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Aim and setting 1/36

AIM OF THIS TALK: To compare, under a linear perspective
to be specified later:
(a) 3 important modes of convergence of sequences of

holomorphic functions, and
(b) 6 important modes of convergence of sequences of

measurable functions.

OUR SETTINGS
(a) Given a domain Ω ⊂ C, the sequences (fn) will be

members of H(Ω)N, where H(Ω) is the vector space
of all holomorphic functions Ω −→ C.

(b) Given a positive measure space (Ω,A, µ), the sequences
(fn) will be members of LN

0 , where L0 is the vector space
of all [µ-classes of] measurable functions Ω −→ R.
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Definitions for (a) 2/36

In the case H(Ω)N the concepts of convergence we will deal
make sense in more general environments:

Let X be a nonempty set, and fn, f : X → R or C (n ≥ 1). Then
we say that:

• fn −→ f pointwisely on X provided that
fn(x) −→ f (x) ∀x ∈ X .

• fn −→ f uniformly on X provided that
ĺımn→∞ supx∈X |fn(x)− f (x)| = 0.

• [assuming, additionally, that X is a TS]
fn −→ f compactly on X if fn → f uniformly

on each compact K ⊂ X .
[equivalent to local uniform convergence if X is T2-loc. comp].

fn → f uniformly =⇒ fn → f compactly =⇒ fn → f
pointwisely.
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Counterexamples for (a), I 3/36

In the case X ⊂ R, it is not hard to provide examples showing
that both reverse implications are FALSE, even with (fn)
consisting entirely of real analytic functions:

x
n −→ 0 compactly on R, but not uniformly.

nx2e−nx2 −→ 0 pointwisely on R, but not compactly.

In the case X = Ω ⊂ C, it is also easy to find counterexamples
[with the fn’s holomorphic] to the reverse of the1st implication:

z
n −→ 0 compactly on C, but not uniformly.

If Ω ̸= C and a ∈ ∂Ω, then 1
n(z−a) −→ 0 compactly on Ω,

but not uniformly.

Bernal Modes of convergence of sequences of real or complex functions



Counterexamples for (a), II 4/36

However, finding counterexamples to the converse of the 2nd implication is not
so easy.

The reason is, maybe, that in the holomorphic setting both types of convergence
are not too far from each other, as the two following theorems show. That’s why
the construction of pointwise convergent seqs of hol fs not converging compactly
requires, in general, the use of approximation theorems.

Vitali–Porter’s theorem
Let Ω ⊂ C be a domain and (fn) ⊂ H(Ω). Assume that (fn) is
uniformly bounded on compacta and that ∃S ⊂ Ω with
S′ ∩ Ω ̸= ∅ such that (fn(z)) converges ∀z ∈ S
=⇒ ∃ f ∈ H(Ω) such that fn −→ f compactly on Ω.

Osgood’s theorem

Let Ω ⊂ C be a domain and (fn) ⊂ H(Ω) be a sequence
converging pointwisely in Ω =⇒ ∃ dense open subset G ⊂ Ω
and f ∈ H(G) such that fn −→ f compactly on G.
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Counterexamples for (a), III 5/36

Construction of a sequence fn −→ 0 point. but not comp.:
Assume w.l.o.g. that 0 ∈ Ω. Let
R := sup {x ∈ R : x ≥ 0 and [0, x ] ⊂ Ω} ∈ (0,+∞] and
G := Ω \ [0,R), that is open in C =⇒ ∃ seq {Kn : n ∈ N} of
compact subsets of G satisfying:

G =
⋃

n∈N Kn.
Each Kn is contained in K ◦

n+1.
For each n ∈ N, every connected component of C∞ \ Kn
contains a connected component of C∞ \ G.

Choose (sn), (tn) ⊂ (0,+∞) such that
0 < · · · < s3 < s2 < s1 < t1 < t2 < t3 < · · · < R, and
sn → 0, tn → R,

and define the compacta Ln := Kn ∪ {0} ∪ {sn+1} ∪ [sn, tn] ⊂ Ω.
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Counterexamples for (a), IV 6/36

Select rn > 0 such that:
• Gn := Ln + D(0, rn) ⊂ Ω
•
(
Kn + D(0, rn)

)
∩
(
[0, tn] + D(0, rn)

)
= ∅,

• D(0, rn) ∩ D(sn+1, rn) = ∅, and D(sn+1, rn) ∩ D(sn, rn) = ∅.
Define gn ∈ H(Gn) as

gn(z) =

{
0 if z ∈

(
Kn + D(0, rn)

)
∪ D(0, rn) ∪

(
[sn, tn] + D(0, rn)

)
n if z ∈ D(sn+1, rn).

Each component of C∞ \ Ln contains a component of C∞ \ Ω
=⇒ [Runge’s Approximation Theorem] ∃ fn ∈ H(Ω) such that

|fn(z)− gn(z)| < 1
n ∀z ∈ Ln.

Then: fn −→ 0 point. on Ω but fn ̸−→ 0 unif. on U [∀U ∈ N (0)].
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Counterexamples for (a), V 7/36
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Definitions for (b) 8/36

In the case LN
0 , we consider the ff. modes of convergence:

fn −→ f pointwisely a.e. provided that
∃Z ∈ A with µ(Z ) = 0 s.t. fn(x) → f (x) ∀x ∈ Ω \ Z .
fn −→ f uniformly a.e. provided that
∃Z ∈ A with µ(Z ) = 0 s.t. fn → f uniformly on Ω \ Z .
fn −→ f in measure whenever
limn→∞µ({x ∈ Ω : |fn(x)− f (x)| > ε}) = 0 ∀ε > 0.
fn −→ f almost uniformly if ∀ε > 0 ∃Zε ∈ A with
µ(Zε) < ε s.t. fn → f uniformly on Ω \ Zε.
fn −→ f in q-norm (or in q-mean), where
q ∈ (0,+∞), if limn→∞

∫
Ω
|fn − f |q dµ = 0.

fn −→ f completely if∑∞
n=1 µ({x ∈ Ω : |fn(x)− f (x)| > ε}) < ∞ ∀ε > 0.
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Implications in setting (b) 9/36

fn → f uniformly a.e. =⇒ fn → f almost uniformly.
fn → f almost uniformly =⇒ fn → f pointwisely a.e.
fn → f almost uniformly =⇒ fn → f in measure.
For q ∈ (0,+∞), fn → f in q-mean =⇒ fn → f

in measure.
fn → f completely =⇒ fn → f in measure.
fn → f completely =⇒ fn → f pointwisely a.e.
If µ is finite: fn → f uniformly a.e. =⇒ fn → f

completely.
If µ is finite: fn → f uniformly a.e. =⇒ fn → f in

q-mean.
[Egoroff’s theorem] If µ is finite:
fn → f pointwisely a.e. ⇐⇒ fn → f almost uniformly.

Bernal Modes of convergence of sequences of real or complex functions



Counterexamples for (b) 10/36

Concrete examples of the failure of each of the opposite implications have been

furnished, mostly by choosing the Lebesgue measure on some interval of R or the

counting measure on N. For instance:

In (Ω,A, µ) = ([0,1],L, λ), we have χ[0,1/n] −→ 0 almost
unif. and in q-mean (q > 0) but not unif. a.e., and
n · χ[0,1/n] −→ 0 almost unif. but not in q-mean (q ≥ 1).
In (Ω,A, µ) = ([0,1],L, λ), the “typewriter sequence” (fn)
defined by f2k+h = χ[h/2k ,(h+1)/2k ]

(k = 0,1,2, . . . ; h = 0,1, . . . ,2k − 1) satisfies fn −→ 0 in
measure and even in q-mean (q > 0) but not point. a.e.
In (Ω,A, µ) = (N,P(N), card), we have
(fn) := χ{n,n+1,n+2,... } −→ 0 point. a.e. but not in measure.
In (Ω,A, µ) = ([0,1],L, λ), we have χ[0,2−n] −→ 0 almost
unif., point. a.e, in measure, in q-mean (q > 0), and
completely but not uniformly a.e.
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Searching for large algebraic structures 11/36

As said before, in specific measure spaces (planar
domains) it is relatively easy to construct sequences of
measurable (holomorphic, resp.) fs converging in one
mode but not in another mode, BUT ...

... WE WANT TO GO A STEP FURTHER:

Could we find large algebraic/algebraic-topological structures
inside the families of seqs of measurable (hol., resp.) fs
converging in a given sense but not in another sense?
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Lineability: definitions, I 12/36

It is convenient to introduce a number of concepts coming from the modern
theory of Lineability.

This is justified by the fact that, in the current millenium, there has been a rapid
development of results in which many families of mathematical entities have
been found to be large (or very small) from an algebraic point of view, regardless
their topological size. The notions have been coined starting from V. Gurariy:

Vladimir Gurariy (1935-2005)
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Lineability: definitions, II 13/36

Aron, Bayart, Gurariy, PérezGª, Quarta, Seoane, Bartoszewicz, Glab, LBG 2004–13

Assume that X is a TVS and that α is a cardinal number. A
subset A ⊂ X is called:

• α-lineable if A ∪ {0} contains a vector space M with
dim(M) = α,

• α-dense-lineable if A ∪ {0} contains a dense vector
subspace M of X with dim(M) = α,

• spaceable whenever A ∪ {0} contains a closed infinite
dimensional vector subspace of X ,

• algebrable if X is contained in some linear algebra and
A ∪ {0} contains some infinitely generated algebra, and

• strongly α-algebrable if X is contained in some
commutative linear algebra and A ∪ {0} contains some
α-generated free algebra
[⇐⇒ ∃B ⊂ X with card(B) = α s.t. ∀ polynomial P ̸= 0 in N variables with
P(0) = 0 and any different b1, . . . , bN ∈ B, we have P(b1, . . . , bN) ∈ A \ {0}].
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Lineability: examples, I 14/36

• A reference for background on Lineability:

R. Aron, D. Pellegrino, J.B. Seoane and LBG, Lineability: The Search for Linearity

in Mathematics, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2016.

• Before going on, it is worth remarking that a number of
important positive as well as negative results are known, as for
instance the following ones (some of them, rather old), that we
write in the language of lineability:
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Lineability: examples, II 15/36

Examples

(a) Levine and Milman (1940):
CBV [0,1] is not spaceable in C[0,1].

(b) Gurariy (1966):
D[0,1] := {derivable fs [0,1] → R} is not spaceable
in C[0,1].

(c) Herrero, Bourdon, Bès, Wengenroth (1991-2003):
If T is a hypercyclic operator on a TVS X , then

HC(T ) := {dense orbit vectors}
is dense-lineable in X .
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Lineability: examples, II 16/36

Examples

(d) Aron, Garcı́a and Maestre (2001):
If Ω ⊂ C is a domain, then
{f ∈ H(Ω) : f is not extendable beyond ∂G}

is dense-lineable and algebrable (with a closed
subalgebra, hence it is spaceable in H(Ω)).

(e) Gurariy and Quarta (2004):
Ĉ[0,1] := {f ∈ C[0,1] : f attains its maximum

at exactly one point}
does not contain a 2-dim vector space.
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Lineability: examples, III 17/36

Examples

(f) Aron, Conejero, Peris, Seoane (2007):
HC(τa) [τa(f ) := f (·+ a)] is not algebrable in H(C).

(g) Bartoszewicz, Bienias, Filipczak, Glab (2014):
{nowhere monotone differentiable fs R −→ R}
is strongly c-algebrable.

Bernal Modes of convergence of sequences of real or complex functions



Motivating our study 18/36

Warning!: One might think that topological
largeness =⇒ algebraic largeness.

This is far from being true!

For instance, Ĉ[0,1] is residual in C[0,1] but it is
highly non-lineable.
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Papers dealing with subjects (a) and (b), I 19/36

As far as I know, until now only 2 papers deal with the linear
comparison between the diverse modes of convergence of
sequences of holomorphic functions:

M.C. Calderón-Moreno, J. López-Salazar, J.A. Prado-Bassas and LBG, Modes of
convergence of sequences of holomorphic functions: a linear point of view,
Mediterr. J. Math. 22:55 (2025), 20 pp.

M.C. Calderón-Moreno, J. López-Salazar, J.A. Prado-Bassas and LBG,
Spaceability of special families of null sequences of holomorphic functions,
Preprint (2025).

However, it is fair to say that a lot of recent works due to several
authors [Araújo, Bartoszewicz, Calderón, Conejero, Fenoy, Fdez-Sánchez,

Filipczak, Glab, Gerlach, López-Salazar, Muñoz-Fdez, Murillo, Ordóñez, Prado,

Seoane, Trutschnig, Vecina, LBG, among others] have been devoted to
study the linear comparison between the diverse kinds of
convergence of sequences of measurable real functions
defined on measure [mainly, probability] spaces:
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Papers dealing with subjects (a) and (b), II 20/36

G. Araújo, G.A. Muñoz, J.A. Prado, J.B. Seoane and LBG, Lineability in
sequence and function spaces, Stud. Math. 237 (2017), 119–136.
G. Araújo, M. Fenoy, J. Fernández-S, J. López-S, J.B. Seoane and J.M. Vecina,
Modes of convergence of random variables and algebraic genericity, Rev. Real
Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 118:63 (2024), 24 pp.
A. Bartoszewicz, M. Bienias and S. Glab, Lineability within Peano curves,
martingales, and integral theory, J. Funct. Spaces 2018, Art. ID 9762491, 8 pp.
A. Bartoszewicz, M. Filipczak and S. Glab, Algebraic structures in the set of
sequences of independent random variables, Rev. Real Acad. Cienc. Exactas
Fis. Nat. Ser. A Mat. RACSAM 117:45, 16 pp.
M.C. Calderón-Moreno and LBG, Anti-Fubini and pseudo-Fubini functions, Rev.
Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 115:127 (2021), 16 pp.
M.C. Calderón-Moreno, M. Murillo-Arcila, J.A. Prado and LBG, Undominated
sequences of integrable functions, Mediterr. J. Math. 17:179 (2020), 17 pp.
M.C. Calderón-Moreno, P. Gerlach and J.A. Prado, Lineability and modes of
convergence, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 114:18 (2020),
12 pp.
J.A. Conejero, M. Fenoy, M. Murillo-Arcila and J.B. Seoane, Lineability within
probability theory settings, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.
111 (2017), 673–684.
J. Fernández-S, J.B. Seoane and W. Trutschnig, Lineability, algebrability, and
sequences of random variables, Math. Nachr. 295 (2022), 861–875.
M. Ordóñez and LBG, Lineability criteria, with applications, J. Funct. Anal. 266
(2014), 3997–4025.
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Hands to work 21/36

Under the terminology of lineability, we want to know to
what extent the family of seqs of (measurable/hol.) fs
converging in a given mode but not in another one is
algebraically large.
Since fn → f ⇐⇒ fn − f → 0, we can reduce the question
to convergence to 0.

Notation for (a)

Su := {(fn) ∈ H(Ω)N : fn → 0 uniformly on Ω}.
Suc := {(fn) ∈ H(Ω)N : fn → 0 compactly on Ω}.
Sp := {(fn) ∈ H(Ω)N : fn → 0 pointwisely on Ω}.

Su ⊂ Suc ⊂ Sp.
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Notation 22/36

Notation for (b)

Sp := {f = (fn) ∈ LN
0 : fn → 0 pointwisely a.e.}

Su := {f = (fn) ∈ LN
0 : fn → 0 uniformly a.e.}

Sau := {f = (fn) ∈ LN
0 : fn → 0 almost uniformly}

Sm := {f = (fn) ∈ LN
0 : fn → 0 in measure}

SLq := {f = (fn) ∈ LN
0 : fn → 0 in q-mean}

Sc := {f = (fn) ∈ LN
0 : fn → 0 completely}.

Su ⊂ Sau ⊂ Sp, SLq ∪ Sau ⊂ Sm and Sc ⊂ Sp.
If µ is finite, then Sp = Sau and Su ⊂ Sc ∩ SLq .
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The topologies we will use, I 23/36

Our specific goal is to study the algebraic-topological
size of the difference sets C \ D, where C and D run
over all pairs of previous families [cases (a) and (b)]
satisfying C ̸⊂ D.

In view of this, we need to endow LN
0 and H(Ω)N with

respective natural topologies:

• In H(Ω) we consider the compact-open topology, and in
H(Ω)N, the corresponding product topology.
Then H(Ω)N becomes a separable metrizable TVS.

• In L0 we consider the topology τ of local convergence in
measure, and in LN

0 , the corresponding product topology.
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The topologies we will use, II 24/36

• (L0, τ) is metrizable ⇐⇒ µ is σ-finite.
• (S) := ∃A0 countable ⊂ A satisfying: ∀M ∈ A with

µ(M) < ∞ and ∀ε > 0, ∃S = SM,ε ∈ A0 s.t.
µ(M∆S) < ε.

We have: (S) =⇒ L0 is separable.
• (S) + µ σ-finite =⇒ LN

0 is a separable metrizable TVS.
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An abstract result on lineability of sequences 25/36

Araújo-Fenoy-FdezSánchez-LópezS-Seoane-Vecina 2024

Let V be a vector space and C,D ⊂ VN satisfying the
following properties, where E is C or D:
(a) λE ⊂ E ∀λ ∈ R.
(b) 0 := (0,0,0, . . . ) ∈ E .
(c) If a seq f ∈ VN can be decomposed into finitely

many subseqs ∈ E , then f ∈ E .
(d) If f ∈ E , then all its subseqs ∈ E too.
(e) If f ∈ E and finitely many terms are deleted from

(or added to) f, then the new sequence ∈ E too.
(f) C ̸⊂ D.

Then C \ D is c-lineable.
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How to extract dense lineability from mere lineability 26/36

Every family E ∈ {Suc , Sp, Sm,Su , Sc , Sau , SLq} in H(Ω)N or LN
0 satisfies (a) to

(e) of the previous theorem AFFLSV.

Aron-GªPacheco-Ordóñez-PérezGª-Seoane-LBG 2008–2014
Let α be an infinite cardinal number. Assume that X is a
metrizable separable TVS and that A,B ⊂ X fulfill the
following:
(i) A is stronger than B: A + B ⊂ A.
(ii) A ∩ B = ∅.
(iii) A is α-lineable.
(iv) B is dense-lineable.
Then A is α-dense-lineable.

For X = H(Ω)N or LN
0 [if separable], the set

B = c00(X) := {f = (fn) ∈ X : ∃ k = k(f) ∈ N s.t. fn = 0 ∀n > k} is
dense-lineable, and satisfies E ∩ B = ∅ and E + B ⊂ E ∀E as above.
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Lineability of special families of null seqs in H(Ω)N, I 27/36

Calderón-LópezSalazar-Prado-LBG 2025

• Suc \ Su is c-dense-lineable in H(Ω)N.
• Sp \ Suc is c-dense-lineable in H(Ω)N.
• Suc \ Su is strongly c-algebrable.
• Sp \ Suc is strongly c-algebrable.
• Suc \ Su is spaceable in H(Ω)N.
• Sp \ Suc is spaceable in H(Ω)N.
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Lineability of special families of null seqs in H(Ω)N, II 28/36

Idea of the proof of some of these results:

• Sp \ Suc is c-dense-lineable in H(Ω)N:
Apply the machine theorems AFFLSV and AGOPSB with

V = H(Ω), C = Sp , D = Suc , X = H(Ω)N, A = Sp \ Suc , B = c00(H(Ω)).

• Sp \ Suc is strongly c-algebrable:
As in p. 6, define gc,n ∈ H(Gn) [c ∈ H := a maximal Q-l.indep. subset of (0,+∞)] as

gc,n(z) =

{
0 if z ∈

(
Kn + D(0, rn)

)
∪ D(0, rn) ∪

(
[sn, tn] + D(0, rn)

)
ecn if z ∈ D(sn+1, rn).

and use Runge’s Th. to obtain fc,n ∈ H(Ω) s.t. |fc,n(z)− gc,n(z)| < e−n2 ∀z ∈ Ln.

Then {(fc,n) : c ∈ H} has card = c and generates a free algebra ⊂ {0} ∪ (Sp \ Suc).
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Lineability of special families of null seqs in H(Ω)N, III 29/36

• Suc \ Su is spaceable in H(Ω)N:
Take f = (fn) ∈ Suc \ Su . WLOG we can assume that D ⊂ Ω.

Then Arakelian approximation theorem + basis perturbation theorem

[as applied on L2(T)] provide a sequence (φn) ⊂ H(Ω) each of whose members is

“large” in a point zn (with zn → ∂∞Ω). Then

M :=
{
(fn · Φ) : Φ ∈ span{φk : k ∈ N}

}
.

is a closed inf-dim subspace ⊂ (Suc \ Su) ∪ {0}.
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Lineability of special families of null seqs in LN
0 , I 30/36

µ is said to be nonatomic if it lacks atoms. An atom
is a set A ∈ A with µ(A) > 0 s.t. there do not
∃B,C ∈ A with

µ(B) > 0 < µ(C), B ∩ C = ∅ and B ∪ C = A.
µ is said to be semifinite if for each A ∈ A we have
µ(A) = sup{µ(B) : B ∈ A, B ⊂ A, and µ(B) < ∞}.
µ finite =⇒ µ σ-finite =⇒ µ semifinite.
No converse is true. Example: Ω uncountable =⇒
counting measure is semifinite but not σ-finite.
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Lineability of special families of null seqs in LN
0 , II 31/36

µ is said to satisfy (P) if ∃ a family {An : n ∈ N} ⊂ A s.t.
An ∩ Ak = ∅ (n ̸= k ) and inf{µ(An) : n ∈ N} > 0.

µ is said to satf. (Q) if sup{µ(S) : S ∈ A, µ(S) < ∞} = ∞.
µ is said to satf. (R) if inf{µ(S) : S ∈ A, µ(S) > 0} = 0.
(Q) =⇒ (P). The converse is false: µ(A) := ∞ if
∅ ̸= A ⊂ N.
µ nonatomic + semifinite + [µ(Ω) = ∞] =⇒ (Q).
µ nonatomic + semifinite =⇒ (R).
The counting measure on N satisfies (Q) but not (R),
and is (purely) atomic.
µ(A) :=

∑
n∈A 2−n (A ⊂ N): finite, (purely) atomic, (R),

non-(P).
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Lineability of special families of null seqs in LN
0 , III 32/36

M.C. Calderón-Moreno, P. Gerlach-Mena, J.A. Prado-Bassas and LBG,
Almost uniform convergence vs. pointwise convergence from a linear
point of view, Preprint (2025).

(a) [µ σ-finite + nonatomic + (S)] =⇒
( ⋂

q>0

SLq

)
\ Sp

(hence Sm \ Sp) is c-dense-lineable in LN
0 .

(b) [µ semifinite + nonatomic] =⇒
( ⋂

q>0

SLq

)
\ Sp

(hence Sm \ Sp) is strongly c-algebrable.
(c) [µ semifinite + nonatomic] =⇒ Sm \ Sp is spaceable.
(d) [µ σ-finite + (S) + (P)] =⇒ Sp \ Sm is

c-dense-lineable.
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Lineability of special families of null seqs in LN
0 , IV 33/36

(e) (P) =⇒ Sp \ Sm is strongly c-algebrable.
(f) (Q) =⇒ Sp \ Sm is spaceable.

(g) [µ σ-finite + (S) + (R)] =⇒ (Sc ∩ Sau) \ Su is
c-dense-lineable.

(h) (R) =⇒ (Sc ∩ Sau) \ Su is strongly c-algebrable.
(i) (R) =⇒ (Sc ∩ Sau) \ Su is spaceable.
(j) [µ σ-finite + (S) + µ(Ω) = ∞] =⇒ Su \

⋃
q>0 SLq is

c-dense-lineable.
(k) µ(Ω) = ∞ =⇒ Su \

⋃
q>0 SLq is strongly c-algebrable.
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Lineability of special families of null seqs in LN
0 , V 34/36

Idea of the proof of some of these results :

• (d) [µ σ-finite + (S) + (P)] =⇒ Sp \ Sm is c-dense-lineable:
(P) =⇒ ∃An ’s pairwise disjoint s.t. µ(An) ≥ α > 0 ∀n ∈ N. Define f = (χAn ).
Then f ∈ Sp \ Sm. Apply the machine theorems AFFLSV and AGOPSB with

V = L0, X = LN
0 , C = Sp , D = Sm, A = Sp \ Sm and B = c00(L0).

• (e) (P) =⇒ Sp \ Sm is strongly c-algebrable:
Let H ⊂ (0,+∞) be Q-linearly independent with card(H) = c.
Then {(ecn · χAn )n≥1 : c ∈ H} is algebraically free and generates an algebra
⊂ {0} ∪ (Sp \ Sm).

• (f) (Q) =⇒ Sp \ Sm is spaceable:
(Q) =⇒ ∃ (Ak,n)k,n mutually disjoint s.t. 1 ≤ µ(Ak,n) < ∞ ∀k , n.
Then span{(χAk,n

)n : k ∈ N} is a closed inf-dim subspace ⊂ {0} ∪ (Sp \ Sm).
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Some questions 35/36

Questions: 1. When the Lq ’s appear in the stage, the situation
happens to be refractory to spaceability:

• Is
⋂
q>0

SLq \ Sp spaceable in LN
0 ?

• Is Su \
⋃
q>0

SLq spaceable in LN
0 ?

2. In the holomorphic setting: Comparative study of Sdistrib.
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THANKS 36/36

I ENCOURAGE THE INTERESTED PEOPLE (IF ANY!) TO
INVESTIGATE FURTHER IN THESE LINES.

THAT’S ALL FOR NOW. THANK YOU !
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