$.

Szegő's root asymptotics $W_n({\rm K})^{1/n}\to 1$ allows for sub-exponential growth/decay of $W_n({\rm K}).$

Lower Bounds

To simplify notation, we introduce Widom factors: $W_n(\mathsf{K}) = \frac{||T_n||_{\mathsf{K}}}{\operatorname{Cap}(\mathsf{K})^n}$.

Szegő's root asymptotics $W_n(\mathsf{K})^{1/n} \to 1$ allows for sub-exponential growth/decay of $W_n(\mathsf{K})$. But it turns out that:

Szegő [1924]

```
For any nonpolar compact set \mathsf{K}\subset\mathbb{C},
```

 $\inf_n W_n(\mathsf{K}) \ge 1.$

There are sets for which the Szegő inequality is optimal (e.g., smooth closed Jordan curves), but for $K \subset \mathbb{R}$ the sharp lower bound is larger:

Schiefermayr [2008]

For any nonpolar compact set $\mathsf{K}\subset\mathbb{R},$

 $\inf_{n} W_n(\mathsf{K}) \ge 2.$

Upper Bounds

However, Widom factors can grow sub-exponentially:

Goncharov-Hatinoglu [2015]

For any sequence $D_n \ge 1$ of sub-exponential growth (i.e. $\frac{1}{n} \log D_n \to 0$) there exists a compact set $\mathsf{K} \subset \mathbb{R}$ (a zero measure Cantor-type set) s.t.

 $W_n(\mathsf{K}) \ge D_n, \quad n \ge 1.$

Upper Bounds

However, Widom factors can grow sub-exponentially:

Goncharov-Hatinoglu [2015]

For any sequence $D_n \ge 1$ of sub-exponential growth (i.e. $\frac{1}{n} \log D_n \to 0$) there exists a compact set $\mathsf{K} \subset \mathbb{R}$ (a zero measure Cantor-type set) s.t.

 $W_n(\mathsf{K}) \ge D_n, \quad n \ge 1.$

Nevertheless, for finitely connected sets we have:

Widom [1969], Totik-Varga [2015], Andrievskii [2016]

If $\mathsf{K} \subset \mathbb{C}$ is a finite disjoint union of quasiconformal arcs/curves, then

 $\sup_n W_n(\mathsf{K}) < \infty.$

Example: Koch snowflake is a quasiconformal curve.

Upper Bounds

However, Widom factors can grow sub-exponentially:

Goncharov-Hatinoglu [2015]

For any sequence $D_n \ge 1$ of sub-exponential growth (i.e. $\frac{1}{n} \log D_n \to 0$) there exists a compact set $\mathsf{K} \subset \mathbb{R}$ (a zero measure Cantor-type set) s.t.

 $W_n(\mathsf{K}) \ge D_n, \quad n \ge 1.$

Nevertheless, for finitely connected sets we have:

Widom [1969], Totik-Varga [2015], Andrievskii [2016]

If $\mathsf{K} \subset \mathbb{C}$ is a finite disjoint union of quasiconformal arcs/curves, then

 $\sup_{n} W_n(\mathsf{K}) < \infty.$

Example: Koch snowflake is a quasiconformal curve.

Open Problem: Is $W_n(K)$ bounded for any connected compact set K?

Parreau–Widom and Homogeneous Sets

A compact set $\mathsf{K} \subset \mathbb{C}$ is called Parreau–Widom if

$$PW(\mathsf{K}) = \sum_{\{c_j : \nabla G_{\mathsf{K}}(c_j) = 0\}} G_{\mathsf{K}}(c_j) < \infty.$$

Parreau–Widom sets $\mathsf{K}\subset\mathbb{R}$ are necessarily of positive Lebesgue measure.

Parreau–Widom and Homogeneous Sets

A compact set $\mathsf{K} \subset \mathbb{C}$ is called Parreau–Widom if

$$PW(\mathsf{K}) = \sum_{\{c_j : \nabla G_{\mathsf{K}}(c_j) = 0\}} G_{\mathsf{K}}(c_j) < \infty.$$

Parreau–Widom sets $\mathsf{K}\subset\mathbb{R}$ are necessarily of positive Lebesgue measure.

A compact set $K \subset \mathbb{R}$ is called homogeneous if there is a uniform lower bound on its Lebesgue density:

$$\exists \delta > 0 \ \text{ s.t. } |\mathsf{K} \cap (x - \varepsilon, x + \varepsilon)| > \delta \varepsilon \ \forall x \in \mathsf{K}, \ 0 < \varepsilon < 1.$$

Every homogeneous set is Parreau-Widom and regular.

Parreau–Widom and Homogeneous Sets

A compact set $\mathsf{K} \subset \mathbb{C}$ is called Parreau–Widom if

$$PW(\mathsf{K}) = \sum_{\{c_j : \nabla G_{\mathsf{K}}(c_j) = 0\}} G_{\mathsf{K}}(c_j) < \infty.$$

Parreau–Widom sets $\mathsf{K}\subset\mathbb{R}$ are necessarily of positive Lebesgue measure.

A compact set $K \subset \mathbb{R}$ is called homogeneous if there is a uniform lower bound on its Lebesgue density:

$$\exists \delta > 0 \text{ s.t. } |\mathsf{K} \cap (x - \varepsilon, x + \varepsilon)| > \delta \varepsilon \ \forall x \in \mathsf{K}, \ 0 < \varepsilon < 1.$$

Every homogeneous set is Parreau-Widom and regular.

A canonical example of a homogeneous set is a positive measure middle $\{\varepsilon_n\}_{n=1}^{\infty}$ Cantor set, that is, [0,1] with the middle ε_n -th portion removed at step n for a summable sequence $\{\varepsilon_n\}_{n=1}^{\infty} \subset (0,1)$.

Upper Bound for Parreau–Widom Sets

Christiansen–Simon–Z [2017]

If $\mathsf{K} \subset \mathbb{R}$ is regular and Parreau–Widom, then

$$\sup_{n} W_{n}(\mathsf{K}) \leq 2 \exp[PW(\mathsf{K})]$$

and the upper bound is (asymptotically) attained for a generic set.

Upper Bound for Parreau–Widom Sets

Christiansen–Simon–Z [2017]

If $\mathsf{K} \subset \mathbb{R}$ is regular and Parreau–Widom, then

$$\sup_{n} W_n(\mathsf{K}) \le 2 \exp[PW(\mathsf{K})]$$

and the upper bound is (asymptotically) attained for a generic set.

A compact set $K \subset \mathbb{C}$ is said to have rationally independent harmonic measures if for every decomposition $K = K_0 \cup \cdots \cup K_\ell$ into closed disjoint sets, harmonic measures $\rho_K(K_1), \ldots, \rho_K(K_\ell)$ are rationally independent.

Christiansen–Simon–Yuditskii–Z [2019]

If $W_n(K)$ is bounded for a compact, regular set $K \subset \mathbb{C}$ with rationally independent harmonic measures, then K is Parreau–Widom.

Open Problem: Is there a non-PW set K with bounded $W_n(K)$?

Let $w : \mathsf{K} \to [0, \infty)$ be a bounded weight function which is positive at infinitely many points of K. Then the weighted Chebyshev polynomials $T_{n,w}$ are the unique monic polynomials that minimizes $||wT_{n,w}||_{\mathsf{K}}$.

There is a root asymptotics, $||wT_{n,w}||_{\mathsf{K}}^{1/n} \to \operatorname{Cap}(\mathsf{K})$ if $w > 0 \ \rho_{\mathsf{K}}$ -a.e.

To simplify notation, we introduce the weighted Widom factors and the (exponential of) Szegő/entropy integral:

$$W_n(\mathsf{K}, w) = \frac{\|wT_{n,w}\|_{\mathsf{K}}}{\operatorname{Cap}(\mathsf{K})^n}, \quad S(\mathsf{K}, w) = \exp\left[\int \log w(z) \, d\rho_{\mathsf{K}}(z)\right].$$

Weighted Lower Bounds

Novello–Schiefermayr–Z [2021]

For any nonpolar compact set $\mathsf{K}\subset\mathbb{C},$

$$\inf_{n} W_{n}(\mathsf{K}, w) \ge S(\mathsf{K}, w)$$

and the inequality is sharp even for real sets K.

Weighted Lower Bounds

Novello–Schiefermayr–Z [2021]

For any nonpolar compact set $\mathsf{K}\subset\mathbb{C},$

$$\inf_{n} W_{n}(\mathsf{K}, w) \ge S(\mathsf{K}, w)$$

and the inequality is sharp even for real sets K.

Alpan–Z [2024x], Christiansen–Simon–Z [2025x]

Let $\mathsf{K} \subset \mathbb{R}$ be a nonpolar compact set. Then

• If
$$w(x) = \left|\prod_j \frac{x - \alpha_j}{x - \beta_j}\right|$$
 with $\alpha_j \in \mathsf{K}$, $\beta_j \notin \mathsf{K}$, $\sum_j G_{\mathsf{K}}(\beta_j) < \infty$, then

 $\inf_{n} W_{n}(\mathsf{K}, w) \geq 2S(\mathsf{K}, w)$

• If w is continuous with at most finitely many algebraic zeros, then

$$\liminf_{n \to \infty} W_n(\mathsf{K}, w) \ge 2S(\mathsf{K}, w)$$

Weighted Upper Bounds

Widom [1969], Christiansen–Simon–Z [2025x]

If $K \subset \mathbb{C}$ is a finite disjoint union of C^{2+} closed curves and w is USC, then

```
\limsup_{n \to \infty} W_n(\mathsf{K}, w) \le S(\mathsf{K}, w) \exp[PW(\mathsf{K})]
```

Weighted Upper Bounds

Widom [1969], Christiansen–Simon–Z [2025x]

If $\mathsf{K}\subset\mathbb{C}$ is a finite disjoint union of C^{2+} closed curves and w is USC, then

 $\limsup_{n \to \infty} W_n(\mathsf{K}, w) \le S(\mathsf{K}, w) \exp[PW(\mathsf{K})]$

If $K \subset \mathbb{C}$ is a finite disjoint union of C^{2+} arcs or $K \subset \mathbb{R}$ is regular and Parreau–Widom and w is USC, then

 $\limsup_{n \to \infty} W_n(\mathsf{K}, w) \le 2S(\mathsf{K}, w) \exp[PW(\mathsf{K})].$

Weighted Upper Bounds

Widom [1969], Christiansen–Simon–Z [2025x]

If $\mathsf{K}\subset\mathbb{C}$ is a finite disjoint union of C^{2+} closed curves and w is USC, then

$$\limsup_{n \to \infty} W_n(\mathsf{K}, w) \le S(\mathsf{K}, w) \exp[PW(\mathsf{K})]$$

If $K \subset \mathbb{C}$ is a finite disjoint union of C^{2+} arcs or $K \subset \mathbb{R}$ is regular and Parreau–Widom and w is USC, then

$$\limsup_{n \to \infty} W_n(\mathsf{K}, w) \le 2S(\mathsf{K}, w) \exp[PW(\mathsf{K})].$$

Corollary: A Szegő-type Theorem in L^{∞}

If $K \subset \mathbb{R}$ is regular and Parreau–Widom or $K \subset \mathbb{C}$ is a finite disjoint union of C^{2+} arcs/curves and w is USC, then

$$\inf_{n} W_{n}(\mathsf{K}, w) > 0 \quad \Longleftrightarrow \quad \int \log w(z) d\rho_{\mathsf{K}}(z) > -\infty$$

and if either one holds then also $\sup_n W_n(\mathsf{K},w) < \infty$

Some Asymptotics

Bucheker-Eichinger-Z [2025x]

If K is a C^{1+} Jordan region and w is USC on K, then

$$\lim_{n \to \infty} W_n(\mathsf{K}, w) = S(\mathsf{K}, w)$$

Some Asymptotics

Bucheker-Eichinger-Z [2025x]

If K is a C^{1+} Jordan region and w is USC on K, then

 $\lim_{n\to\infty} W_n(\mathsf{K},w) = S(\mathsf{K},w)$

Lubinsky-Saff [1987], Alpan-Z [2024x]

If K is an interval and either w is USC with $1/w \in L^p$ for all $p < \infty$ or

 \boldsymbol{w} is continuous with at most finitely many zeros, then

 $\lim_{n \to \infty} W_n(\mathsf{K}, w) = 2S(\mathsf{K}, w)$

Some Asymptotics

Bucheker-Eichinger-Z [2025x]

If K is a C^{1+} Jordan region and w is USC on K, then

$$\lim_{n\to\infty} W_n(\mathsf{K},w) = S(\mathsf{K},w)$$

Lubinsky-Saff [1987], Alpan-Z [2024x]

If K is an interval and either w is USC with $1/w \in L^p$ for all $p < \infty$ or w is continuous with at most finitely many zeros, then

$$\lim_{n \to \infty} W_n(\mathsf{K}, w) = 2S(\mathsf{K}, w)$$

Thiran–Detaille [1991], Christiansen-Eichinger-Rubin-Z

If K is an arc on the unit circle of angular opening $\alpha \in (0, 2\pi)$ and w is continuous with at most finitely many algebraic zeros, then

$$\lim_{n \to \infty} W_n(\mathsf{K}, w) = \left[1 + \cos(\alpha/4)\right] S(\mathsf{K}, w)$$

Thank you for your attention!