On strong *c*-algebrability of some families of functions

Irena Domnik^{*} && Gertruda Ivanova^{**}

*Institute of Exact and Technical Sciences Pomeranian University in Słupsk

**Faculty of Mathematics and Computer Science University of Łódź, Poland

47th Summer Symposium in Real Analysis

 $f:\mathbb{R}\to\mathbb{R}$

 $f:\mathbb{R}\to\mathbb{R}$ $A\subset\mathbb{R}$

$$f:\mathbb{R}\to\mathbb{R}$$
$$A\subset\mathbb{R}$$

•
$$\Sigma_0^0 = \Pi_0^0 = \Delta_0^0$$
 the set of all clopen subsets of (\mathbb{R}, τ_e)
• Σ_1^0 the set of all open subsets of (\mathbb{R}, τ_e)
• Π_1^0 the set of all closed subsets of (\mathbb{R}, τ_e)
• $\Sigma_{\alpha}^0 = \left\{ \bigcup_n A_n : A_n \in \bigcup_{\beta < \alpha} \Pi_{\beta}^0, \ n \in \omega \right\}$
• $\Pi_{\alpha}^0 = \{\mathbb{R} \setminus A : A \in \Sigma_{\alpha}^0\} = \left\{ \bigcap_n A_n : A_n \in \bigcup_{\beta < \alpha} \Sigma_{\beta}^0, \ n \in \omega \right\}$
• $\Delta_{\alpha}^0 = \Sigma_{\alpha}^0 \cap \Pi_{\alpha}^0$
for $1 < \alpha < \omega_1$.

$$f:\mathbb{R}\to\mathbb{R}$$

 $A\subset\mathbb{R}$

•
$$\Sigma_0^0 = \Pi_0^0 = \Delta_0^0$$
 the set of all clopen subsets of (\mathbb{R}, τ_e)
• Σ_1^0 the set of all open subsets of (\mathbb{R}, τ_e)
• Π_1^0 the set of all closed subsets of (\mathbb{R}, τ_e)
• $\Sigma_{\alpha}^0 = \left\{ \bigcup_n A_n : A_n \in \bigcup_{\beta < \alpha} \Pi_{\beta}^0, \ n \in \omega \right\}$
• $\Pi_{\alpha}^0 = \{\mathbb{R} \setminus A : A \in \Sigma_{\alpha}^0\} = \left\{ \bigcap_n A_n : A_n \in \bigcup_{\beta < \alpha} \Sigma_{\beta}^0, \ n \in \omega \right\}$
• $\Delta_{\alpha}^0 = \Sigma_{\alpha}^0 \cap \Pi_{\alpha}^0$
for $1 < \alpha < \omega_1$.

 Σ_2^0 - the family of F_σ sets Π_2^0 - the family of G_δ sets.

• \mathcal{C} - the family of continuous functions

- $\bullet \ {\mathcal C}$ the family of continuous functions
- $\mathcal B$ the smallest family of functions such that $\mathcal C\subset\mathcal B$ and $\mathcal B$ is closed under pointwise limits

- \mathcal{C} the family of continuous functions
- \mathcal{B} the smallest family of functions such that $\mathcal{C} \subset \mathcal{B}$ and \mathcal{B} is closed under pointwise limits
- Baire function a function from ${\cal B}$

- $\bullet \ {\mathcal C}$ the family of continuous functions
- \mathcal{B} the smallest family of functions such that $\mathcal{C} \subset \mathcal{B}$ and \mathcal{B} is closed under pointwise limits
- Baire function a function from $\mathcal B$
- B₀ = C;
 B_α the family of all functions f such that there exists a sequence (f_n)_{n∈N} from ⋃_{β<α} B_β satisfying lim_{n→∞} f_n = f.
 B_α⁰ = B_α \ ⋃_{β<α} B_β

- $\bullet \ {\mathcal C}$ the family of continuous functions
- \mathcal{B} the smallest family of functions such that $\mathcal{C} \subset \mathcal{B}$ and \mathcal{B} is closed under pointwise limits
- Baire function a function from ${\cal B}$

•
$$\mathcal{B} = \bigcup_{\alpha < \omega_1} \mathcal{B}_{\alpha};$$

• $f \in \mathcal{B}_{\alpha}$ iff for each $V \in \tau_e$ holds $f^{-1}(V) \in \Sigma_{\alpha+1}^0$

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.

Definition (S. Kempisty, 1932)

A function f is quasi-continuous at a point x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$. S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.

Definition (S. Kempisty, 1932)

A function f is quasi-continuous at a point x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$.

A function f is quasi-continuous if it is quasi-continuous at each point.

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.

Definition (S. Kempisty, 1932)

A function f is quasi-continuous at a point x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$.

A function f is quasi-continuous if it is quasi-continuous at each point.

 $\mathcal Q$ - the family of all quasi-continuous functions

S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Coll. Math. 8 (1961), 47-53.

for each α , $0 < \alpha < \omega_1$, holds $\mathcal{Q} \cap \mathcal{B}^0_{\alpha} \neq \emptyset$

H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Definition (H. P. Thielman, 1953)

A function f is cliquish at a point x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$.

H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Definition (H. P. Thielman, 1953)

A function f is cliquish at a point x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$.

A function f is cliquish if it is cliquish at each point.

H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Definition (H. P. Thielman, 1953)

A function f is cliquish at a point x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$.

A function f is cliquish if it is cliquish at each point.

 C_q - the family of all cliquish functions

S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Coll. Math. 8 (1961), 47-53.

for each α , $0 < \alpha < \omega_1$, holds $\mathcal{Q} \cap \mathcal{B}^0_{\alpha} \neq \emptyset$

 $\mathcal{Q} \subset \mathcal{C}_q$

for each α , $0 < \alpha < \omega_1$, holds $C_q \cap \mathcal{B}^0_{\alpha} \neq \emptyset$

$\mathcal{Q} \cap \mathcal{B}^{\mathbf{0}}_{\alpha} \subset \mathcal{C}_{q} \cap \mathcal{B}^{\mathbf{0}}_{\alpha} \subset \mathcal{B}^{\mathbf{0}}_{\alpha}, \text{ for } \alpha < \omega_{1}$

$$\mathcal{Q} \cap \mathcal{B}^{\mathsf{0}}_{\alpha} \subset \mathcal{C}_{q} \cap \mathcal{B}^{\mathsf{0}}_{\alpha} \subset \mathcal{B}^{\mathsf{0}}_{\alpha}, \text{ for } \alpha < \omega_{1}$$

 $f \in \mathcal{C}_q \Leftrightarrow D(f)$ is meager $\mathcal{B}_1 \subsetneq \mathcal{C}_q$

$$\mathcal{Q} \cap \mathcal{B}^0_lpha \subset \mathcal{C}_q \cap \mathcal{B}^0_lpha \subset \mathcal{B}^0_lpha, ext{ for } lpha < \omega_1$$

 $f \in \mathcal{C}_q \Leftrightarrow \mathcal{D}(f) ext{ is meager}$
 $\mathcal{B}_1 \subsetneq \mathcal{C}_q$

$$\begin{array}{l} \bullet \quad \mathcal{C} = \mathcal{Q} \cap \mathcal{C} \subset \mathcal{C}_q \cap \mathcal{C} \subset \mathcal{C}, \text{ for } \alpha = 0 \\ \\ \bullet \quad \mathcal{Q} \cap \mathcal{B}_1 \subset \mathcal{C}_q \cap \mathcal{B}_1 = \mathcal{B}_1 \subset \mathcal{C}_q, \text{ for } \alpha = 1 \end{array}$$

(

 (X, ρ) - metric space

 (X, ρ) - metric space $M \subset X, x \in X, r > 0$

 (X, ρ) - metric space $M \subset X, x \in X, r > 0$

$$\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}$$

 (X, ρ) - metric space $M \subset X, x \in X, r > 0$

$$\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}$$

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

 (X, ρ) - metric space $M \subset X, x \in X, r > 0$

$$\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}$$

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

The set $M \subset X$ is porous if p(M, x) > 0 for each $x \in M$ strongly porous if p(M, x) = 1 for each $x \in M$ $f,g\in \mathcal{B}$

$$\rho(f,g) = \min \left\{ 1, \sup \left\{ \mid f(t) - g(t) \mid : t \in \mathbb{R} \right\} \right\}$$

J.Hejduk, G.I., On the porosity of Baire class functions (to submitted)

for $1 < \alpha < \omega_1$:

$$Q \cap \mathcal{B}_{\alpha} \subset \mathcal{C}_{q} \cap \mathcal{B}_{\alpha} \subset \mathcal{B}_{\alpha}$$

$$\underbrace{strongly porous}$$

$$C_{q} \cap \mathcal{B}_{\alpha} \subset C_{q} \cap \mathcal{B}_{\alpha+1}$$

$$\underbrace{B_{\alpha} \subset \mathcal{B}_{\alpha+1}}$$

$$\underbrace{strongly porous}$$

for $1 \leq \alpha < \omega_1$:

$$Q \cap \mathcal{B}_{\alpha} \subset Q \cap \mathcal{B}_{\alpha+1}$$

M. Balcerzak, A. Bartoszewicz, M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), 263–269.

Definition

Let \mathcal{L} be a linear commutative algebra. We say that $A \subset \mathcal{L}$ is strongly \mathfrak{c} -algebrable if $A \cup \{\Theta\}$ contains a \mathfrak{c} -generated algebra B that is isomorphic with a free algebra.

 $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}$ - the set of generators of this free algebra.

$$\begin{split} X &= \{x_{\alpha} : \alpha < \mathfrak{c}\} \text{ is the set of generators of some free algebra} \\ \text{contained in } A \cup \{\Theta\} \text{ iff the set } \widetilde{X} \text{ of elements of the form } x_{\alpha_1}^{k_1} x_{\alpha_2}^{k_2} ... x_{\alpha_n}^{k_n} \\ \text{is linearly independent and all linear combinations of elements from } \widetilde{X} \\ \text{are in } A \cup \{\Theta\}. \end{split}$$

$\mathcal{Q}, \mathcal{C}_{q}, \mathcal{B}^{0}_{lpha}$,

 $\mathcal{Q}, \mathcal{C}_q, \mathcal{B}^0_{lpha}, \mathcal{D}$

Theorem

For each ordinal number α , $1 \leq \alpha < \omega_1$, the set $(\mathcal{DC}_q \setminus \mathcal{Q}) \cap \mathcal{B}^0_{\alpha+1}$ is strongly c-algebrable.

Theorem

For each ordinal number α , $1 \leq \alpha < \omega_1$, the set $(\mathcal{DC}_q \setminus \mathcal{Q}) \cap \mathcal{B}^0_{\alpha+1}$ is strongly c-algebrable.

Corollary

Let α be an ordinal number α such that $1 \leq \alpha < \omega_1$. Then

- the set $C_q \cap \mathcal{B}^0_{\alpha+1}$ is strongly c-algebrable;
- **2** the set $\mathcal{DC}_q \cap \mathcal{B}^0_{\alpha+1}$ is strongly \mathfrak{c} -algebrable;
- \bullet the set $(\mathcal{C}_q \setminus \mathcal{Q}) \cap \mathcal{B}^0_{\alpha+1}$ is strongly \mathfrak{c} -algebrable;
- the set $\mathcal{B}^{0}_{\alpha+1}$ is strongly *c*-algebrable;
- the set $\mathcal{DB}^{0}_{\alpha+1}$ is strongly \mathfrak{c} -algebrable.

Corollary

For each ordinal number α , $1 \leq \alpha < \omega_1$, there exists a cliquish function from the family $\mathcal{B}^0_{\alpha+1}$ ($\mathcal{DB}^0_{\alpha+1}$), which is not quasi-continuous.

Corollary

For each ordinal number α , $1 \leq \alpha < \omega_1$, there exists a function f from the family $\mathcal{B}^0_{\alpha+1}$ ($\mathcal{DB}^0_{\alpha+1}$), such that the set of points of discontinuity of f is meager.

Corollary

For each ordinal number α , $1 \leq \alpha < \omega_1$, there exists a cliquish function from the family $\mathcal{B}^0_{\alpha+1}$ ($\mathcal{DB}^0_{\alpha+1}$), which is not quasi-continuous.

Corollary

For each ordinal number α , $1 \leq \alpha < \omega_1$, there exists a function f from the family $\mathcal{B}^0_{\alpha+1}$ ($\mathcal{DB}^0_{\alpha+1}$), such that the set of points of discontinuity of f is meager.

Theorem

For each ordinal number α , $1 \leq \alpha < \omega_1$, the set $\mathcal{DB}^0_{\alpha+1} \setminus \mathcal{C}_q$ is strongly \mathfrak{c} -algebrable.

Theorem

For each ordinal number α , $1 \leq \alpha < \omega_1$, the set $\mathcal{B}^0_{\alpha+1} \cap \mathcal{Q}$ $(\mathcal{DB}^0_{\alpha+1} \cap \mathcal{Q})$ is strongly c-algebrable.

J.Hejduk, G.I., On the porosity of Baire class functions (to submitted)

for $1 < \alpha < \omega_1$:

$$Q \cap \mathcal{B}_{\alpha} \subset \mathcal{C}_{q} \cap \mathcal{B}_{\alpha} \subset \mathcal{B}_{\alpha}$$

$$\underbrace{strongly porous}$$

$$C_{q} \cap \mathcal{B}_{\alpha} \subset C_{q} \cap \mathcal{B}_{\alpha+1}$$

$$\underbrace{B_{\alpha} \subset \mathcal{B}_{\alpha+1}}$$

$$\underbrace{strongly porous}$$

for $1 \leq \alpha < \omega_1$:

$$Q \cap \mathcal{B}_{\alpha} \subset Q \cap \mathcal{B}_{\alpha+1}$$