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QUESTION: ARE THE EQUALITIES∫ φ(β)

φ(α)

f (x)dx =

∫ β

α

f
(
φ(t)

)
φ′(t)dt.

and∫ b

a

f (x)dx =

∫ β

α

f
(
φ(t)

)
φ′(t)dt

TRUE?

[Full text by O. R. B. de Oliveira, Changes of Variable Formula
integrals, do they have equal value? , arXiv:2502.12679,
https://doi.org/10.48550/arXiv.2502.12679.]
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SOME COMMENTS

We show three Changes of Variable for the Riemann Integral:

(1) Theorem 1 uses a minimum of Lebesgue Integration, but
not an actual Lebesgue integral. It covers practical cases.

(2) Theorem 2 has no condictions on φ′. Its proof relies a bit
more on Lebesgue’s Integration. The base function f can
be unbounded outside its interval of integration.

(3) Theorem 3 is general, with a trivial statement.

(4) We don’t deal with Kestelman (see also Davies) and
Preiss and Uher’s Changes of Variable (see [2], [8], [12],
and [9]). But we comment a little on them.
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KNOWN VERSIONS OF THE FORMULA

(Apostol, Lang, Spivak) If f is continuous on the image set φ
(
[α, β]

)
and

φ,φ′ are continuous, then∫ φ(β)

φ(α)
f (x) dx =

∫ β

α

f
(
φ(t)

)
φ′(t) dt .
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(Knapp) Let f be integrable on [a, b], and φ : [α, β] → [a, b] be strictly

increasing continuous and onto. Suppose that φ is differentiable on (α, β),

with φ′ uniformly continuous.

(Rudin) Let f be integrable on [a, b], and φ : [α, β] → [a, b] be strictly

increasing, continuous, and onto. Assume that φ′ is integrable on [α, β].

In Knapp’s and Rudin’s versions, the product (f ◦ φ)φ′ is then integrable and∫ b

a

f (x) dx =

∫ β

α

f
(
φ(t)

)
φ′(t) dt .
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(”General Version”) (H. Kestelman [8], 1961; R. O. Davies [2], 1961) Let

g : [α, β] → R be integrable. Let us fix γ ∈ [α, β]. Given t ∈ [α, β], we put

G (t) =

∫ t

γ

g(τ) dτ.

Let f : G
(
[α, β]

)
→ R be integrable. Then, (f ◦ G )g is integrable and

∫ G(β)

G(α)
f (x) dx =

∫ β

α

f
(
G (t)

)
g(t) dt.

Remark. This formulation of the Change of the Variable Theorem, for a

monotone G , started with Lebesgue in 1909 (see Sarkhel and Výborný [15]).
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(The reverse of Kestelman’s “general version”) (Preiss and Uher [12],

1970; Kuleshov’s remark [9], 2021) Consider an integrable g : [α, β] → R.

Let us fix a point γ ∈ [α, β]. Given t ∈ [α, β], we put

G (t) =

∫ t

γ

g(τ) dτ.

Let (f ◦ G )g be integrable, with f bounded on J, the closed interval with

endpoints G (α) and G (β). Then, f is integrable on J and

∫ G(β)

G(α)
f (x) dx =

∫ β

α

f
(
G (t)

)
g(t) dt.
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COMPARING THE SUBSTITUTION MAPS φ AND G

• φ is continuous and differentiable at every point in (α, β).

• G is given by an integral.

G is a Lipschitz map, differentiable a.e., and G ′ is integrable.

8



HYPOTHESIS ABOUT THE DERIVATIVE φ′

• The majority of the change of variable theorems mentioned along this

text have the hypothesis that the substitution map (φ or G ) is:

“differentiable + something else”.

• Our wish is to get rid of the “something else”.
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TABLE OF USUAL HYPOTHESES

f φ & φ′ or G & g

−−−−−− −−−−−− −−−−−−−−−−−−
Usual continuous φ′ continuous

Knapp integrable

{
φ bicontinuous

φ′ unif. cont. on the int.

Rudin integrable

{
φ bicontinuous

φ′ integrable

Kestelman, Davies integrable g integrable

Preiss & Uher bounded, (f ◦ G )g int. g integrable

.
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THIS ARTICLE TABLE OF HYPOTHESES

f : I → R φ′ : (α, β) → R
−−−−− −−−−−− −−−−−−−−

Theorem 0

{
integrable

has primitive
no conditions

Theorem 1 integrable continuous a. e.

Theorem 2

{
bounded on [φ(α), φ(β)]

continuous a.e.
no conditions

Theorem 3 integrable no conditions

Improper Integrals improper integrable no conditions

.
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NOTATION

The letter I indicates an arbitrary interval.

Given a bounded f : [a, b] → R, its lower Darboux sum is

s(f ,P) =
∑

mi∆xi ,

where P = {a = x0 ≤ x1 ≤ · · · ≤ xn = b} is a partition of the interval [a, b],

mi = inf{f (x) : x ∈ [xi−1, xi ]}, and ∆xi = xi − xi−1, for each i = 1, . . . , n.

The norm of P is |P| = max{∆x1, . . . ,∆xn}.
If f is a Riemann integrable, we have

lim
|P|→0

s(f ,P) =

∫ b

a

f (x) dx .
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APPROXIMATING ANY f : [a, b] → [0,+∞) FROM BELOW

Lemma
(Approximation Lemma) There exists a sequence fn : [a, b] → [0,+∞) with

the following properties.

1. We have 0 ≤ fn ≤ f , for all n.

2. Each fn is piecewise linear continuous.

3. If f is continuous at p, then lim fn(p) = f (p).

4. If f is integrable on the sub-interval [c, d ], then

∫ d

c

|fn(x)− f (x)|dx −→ 0.
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Proof. From an lower Darboux sum s(f ,P) =
∑

mi∆xi , we create a piecewise

linear continuous fn : [a, b] → [0,+∞) approximating f from below..

x

y

mk

mk+1

Figure 1: Graph of fn on “up level sub-intervals”.
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x

y

mk

mk+1

Figure 2: Graph of fn on “down level sub-intervals”.
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THEOREMS USED

Lemma
(Theorem Zero, [3]) Consider f : I −→ R and a continuous φ : [α, β] −→ I ,

differentiable on (α, β). Suppose that f has a primitive. The following is true.

• We have the identity, provided the finitess of the integrals in it,∫ φ(β)

φ(α)
f (x)dx =

∫ β

α

f (φ(t))φ′(t)dt.

Proof. With F the primitive of f , the proof follows from∫ β−ϵ

α+ϵ

f (φ(t))φ′(t)dt =

∫ β−ϵ

α+ϵ

(F ◦φ)′(t)dt = F (φ(β− ϵ))−F (φ(α+ ϵ)).
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Lemma
(Serrin and Varberg’s Theorem on Critical Values, [16]) Suppose that

φ : R → R has derivative (finite or infinite) on a set E , with m[φ(E )] = 0.

Then, we have

φ′ = 0 almost everywhere on E .

17



THEOREM 1

Theorem
(Theorem 1) Consider an integrable f : I → R and a continuous

φ : [α, β] → I that is differentiable on (α, β), with φ′ continuous. a. e. The

following is true.

• If the product (f ◦ φ)φ′ is integrable, then we have

∫ φ(β)

φ(α)
f (x)dx =

∫ β

α

f (φ(t))φ′(t)dt.

Proof. By steps.

1. The setup. We may assume I = φ([α, β]) and f ≥ 0.

We may define φ′(α) and φ′(β) at will.

We assume that the two integrals under scrutiny are finite.
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2. Approximating f . The Approx. Lemma gives fn : φ([α, β]) → [0,+∞)

with fn continuous, 0 ≤ fn ≤ f , and fn(x) → f (x) if f is continuous at x .

3. Approximating (f ◦ φ)φ′. Let N be the null set of all points of

discontinuity of f . If M = φ−1(N ), then φ(M) ⊂ N . Hence φ(M) is a

null set and we have (by Serrin and Varberg){
φ′ = 0 a. e. on M, and

fn(φ(t))φ
′(t) = f (φ(t))φ′(t) = 0 a. e. on M.

If t /∈ M, then f is continuous at φ(t) and fn(φ(t)) → f (φ(t)). Thus,

fn(φ(t))φ
′(t) −→ f (φ(t))φ′(t), a. e..
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4. The key integral identity. Since φ′ is continuous a. e, the product

(fn ◦ φ)φ′ is continuous a. e. We also have

|fn(φ(t))φ′(t)| ≤ |f (φ(t))φ′(t)| on [α, β].

Hence, (fn ◦ φ)φ′ is bounded, since (f ◦ φ)φ′ is integrable. Thus,

(fn ◦ φ)φ′ is integrable. Yet, fn is continuous, has a primitive, and we

may apply Theorem 0 (an elementary change of variable). We get

∫ φ(β)

φ(α)
fn(x)dx =

∫ β

α

fn(φ(t))φ
′(t)dt.
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5. The convergence of the integral of
(
fn
)
. The first lemma shows that

∫ φ(β)

φ(α)
fn(x)dx −→

∫ φ(β)

φ(α)
f (x)dx .

6. The convergence of the integral of
(
(fn ◦ φ)φ′

)
. We saw that

(fn ◦φ)φ′ converges pointwise to (f ◦φ)φ′ a. e. We saw that |(fn ◦φ)φ′|
is R-integrable and bounded by the R-integrable function |(f ◦ φ)φ′|.
Lebesgue’s Dominated Convergence Theorem implies that∫ β

α

fn(φ(t))φ
′(t)dt −→

∫ β

α

f (φ(t))φ′(t)dt.

7. Conclusion. Just combine steps 4, 5, and 6.
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Corollary
We may suppose f = 0 outside its interval of integration. Let f and φ be as in

Theorem 1. Suppose that m[φ−1({φ(α), φ(β)})] = 0. Define g : I → R as

g =

{
f , on the closed interval with endpoints φ(α) and φ(β),

0, elsewhere.

Then, we have∫ φ(β)

φ(α)
g(x)dx =

∫ φ(β)

φ(α)
f (x)dx =

∫ β

α

f (φ(t))φ′(t) =

∫ β

α

g(φ(t))φ′(t)dt.
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THEOREM 2

Theorem
Consider a continuous φ : [α, β] → I that is differentiable on (α, β). Let

f : I → R be continuous a.e. Let J be the bounded and closed interval with

endpoints φ(α) and φ(β). The following is true.

• If (f ◦ φ)φ′ is integrable on [α, β], and f is bounded on J, then

∫ φ(β)

φ(α)
f (x)dx =

∫ β

α

f (φ(t))φ′(t)dt.
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THEOREM 3

Theorem
Let us consider a function f : [a, b] → R and a continuous φ : [α, β] → [a, b]

that is differentiable on (α, β). Let us suppose that φ(α) = a and φ(β) = b.

• If f is integrable on [a, b] and (f ◦ φ)φ′ is integrable on [α, β], then∫ b

a

f (x)dx =

∫ β

α

f (φ(t))φ′(t)dt.
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CHANGE OF VARIABLE FOR IMPROPER INTEGRALS

Corollary
Consider any f : (a, b) → R, with (a, b) any open interval. Suppose that f is

improper integrable or f : [a, b] → R is integrable. Let φ : (α, β) → (a, b) be

differentiable, with (α, β) any open interval, φ(α+) = a and φ(β−) = b.

• If (f ◦ φ)φ′ is improper integrable on (α, β) or integrable on [α, β], then∫ b

a

f (x)dx =

∫ β

α

f (φ(t))φ′(t)dt.
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THREE EXAMPLES

Example 1 Consider

f (x) = x3, if x ∈
[
0,

2

π

]
, and φ(t) =


0, if t = 0,

t sin 1
t , if t ∈

(
0, 2

π

]
.

Figure 3: The graph of φ.
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Clearly, f is integrable while φ is continuous and oscillates near zero. We have

φ′(t) = sin
1

t
− 1

t
cos

1

t
.

• φ′ is unbounded and not integrable on [0, 2/π].

• (f ◦ φ)φ′ is integrable on [0, 2/π], since

(f ◦ φ)(t)φ′(t) = t3
(
sin3

1

t

)(
sin

1

t
− 1

t
cos

1

t

)
.

By Theorem 3, we have

∫ 2
π

0
x3 dx =

∫ 2
π

0
[φ(t)]3φ′(t) dt =

φ4(t)
4

∣∣∣ 2
π

0
=

4

π4
.
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Example 2 Consider

f (x) =
x

x4 + 1
, x ∈ [0, 1], and φ(t) =

√
t, t ∈ [0, 1].

Clearly, f is continuous and does integrable.

The map φ is continuous on [0, 1] and differentiable on (0, 1], with

φ′(t) =
1

2
√
t
not integrable.

Moreover, φ(0) = 0 and φ(1) = 1. We also have

(f ◦ φ)(t)φ′(t) =
1/2

t2 + 1
.

Thus, (f ◦ φ)φ′ is integrable on [0, 1].
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Thus, we may apply Theorem 3 and then write∫ 1

0

x

x4 + 1
dx =

∫ 1

0
f (φ(t))φ′(t)dt.

By developing the right-hand side of the equation right above, we find∫ 1

0

x

x4 + 1
dx =

1

2

∫ 1

0

dt

t2 + 1

=
arctan t

2

∣∣∣t=1

t=0
=

π

8
.

29



Example 3. Consider

f (x) =
1

x2 + 1
, where x ∈ (−∞,+∞),

and φ(θ) = tan(θ), with θ ∈
(
−π

2 ,
π
2

)
. Then, f is improper integrable and φ is

differentiable, with φ(θ) → ±∞ if θ → ±π
2 . We have

f (φ(θ))φ′(θ) = sec2 θ
1+tan2(θ)

= 1, for all θ ∈
(
−π

2 ,
π
2

)
.

Thus, (f ◦ φ)φ′ is integrable on [−π/2, π/2] and∫ +∞

−∞

dx

1 + x2
=

∫ π
2

−π
2

1 dθ = π.
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REMARKS ON SUBSTITUTIONS MAPS

(1) (Volterra’s maps, see [18], [5], [6], [21].)Theorem 1 requires φ′ a.e.

continuous. In practical problems, it is improbable that one will try a

substitution φ with φ′ bounded and not integrable (a Volterra map,

usually hard to build).

(2) (Pompei derivatives are not substitution maps, see [13], [10], [7].)

There exists a strictly increasing, bicontinuous, and differentiable map

φ : [0, 1] → [0, 1], with φ′ = 0 at a (countable) dense set (the map φ is

baptized as a Pompei derivative). Given one such φ, and supposing

the existence of an integrable function f : [0, 1] → R, with f ̸= 0 almost

everywhere, and the product (f ◦ φ)φ′ integrable, we get a contradiction.
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