Approximate Morse-Sard type results for non-separable Banach spaces. Smooth functions with no critical points

Mar Jiménez Sevilla Joint work with D. Azagra and M. García-Bravo

Department of Mathematical Analysis and Applied Mathematics Faculty of Mathematics Universidad Complutense de Madrid

Madrid, June 17, 2025 47th SUMMER SYMPOSIUM IN REAL ANALYSIS

Bump functions and Rolle's theorem

• For a Banach space X a bump $f : X \to \mathbb{R}$ is a non zero continuous function with bounded support.

Theorem (Asplund, Ekeland, Kurzweil, Lebourg, Leach and Whitfield, Namioka, Phelps, Preiss, Stegall, etc...)

In a separable Banach space X, T.F.A.E:

- X has a C^1 smooth norm,
- **2** X has a C^1 smooth bump,
- X is an Asplund space (every continuous convex function on X is Fréchet differentiable on a dense G_δ subset of X),
- X* has the Radon-Nikodym property (every bounded subset B of X* is dentable: for all ε > 0, there are F ∈ X** and δ ∈ ℝ such that the "slice" {g ∈ B : F(g) > δ} is non-empty with diameter smaller than ε).
- X* is separable.

• In a general Banach space X, $(1) \Rightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (6)$: Every separable subspace of X has separable dual.

Bump functions and Rolle's theorem

Theorem (James 1972, Enflo 1972, Fabian, Whitfield, Zizler 1983)

• A Banach space X is superreflexive \iff X has a bump with uniformly continuous derivative.

• A Banach space X is superreflexive \iff X has a bump with locally uniformly continuous derivative and X does not contain c_0 .

Question

Does Rolle's theorem hold in infinite dimension? If X is an infinite dimensional Banach space, $f : X \to \mathbb{R}$ is a C^1 smooth bump, does there exist a point $x_0 \in U = \{x \in X : f(x) \neq 0\} = \operatorname{supp}_0 f$, such that $f'(x_0) = 0$, that is a critical point $x_0 \in U$?

• A body (closed, bounded with non empty interior) subset $A \subset X$ is a starlike body provided there exists a point $x_0 \in \mathring{A}$ (we will assume $x_0 = 0$ by translations) such that each ray emanating from 0 intersect ∂A exactly once.

• A starlike body A is C^p smooth whenever its Minkowski functional μ_A is C^p smooth on $X \setminus \{0\}$.

Theorem (Shkarin 1992; Azagra, Dobrowolski 1997; Azagra, J.S., 2001)

Let X be a Banach space, dim $X = \infty$. T.F.A.E:

- X has a C^p smooth bump $(p \in \mathbb{N} \cup \{\infty\})$.
- There is no a "Rolle's theorem" in X: There is a C^p smooth bump f : X → ℝ such that supp₀ f = {x ∈ X : f(x) ≠ 0} := U is contractible and yet f does not have critical points in U.
- For every C^p smooth bounded starlike body A, there exists a C^p smooth bump f on X with $\operatorname{supp} f = \{x \in X : f(x) \neq 0\} = A$ and yet f does not have critical points in \mathring{A} .
- There exists a non-empty (contractible) closed subset D of the unit ball B_X of X and a C^p diffeomorphism
 H : X → X \ D so that H|_{X\B_X} = Id_X|_{X\B_X}. This kind of diffeomorphisms are called "deleting" or "extracting".

• If, in addition, the bump in (1) is Lipschitz, then the bump in (2) can be constructed to be Lipschitz as well.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Moreover, the bump in (2) can be constructed to satisfy $f'(U) \cap W = \emptyset$ for any pre-fixed finite-dimensional vector subspace $W \subset X^*$.

Some consequences (Azagra, J.S. 2001)

The support of bumps not satisfying Rolle's theorem:

- If X is separable, for every bounded and open subset U ⊂ E, there is a Fréchet differentiable bump f : E → R with supp f = U, f is C¹ smooth on U and yet f has no critical points in U.
- If X is separable, has an inconditional Schauder basis and a C^p smooth Lipschitz bump (p > 1 or p = ∞) for every bounded and open set U ⊂ E, there is a Fréchet differentiable bump f : E → ℝ with supp f = U, f is C^p smooth on U and yet f has no critical points in U.

• (West, 1969) For *E* separable Banach space with a C^p smooth bump function with bounded *p* derivatives ($p \in \mathbb{N}$), and for every bounded and open subset $U \subset E$ there is a C^p smooth bump on *E* such that supp $f = \overline{U}$.

Let us recall the following equivalences:

Theorem (Bonic and Frampton, Kurzweil, Torunzcyk, Godefroy, Troyanski, Withfield, Zizler, etc...)

Let X be an infinite dimensional Banach space WCG (Weakly Compactly Generated; for example, separable or reflexive spaces) and $k \in \mathbb{N} \cup \{\infty\}$. T.F.A.E.:

- X has a C^k smooth bump.
- X has "uniform approximations by C^k smooth functions": For any pair of continuous functions f : X → F (F any Banach space) and ε : X → (0,∞) there is a C^k smooth function g : X → F such that ||f(x) g(x)|| < ε(x) for all x ∈ X.
- There is a homeomorphic embedding H : X → c₀(Γ) for some set of indices Γ such that each "coordinate function" H_γ : X → ℝ is C^k smooth, where γ ∈ Γ.
- X has C^k-partitions of unity.
- In a general Banach space $(1) \Leftarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$.
- Not every Banach space with condition (2) is WCG.

Question

• Let us consider $k \in \mathbb{N} \cup \{\infty\}$ and a Banach space X admitting "uniform approximations by C^k smooth functions".

Can we uniformly approximate every continuous function $f: X \to F$ (being F any non zero quotient of E) by C^k smooth functions with no critical points?

• We say that $x \in X$ is a critical point of a differentiable function $g: X \to F$ if the bounded operator $g'(x): X \to F$ is NOT surjective.

A positive answer to this problem provides "approximate versions of the Morse-Sard theorem" for certain infinite dimensional Banach spaces.

Theorem (Morse-Sard Theorem, 1942)

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a C^r smooth function, with $r > \max\{n - m, 0\}$, and C_f is the set of critical points of f, then the set of critical values $f(C_f)$ has Lebesgue measure zero in \mathbb{R}^m .

• An infinite-dimensional version of the Morse-Sard's theorem:

Theorem (Smale's Theorem, 1965)

If X, Y are Banach spaces and $f : X \to Y$ a C^r smooth Fredholm mapping (that is, dim(ker f'(x)) < ∞ , f'(x)(X) is closed and codim(f'(x)(X)) < ∞ for every $x \in X$).

Then, $f(C_f)$ is of first Baire category and, in particular $f(C_f)$ has no interior points, provided that $r > \max\{index(f'(x)), 0\}$ for all $x \in X$, where index(f'(x)) := dim(ker f'(x)) - codim(f'(x)(X)).

• If dim $X = \infty$ the above assumptions imply that dim $Y = \infty$. Thus, Smale's theorem cannot be applied to functions $f : X \to \mathbb{R}$.

Theorem (Kupka's Theorem, 1965)

(A counterexample to the Morse-Sard theorem on infinite dimensional spaces). There are C^{∞} smooth functions $f : \ell_2 \to \mathbb{R}$ such that their set of critical values $f(C_f)$ contain intervals (and in particular, they have positive measure).

Example (Bates, Moreira 2001)

There are polynomials (of degree three) $p: \ell_2 \to \mathbb{R}$ such that their set of critical values $p(\mathcal{C}_p) = [0, 1]$.

Theorem (Eells, McAlpin, 1968)

For every pair of continuous functions $f : \ell_2 \to \mathbb{R}$ and $\varepsilon : \ell_2 \to (0, \infty)$, there is a C^1 smooth function $g : \ell_2 \to \mathbb{R}$ such that

 $|f(x) - g(x)| < \varepsilon(x)$, for all $x \in \ell_2$,

and the set of critical values $g(C_g)$ is of (Lebesgue) measure zero.

Approximate Morse-Sard results in separable Banach spaces

Theorem (Azagra, Cepedello, 2004)

For every pair of continuous functions $f : \ell_2 \to \mathbb{R}^n (n \in \mathbb{N})$ and $\varepsilon : \ell_2 \to (0, \infty)$ there exists a C^{∞} smooth function $g : X \to \mathbb{R}^n$ such that

 $|f(x) - g(x)| < \varepsilon(x)$ for all x and g has no critical points.

Theorem (Hajek, 1998)

Any (Fréchet) differentiable function $f : c_0 \to \mathbb{R}$ with locally uniformly continuous derivative has locally compact derivative (thus f'(X) is contained in a K_{σ} subset).

Theorem (Hajek, Johanis, 2003)

Let X be a separable Banach space with a C^p smooth bump $(p \in \mathbb{N} \cup \{\infty\})$ and containing c_0 .

Then, for every pair of continuous functions $f : X \to \mathbb{R}$, $\varepsilon : X \to (0, \infty)$ and any pre-fixed countable set $N \subset X^*$, there exists a C^p smooth function $g : X \to \mathbb{R}$ such that

 $|f(x) - g(x)| < \varepsilon(x)$ for all $x \in X$,

g'(X) is of first Baire category and $g'(X) \cap N = \emptyset$.

Definition

A norm $\|\cdot\|$ in a Banach space X is **LUR** (locally uniformly rotund) if $\|x_n - x\| \xrightarrow{n} 0$ whenever $\|\frac{x_n + x}{2}\| \xrightarrow{n} 1$ and $\|x_n\| = \|x\| = 1$ for all $n \in \mathbb{N}$.

• Recall that LUR \Rightarrow **Rotund (or strictly convex)** (the unit sphere of the norm does not have segments).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem (2007, Azagra, J.S.)

Let X be a separable Banach space, dim $X = \infty$, with a LUR and C^p smooth norm $|| \cdot || (p \in \mathbb{N} \cup \{\infty\})$.

For every pair of continuous functions $f : X \to \mathbb{R}$ and $\varepsilon : X \to (0, \infty)$, there exists $g : X \to \mathbb{R}$ C^p smooth such that

 $|f(x) - g(x)| < \varepsilon(x)$ and g has no critical points.

• [If p > 1 the above conditions imply superreflexivity of X].

Examples

- X Banach space with separable dual (i.e. X separable Asplund space), dim $X = \infty$ and p = 1.
- 2 $X = \ell_r, L_r[0, 1]$ $(1 < r < \infty)$, where $p = \infty$ if r even, p = r - 1 if r is odd and p = [r] is not an integer.
- (Azagra, J.S. 2007; Moulis 1971) X separable Banach space, dim X = ∞, X with a unconditional basis and a C^p smooth and Lipschitz bump with p > 1.

Some consequences/motivations

For a Banach space X satisfying "the approximation property by C^p smooth functions $g: X \to \mathbb{R}$ with no critical points" $(p \in \mathbb{N} \cup \{\infty\})$, we have:

- A "non-linear C^p smooth Hahn-Banach separation result": For any pair of disjoint closed subset $C_1, C_2 \subset X$ there is a C^p smooth function $g : E \to \mathbb{R}$ with no critical points "separating C_1 and C_2 ": that is, $g^{-1}(0)$ is a 1-codimensional C^p smooth submanifold in E separating C_1 from C_2 (that is $C_1 \subset g^{-1}((0,\infty))$ and $C_2 \subset g^{-1}((-\infty,0))$.
- "C^p smooth approximation of closed sets": For any closed subset C ⊂ E and any open subset W ⊂ E with C ⊂ W, there is an open subset U such that C ⊂ U ⊂ W and U is C^p smooth (that is, ∂U is a 1-codimensional C^p smooth submanifold of E).

Approximate M-S results in separable spaces: vector-valued

Theorem (Azagra, Dobrowolski, García-Bravo, 2019)

Let $X = c_0$, ℓ_r , $L_r[0, 1]$ $(1 < r < \infty)$, $p = \infty$ if $X = c_0$ or r is even, p = r - 1 if r is odd and p = [r] if r is not an integer and F any (non zero) quotient of X. Then, for every pair of continuous functions $f : X \to F$ and $\varepsilon : X \to (0, \infty)$ there is a C^p smooth function $g : X \to F$ such that

 $||f(x) - g(x)|| < \varepsilon(x)$ for all $x \in X$ and g has no critical points.

Theorem (Azagra, Dobrowolski, García-Bravo, 2019)

Let X be a separable reflexive such that $X \simeq X \oplus X$ and F is any (non zero) quotient of X. Then, for every pair of continuous functions $f : X \to F$ and $\varepsilon : X \to (0, \infty)$ there is a C^1 smooth function $g : X \to F$ such that

 $||f(x) - g(x)|| < \varepsilon(x)$ for all $x \in X$ and g has no critical points.

• The condition $X \simeq X \oplus X$ is only required when dim $F = \infty$.

Theorem (Azagra, Dobrowolski, García-Bravo, 2019.)

Let X be a separable space with

- a C^1 smooth and LUR norm $\|\cdot\|$,
- ② a 1-unconditional Schauder basis $\{e_j\}_{j \in \mathbb{N}}$ (in the sense that $\|\sum_{j \in H} \lambda_j e_j\| \le \|\sum_{j \in H'} \lambda_j e_j\|$ whenever $H \subset H' \subset \mathbb{N}$ are finite subsets and any set $\{\lambda_j\}_{j \in H'} \subset \mathbb{R}$),
- F is any (non zero) quotient of X.
- If F is infinite-dimensional, there exists a subset E of N with |E| = |N \ E| and, for every infinite subset J ⊂ E, F is a quotient of span{e_j : j ∈ J}.

Then, for every pair of continuous functions $f : X \to F$ and $\varepsilon : X \to (0, \infty)$ there is a C^1 smooth function $g : X \to F$ such that

 $||f(x) - g(x)|| < \varepsilon(x)$ for all $x \in X$ and g has no critical points.

Examples

More technical results are obtained by Azagra, Dobrowolski and García-Bravo (2019) in separable Banach spaces. As a consequence, uniform approximation by C^p smooth functions with no critical points is obtained for

- X separable Banach space containing c_0 with a shrinking Schauder basis, p = 1 and F any quotient of X.
- $X = J, J^*$, where J is the James space, p = 1, and F any quotient of X.
- X is a finite direct sum of the classical Banach spaces c_0 , ℓ_r or $L_r[0,1]$, $(1 < r < \infty)$, p depending on the minimum r in the decomposition, F is a quotient of X.
- X = C(K) separable with K countable compact, p = 1 and F any quotient of X.

Approximate Morse-Sard results for non-separable Banach (general target space)

Theorem (Azagra, García-Bravo, J.S., 2024)

Consider $E = c_0(\Gamma), \ell_p(\Gamma)$ ($1), where <math>\Gamma$ is an infinite set and F a (non zero) quotient of E.

Then, for every pair of continuous functions $f : E \to F$ and $\varepsilon : E \to (0, \infty)$ there is a C^k smooth $g : E \to F$ such that

 $\|f(x) - g(x)\| \le \varepsilon(x)$ and g has no critical points

where $k = \infty$ if $E = c_0(\Gamma)$ or p is even, k = p - 1 if p is odd and k = [p] if p is not integer.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A Banach space Y has a decomposition of the form $Y = \bigoplus_{n \in \mathbb{N}} Y_n$ if

• Y_n is a closed subspace of Y, for every n,

- every $y \in Y$ can be written in a unique way $y = \sum_{n=1}^{\infty} y_n$ with $y_n \in Y_n$ for all *n*,
- the canonical projections $P_n: Y \to Y_n$, $P_n(y) = y_n$ are continuous for all n. Thus, Y_n is complemented in Y for all n.

(日) (四) (포) (포) (포) (코)

Definition

A Banach space X has C^k -partitions of unity $(k \in \mathbb{N} \cup \{\infty\})$ if for every open cover $\{U_{\alpha}\}_{\beta \in \Omega}$ of X, there is a family of C^k smooth functions $\{\psi_i\}_{i \in \Delta}, \psi_i : X \to [0, \infty)$ for all *i*, such that

- {ψ_i}_{i∈Δ} is locally finite: for every x ∈ X there is a neighbourhood V_x of x such that V_x intersects supp ψ_i only for finitely many i ∈ Δ,
- $\{\psi_i\}_{i \in \Delta}$ is subordinated to $\{U_\alpha\}_{\alpha \in \Omega}$: for every *i* there is α such that supp $\psi_i \subset U_\alpha$,

•
$$\sum_{i\in\Delta}\psi_i(x)=1$$
 for all $x\in X$.

• A Banach space X has C^k -partitions of unity in a Banach space $X \Leftrightarrow$ for every pair of continuous function $f: X \to Z$ (Z any Banach space) and $\varepsilon: X \to (0, \infty)$ there is a C^k smooth function $g: X \to Z$ such that $||f(x) - g(x)|| < \varepsilon(x)$ for all $x \in X$.

Theorem (Azagra, García-Bravo, J.S., 2024)

Let X, Y, F be Banach spaces, $E = X \oplus Y$, and $k \in \mathbb{N} \cup \{\infty\}$ such that

• X has C^k-partitions of unity,

2 dim $Y = \infty$ and has a C^k smooth and LUR norm.

• F is a (non zero) quotient of Y_n for every n.

• The canonical projection $Q: Y \to \bigoplus_{i \text{ odd}} Y_i$, given by $Q(y) = \sum_{i \text{ odd}} y_i$ for every $y = \sum_{i \in \mathbb{N}} y_i \in Y$ (with $y_i \in Y_i$ for all *i*) is well defined and continuous.

Then, for every pair of continuous functions $f : E \to F$ and $\varepsilon : E \to (0, \infty)$ there is $g : E \to F C^k$ smooth such that

 $\|f(z) - g(z)\| < \varepsilon(z)$ for all $z \in E$ and g has no critical points.

• [Recall that for k > 1, condition (2) $\Rightarrow Y$ is superreflexive].

Definition

Let Y be a Banach space. A biorthogonal system $\{e_i, e_i^*\}_{i \in \Gamma} \subset Y \times Y^*$ is a M-basis (Markushevich basis) if $\overline{\text{span}}\{e_i : i \in \Gamma\} = Y$. It is called shrinking provided $Y^* = \overline{\text{span}}\{e_i^* : \in \Gamma\}$.

(日) (四) (문) (문) (문)

Theorem (Azagra, García-Bravo, J.S., 2024)

Let X, Y, F be Banach spaces, $E = X \oplus Y$, such that

• X has C¹-partitions of unity,

$$one for a gradient of a gra$$

- each Y_n has a shrinking M-basis and the union of all these M-bases is a shrinking M-basis in Y,
- F is a (non zero) quotient of Y_n for every n.
- Y has a C¹ smooth and LUR norm satisfying that the canonical projections Q_m: Y → (⊕^m_{i=1}Y_i) ⊕ (⊕_{i odd}Y_i), given by Q(y) = ∑^m_{i=1}y_i + ∑_{i odd}y_i for every y = ∑^m_{i>m} ∈ Y (y_i ∈ Y_i for all i) are well defined and have norm one for all m. Then, for every pair of continuous functions f : E → F and ε : E → (0,∞) there is g : E → F C¹ smooth such that

 $\|f(z) - g(z)\| < \varepsilon(z)$ for all $z \in E$ and g has no critical points.

Example

 $E = X \oplus Y$ satisfies the "approximation property by C^k smooth functions with no critical points" $(k \in \mathbb{N} \cup \{\infty\})$ for

- $E = X \oplus c_0(\Gamma)$ (Γ infinite) and F any (non zero) quotient of $c_0(\Gamma)$, where X has C^k smooth partitions of unity.
- **2** $E = X \oplus \ell_p(\Gamma)$ (Γ infinite, 1) and <math>F any (non zero) quotient of $\ell_p(\Gamma)$, where X has C^k smooth partitions of unity.
- E = X ⊕ (⊕_pZ) (1 p</sub>Z is a reflexive space with C^k smooth LUR (equivalent) norm with the required continuity on the mentioned canonical projection and X has C^k smooth partitions of unity.

In (2) and (3) $k \le p-1$ if p is odd and $k \le [p]$ if p is not an integer.

Example

 $E = X \oplus Y$ satisfies the "approximation property by C^1 smooth functions with no critical points" for

E = X ⊕ (⊕_pZ) (1 p</sub>Z and F any (non zero) quotient of Z, the Banach space Z has a shrinking M-basis (equivalently, Z is a WCG Asplund Banach space) with a C¹ smooth and LUR norm with the required conditions on the norm one projections, and X has C¹ smooth partitions of unity.

(日) (四) (포) (포) (포)

Approximate Morse-Sard results for non-separable Banach (finite dimensional target space)

Theorem (Azagra, García-Bravo, J.S.)

Let X, Y be Banach spaces, $E = X \oplus Y$ and $k \in \mathbb{N} \cup \{\infty\}$, such that

X has C^k smooth partitions of unity,

② dim $Y = \infty$, Y separable, and Y has a C^k smooth LUR norm, Then, for every pair of continuous functions $f : E \to \mathbb{R}^n$ and $\varepsilon : E \to (0, \infty)$ there is C^k smooth $g : E \to \mathbb{R}^n$ such that

 $\|f(z) - g(z)\| < \varepsilon(z)$ for all $z \in E$ and g has no critical points.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• [Recall that for k > 1, condition (2) $\Rightarrow Y$ is superreflexive].

Example

E satisfies the "approximation property by C^1 smooth functions with no critical points" (for a finite dimensional target space) if:

- $E = X \oplus Y$, where
 - X has C^1 smooth partitions of unity,
 - Y Banach space with separable dual and dim $Y = \infty$.
- $E = \widetilde{X} \oplus \widetilde{Y}$, where
 - \widetilde{X} has C^1 smooth partitions of unity,
 - Y Asplund and WCG Banach space and dim Y = ∞. So, in particular, for Y reflexive space, dim Y = ∞.

< □ > < @ > < 注 > < 注 > ... 注

Tools for the case of $c_0(\Gamma)$

The proof for functions $f : E := c_0(\Gamma) \to F$, being F a quotient of $c_0(\Gamma)$ relays on: **(Toruńczyk)** the existence of C^{∞} partitions of unity $\{\psi_i\}_{i\in\Delta}$ in $c_0(\Gamma)$, where each mapping ψ_i is locally of the form

$$\psi_i(\mathbf{y}) = \varphi(e_{i_1}^*(\mathbf{y}), \ldots, e_{i_n}^*(\mathbf{y}))$$

 $(y \in E)$ for a suitable C^{∞} smooth function $\varphi : \mathbb{R}^n \to \mathbb{R}$ and a finite number of functionals $\{e_{i_1}^*, \ldots, e_{i_n}^*\}$ (locally determined), where $\{e_i^*\}_{i \in \Gamma}$ are the functionals associated with the canonical basis of $c_0(\Gamma)$. The approximating functions with no critical points are of the form

$$g(x) = \sum_{i \in \Delta} (f(x_i) + T(x - x_i))\psi_i(x)$$
, where

- $x_i \in \operatorname{supp} \psi_i$, $T = \sum_{n \in \mathbb{N}} T_n \circ P_n$ bounded operator,
- $T_n: c_0(\Gamma_n) \to F$ surjective bounded operator,
- $P_n : c_0(\Gamma) \to c_0(\Gamma_n)$ are the canonical projections,
- $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ (disjoint union) with $|\Gamma| = |\Gamma_n|$ for all $n \in \mathbb{N}$.

Tools for the case of $\ell_p(\Gamma)$

The proof for functions $f : E = I_p(\Gamma) \to F$ (1 , being <math>F a quotient of E relays on: **(Toruńczyk)** the existence of C^k -partitions of unity $\{\psi_i\}_{i \in \Delta}$ in $\ell_p(\Gamma)$, where each function ψ_i is **locally** of the form

$$\psi_i(\mathbf{y}) = \varphi(\|\mathbf{y}\|_{p}^{p}, \mathbf{e}_{i_1}^*(\mathbf{y}), \dots, \mathbf{e}_{i_n}^*(\mathbf{y}))$$

 $(y \in E)$ for a suitable C^k smooth function $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}$ and a finite number of functionals $\{e_{i_1}^*, \ldots, e_{i_n}^*\}$ (locally determined), being $\{e_i^*\}_{i \in \Gamma}$ the functionals associated with the canonical basis of $\ell_p(\Gamma)$. The approximating functions with no critical points are of the form

$$\boldsymbol{g} = \boldsymbol{h} \circ \boldsymbol{d}, \text{ where }$$

- $h: E \to F$, $h(x) = \sum_{i \in \Delta} (f(x_i) + T(x x_i))\psi_i(x)$,
- $x_i \in \operatorname{supp} \psi_i$, $T = \sum_{m \text{ odd}} T_m \circ P_m$ is a bounded operator,
- $T_m : \ell_p(\Gamma_m) \to F$ surjective bounded operator,
- $P_m: \ell_p(\Gamma) \to \ell_p(\Gamma_m)$ are the canonical projections,
- $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ (disjoint union) with $|\Gamma| = |\Gamma_n|$,

Tools for the case of $\ell_p(\Gamma)$

• (Azagra, Dobrowolski, García-Bravo) $d: E \to E \setminus C_h$ is a C^k "deleting (or extracting) diffeomorphism" (close to the identity), being C_h the closed subset of critical points of h.

• So, by the chain rule $g'(x) = h'(d(x)) \circ d'(x)$ is a surjective operator for all $x \in E$.

• It is crucial that C_h is locally contained in $\ell_p((\bigcup_{i=1}^m \Gamma_i) \cup (\bigcup_{i \text{ odd}} \Gamma_i))$ for a suitable *m* (locally determined), that is, C_h is locally contained in a infinite codimensional and complemented closed subspace.

• Recall that $k = \infty$ if p is even, k = p - 1 if p is odd and k = [p] if p is not an integer.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For continuous functions $f : E = X \oplus Y \to F$, with X, Y, F under any of the assumptions given above, we need:

• (Toruńczyk) C^k -partitions of unity $\{\psi_i\}_{i \in \Delta}$ (k depending on X and Y), where each ψ_i is locally of the form,

$$\psi_i(x,y) = \varphi(x,\theta_{k_1}(||y||),\ldots,\theta_{k_m}(||y||),e_{i_1}^*(y),\ldots,e_{i_n}^*(y))$$

(here $(x, y) \in X \oplus Y$) for a suitable C^k smooth function $\varphi : X \oplus \mathbb{R}^{n+m} \to \mathbb{R}$, a finite number of functionals $\{e_{i_1}^*, \cdots, e_{i_n}^*\}$ and functions $\{\theta_{k_1}, \cdots, \theta_{k_m}\}$, being

* $\{e_i^*\}_{i\in\Gamma} \subset Y^*$ functionals associated with a (suitable) shrinking M-basis in Y,

* $\{\theta_j\}_{j\in\mathbb{N}} C^{\infty}$ smooth non-decreasing functions $\theta_j : \mathbb{R} \to [0,\infty)$ with $\theta_j(t) = t$ if $t > \frac{1}{j}$, $\theta_j(t) = 0$ if $t < \frac{1}{2j}$ and $|\theta'_j(t)| \le 3$ for all $t \in \mathbb{R}$ and all $j \in \mathbb{N}$.

Tools for the general cases

The approximating functions with no critical points are of the form

$$\boldsymbol{g} = \boldsymbol{h} \circ \boldsymbol{d}, \text{ where }$$

•
$$h: E = X \oplus Y \to F$$
,

$$h(x,y) = \sum_{i \in \Delta} (f(x_i, y_i) + T(y - y_i))\psi_i(x, y),$$

• $(x_i, y_i) \in \operatorname{supp} \psi_i$,

• $T: Y \to F$ is a suitable surjective bounded operator (several technical conditions are required, depending on F, finite or infinite dimensional and the decomposition of $Y = \bigoplus_{n \in \mathbb{N}} Y_n$),

• (Azagra, Dobrowolski, García-Bravo) C^k "Deleting diffeomorphism" $d: E \to E \setminus C_h$, where C_h is the closed subset of critical points of h. Here, it is crucial that C_h is locally contained in the graph of a continuous function $c: M \to N$, being M, Nclosed subspaces and $E = M \oplus N$, M with C^k -partitions of unity, N with a C^k smooth norm and dim $N = \infty$ (locally determined). • For $f : E = X \oplus Y \to \mathbb{R}^n$, Y non-reflexive we need a renorming result:

Proposition (Azagra, García-Bravo, J.S.)

Let $(Y, \|\cdot\|)$ be a Banach space and let W be a K_{σ} subset in the unit sphere of Y^* . Then, the set of (equivalent) norms $|||\cdot|||$ on Y such that their dual norms $|||\cdot|||^*$ are Fréchet differentiable at the points of W is residual in (\mathcal{N}_Y, ρ) , the metric space of all equivalent norms on Y with the usual metric

 $\rho(p,q) = \sup\{|p(x) - q(x)| : ||x|| = 1\}, \ p,q \in \mathcal{N}_Y.$

In particular, for any of these norms $||| \cdot |||$, every functional $f \in W$ attains its $||| \cdot |||^*$ -norm.

Corollary (Fabian, Zajicek, Zizler 1982; Azagra, García-Bravo, J.S.)

Let Y be a Banach space with a LUR norm $\|\cdot\|$ whose dual norm $\|\cdot\|^*$ is LUR and let W be a K_{σ} subset in the unit sphere of Y^{*}.

Then, the set of (equivalent) norms $||| \cdot |||$ on Y such that $||| \cdot |||$ and $||| \cdot |||^*$ are LUR and $||| \cdot |||^*$ is Fréchet differentiable at the points of W is residual in (\mathcal{N}_Y, ρ) . In particular, for any of these norms $||| \cdot |||$, every functional $f \in W$ attains its $||| \cdot |||^*$ -norm.

• D. Azagra, T. Dobrowolski and M. García-Bravo, *Smooth approximations without critical points of continuous mappings between Banach spaces and diffeomorphis stractions of sets*, Adv. Math. 354 (2019).

• D. Azagra, M. García-Bravo, M. Jiménez-Sevilla, *Approximate Morse-Sard type results for non-separable Banach spaces*, J. Funct. Anal. (2024).

• D. Azagra, M. Jiménez-Sevilla, *Approximation by smooth functions with no critical points on separable infinite-dimensional Banach spaces*, J. Funct. Anal. (2007).

• M. García-Bravo, *Extraction of critical points of smooth functions on Banach spaces*, J. Math. Anal. Appl. 482, (2020).

• P. Hájek and M. Johanis, *Smooth approximations without critical points*, Cent. Eur. J. Math. 1 (2003), no. 3.

• H. Toruńczyk, *Smooth partitions of unity on some non-separable Banach spaces*, Studia Math. 46 (1973).

Thank you

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで