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Σ0
0 = Π0

0 = ∆0
0 the set of all clopen subsets of (R, τe)

Σ0
1 the set of all open subsets of (R, τe)

Π0
1 the set of all closed subsets of (R, τe)

Σ0
α =

{⋃
n
An : An ∈

⋃
β<α

Π0
β, n ∈ ω

}

Π0
α = {R \ A : A ∈ Σ0

α} =

{⋂
n
An : An ∈

⋃
β<α

Σ0
β, n ∈ ω

}
∆0

α = Σ0
α ∩ Π0

α

for 1 < α < ω1.

Σ0
2 - the family of Fσ sets

Π0
2 - the family of Gδ sets.
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L. Bukovský, The structure of the Real line, Monografie Matematyczne (New Series), vol. 71. Birkhäuser, Basel (2011).
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C - the family of continuous functions

B - the smallest family of functions such that C ⊂ B and B is
closed under pointwise limits

Baire function - a function from B

B0 = C;
Bα - the family of all functions f such that there exists a
sequence (fn)n∈N from

⋃
β<α

Bβ satisfying lim
n→∞

fn = f .

B0
α = Bα \

⋃
β<α

Bβ

B =
⋃

α<ω1

Bα;

f ∈ Bα iff for each V ∈ τe holds f −1(V ) ∈ Σ0
α+1
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S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.

Definition (S. Kempisty, 1932)

A function f is quasi-continuous at a point x if for every
neighbourhood U of x and for every neighbourhood V of f (x) there
exists a non-empty open set G ⊂ U such that f (G ) ⊂ V .

A function f is quasi-continuous if it is quasi-continuous at each point.

Q - the family of all quasi-continuous functions
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S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Coll. Math. 8 (1961), 47-53.

for each α, 0 < α < ω1, holds Q∩ B0
α ̸= ∅
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H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156–161.

Definition (H. P. Thielman, 1953)

A function f is cliquish at a point x if for every neighbourhood U of x
and for each ϵ > 0 there exists a non-empty open set G ⊂ U such that
| f (y)− f (z) |< ϵ for each y , z ∈ G .

A function f is cliquish if it is cliquish at each point.

Cq - the family of all cliquish functions
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for each α, 0 < α < ω1, holds Q∩ B0
α ̸= ∅

Q ⊂ Cq

for each α, 0 < α < ω1, holds Cq ∩ B0
α ̸= ∅
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Cq B0
α

Q
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Q∩ B0
α

B0
α

Q
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Cq

Cq ∩ B0
α

B0
α
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B0
α
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Q∩ B0
α ⊂ Cq ∩ B0

α ⊂ B0
α, for α < ω1

f ∈ Cq ⇔ D(f ) is meager

B1 ⊊ Cq

1 C = Q∩ C ⊂ Cq ∩ C ⊂ C, for α = 0

2 Q∩ B1 ⊂ Cq ∩ B1 = B1 ⊂ Cq, for α = 1
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L. Zajiček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509–534.

(X , ρ) - metric space

M ⊂ X , x ∈ X , r > 0

γ (x , r ,M) = sup{t ≥ 0 : ∃z∈XB (z , t) ⊂ B (x , r) \M}

p (M, x) = 2 lim sup
r→0+

γ (x , r ,M)

r

The set M ⊂ X is

1 porous if p (M, x) > 0 for each x ∈ M

2 strongly porous if p (M, x) = 1 for each x ∈ M
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f , g ∈ B

ρ(f , g) = min {1, sup {| f (t)− g(t) |: t ∈ R}}
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J.Hejduk, G.I., On the porosity of Baire class functions (to submitted)

for 1 < α < ω1:

for 1 ≤ α < ω1:
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M. Balcerzak, A. Bartoszewicz, M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous

singular functions, J. Math. Anal. Appl. 407 (2013), 263–269.

Definition

Let L be a linear commutative algebra. We say that A ⊂ L is strongly
c-algebrable if A ∪ {Θ} contains a c-generated algebra B that is
isomorphic with a free algebra.

X = {xα : α < c} - the set of generators of this free algebra.

X = {xα : α < c} is the set of generators of some free algebra
contained in A ∪ {Θ} iff the set X̃ of elements of the form xk1

α1
xk2
α2
...xknαn

is linearly independent and all linear combinations of elements from X̃
are in A ∪ {Θ}.
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L
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X

Y
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X

Y
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Q, Cq,B0
α,

D

Theorem

For each ordinal number α, 1 ≤ α < ω1, the set (DCq \ Q) ∩ B0
α+1 is

strongly c-algebrable.
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Q, Cq,B0
α,D

Theorem

For each ordinal number α, 1 ≤ α < ω1, the set (DCq \ Q) ∩ B0
α+1 is

strongly c-algebrable.
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D B0
α+1

Cq
Q
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D B0
α+1

Cq
Q

(DCq \ Q) ∩ B0
α+1
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B0
α+1

Cq
Q

Q∩ Bα+1 ⊂ Cq ∩ Bα+1

(Cq \ Q) ∩ B0
α+1

D
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D B0
α+1

Cq
Q

DQ ∩ Bα+1 ⊂ DCq ∩ Bα+1

(DCq \ Q) ∩ B0
α+1
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B0
α+1

CqCq ∩ Bα ⊂ Cq ∩ Bα+1

Cq ∩ B0
α+1

D

Q
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D B0
α+1

CqDCq ∩ Bα ⊂ DCq ∩ Bα+1

DCq ∩ B0
α+1 Q
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B0
α+1

Bα ⊂ Bα+1

B0
α+1

Cq
QQ

D
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D B0
α+1

DBα ⊂ DBα+1

DB0
α+1

Cq
Q
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Theorem

For each ordinal number α, 1 ≤ α < ω1, the set (DCq \ Q) ∩ B0
α+1 is

strongly c-algebrable.

Corollary

Let α be an ordinal number α such that 1 ≤ α < ω1. Then

1 the set Cq ∩ B0
α+1 is strongly c-algebrable;

2 the set DCq ∩ B0
α+1 is strongly c-algebrable;

3 the set (Cq \ Q) ∩ B0
α+1 is strongly c-algebrable;

4 the set B0
α+1 is strongly c-algebrable;

5 the set DB0
α+1 is strongly c-algebrable.
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Corollary

For each ordinal number α, 1 ≤ α < ω1, there exists a cliquish function
from the family B0

α+1 (DB0
α+1), which is not quasi-continuous.

Corollary

For each ordinal number α, 1 ≤ α < ω1, there exists a function f from
the family B0

α+1 (DB0
α+1), such that the set of points of discontinuity

of f is meager.

Theorem

For each ordinal number α, 1 ≤ α < ω1, the set DB0
α+1 \ Cq is strongly

c-algebrable.
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B0
α+1

CqBα \ Cq ⊂ Bα+1 \ Cq
Bα+1 \ Cq ⊂ Bα+1

B0
α+1 \ Cq

D
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D B0
α+1

CqDBα \ Cq ⊂ DBα+1 \ Cq
DBα+1 \ Cq ⊂ DBα+1

DB0
α+1 \ Cq

I. Domnik, G. Ivanova On strong c-algebrability of some families of functions



D B0
α+1

Cq
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Theorem

For each ordinal number α, 1 ≤ α < ω1, the set B0
α+1 ∩Q

(DB0
α+1 ∩Q) is strongly c-algebrable.
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B0
α+1

Q
Q∩ Bα ⊂ Q ∩ Bα+1

B0
α+1 ∩Q

D
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B0
α+1

Q
DQ ∩ Bα ⊂ DQ ∩ Bα+1

DB0
α+1 ∩Q

D
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B0
α+1

Cq
Q

D
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