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Projections detect information about the size, geometric arrangement, and
dimension of sets.

We focus on 1-dimensional sets of finite length and the shadows or projections of
such sets.

Figure: continuous curve
Figure: dust set

theme: highly scattered sets have no shadow in almost all directions.
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The importance of shadows and
projections dates back to ancient
times.

The Greek mathematician,
Eratosthenes of Alexandria, used
angle measurements and the sun’s
shadows to compute the
circumference of the Earth

Fast forward over 2,000 years, what
information can we obtain from the
shadows of highly un-smooth
objects?
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A single projection may not tell the full story
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Theorem 1 (Marstrand)

Let E ⊂ R2 be a Borel set. Then for

Lebesgue a.a. θ ∈ [0, π):

(i) dimH E ≤ 1 =⇒
dimH (projθE ) = dimH E ;

(ii) dimH E > 1 =⇒
Leb (projθE ) > 0 .

proj
θ (E

)

E

θ

Lθ

main tools: characterizations of Hausdorff dimension; push-forward
measures

The case when s = 1 falls outside the scope of Marstrand’s theorem
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Key tools: energies and pushforwards

There are two key tools in proving Marstrand’s theorem

The s-energy of a measure µ is

Is(µ) =

∫∫
dµ(x) dµ(y)

|x − y |s
.

This measures distribution of the mass of µ.

If µ is a measure and f is a function, the pushforward measure is

f♯µ(A) = µ(f −1A).

Big idea: link the energy of a pushforward to the energy of the original set
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Rectifiability is used to describe the structure (regularity) of a set or
measure similar to the way that the degree of differentiability of charts is
used to describe the smoothness of a map or manifold.

Figure: rectifiable
Figure: purely 1-unrectifiable

Let E denote a set of positive and finite 1-dimensional Hausdorff
measure:
E is purely unrectifiable if H1(E ∩ Γ) = 0 for all Lipschitz curves Γ.

Hausdorff dimension cannot detect the difference. Average projection
length can
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Theorem 2 (Besicovitch)

If E ⊂ R2 has positive and finite length, then

|projθ(E )| = 0 a.e. θ if and only if E is purely unrectifiable .

Said differently,∫ π

0
|projθ(E )|dθ = 0 ⇐⇒ E is purely unrectifiable .

So, the key geometric property that projections detect is rectifiability.

Key idea in proof: purely unrectifiable sets have tangents almost nowhere
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The Favard length

Fav(E ) = 1
π

∫ π

0

|projθ(E )| dθ

is the average length of a sets orthogonal projections.

proj
θ (E

)

E

θ

Lθ
it is translation invariant, rotation invariant, and subadditive,

has Fav(λE ) = λFav(E ),

has Fav(E ) ≤ H1(E ) (so sets of dimension s < 1 have Favard length zero),

but for unrectifiable sets, this inequality is strict.

Probabilistic interpretation: It is comparable to the Buffon needle probability:
the probability that a thin needle dropped near the set intersects the set.
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Favard length problem

The four corner Cantor set (or Garnett set), K = ∩Kn, is an example of a purely
unrectifiable set with positive and finite length.
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Figure: The first three generations in the construction, K1, K2, and K3

Consequence of Besi. projection theorem: Fav(K) = 0.

The Favard length problem asks for more quantitative information:
determine the exact rate at which Fav(Kn) decays.

Peres and Solomyak proved preliminary upper bounds, and Mattila used
energy techniques to show that Fav(Kn) ≳ n−1.

Subsequent work has achieved the tighter bounds

log n

n
≲︸︷︷︸
BV

Fav(Kn) ≲︸︷︷︸
NPV

1

n1/6−δ
, (1)

where the lower bound is due to Bateman and Volberg, and the upper
bound is due to Nazarov, Peres, and Volberg and holds for any δ > 0.
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Subsequent work has achieved the tighter bounds

log n
n ≲ Fav(Kn) ≲ 1

n1/6−δ ,

where the lower bound is due to Bateman and Volberg, and the upper
bound is due to Nazarov, Peres, and Volberg and holds for any δ > 0.

Additional works with four-corner replaced by:
1-dimensional Sierpinski gasket (Bond, Volberg
2010),
rational product Cantor sets (Bond,  Laba,
Volberg 2014,  Laba, Marshall),
product Cantor sets with at least one projection
of positive 1-dimensional Lebesgue measure
( Laba, Zhai 2010),
and random Cantor sets (Zhang 2018).
also see  Laba’a survey and December ’24 Notices
article.
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Buffon Circle Problem

Recall, the Favard length is equivalent to
the Buffon needle probability. Let’s replace
needles (lines) by circles or other curves.

The Buffon circle problem concerns the
probability that a circle of fixed radius
dropped near the four corner set intersects
the four corner set.

Recall that Besi’s theorem implies that
Fav(K) = 0

In joint work with K. Simon, we prove that
FavΓ(K ) = 0.

In this talk, we investigate the decay of
FavΓ(Kn).

x

S
(x
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)

1
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Favard curve length

Φα(x)

α

`
α

y

Φα(y)

1 y +
Γ̃

z

Φα(z)

1

z + Γ̃

x + Γ̃

1

xx2

x1

Replace the family of orthogonal projections,
{projθ}, with a family of curved
projection-like maps, {ϕα}

Now, foliate the plane by vertical lines ℓα

Define the curved projection map by

ϕα(x) = (x + Γ) ∩ ℓα

The Favard curve length is defined by

FavΓ(E ) =
∫
|ϕα(E )| dα.

These maps also obey Marstrand and Besi’s
theorems
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Best known results on Favard curve length

Let Kn denotes the n-th stage in the construction of the four-corner Cantor set.

We obtain an upper bound in-line with NPV’s result in the classic setting:

Theorem 3 (Cladek, Davey, T.)

FavΓ(Kn) ≲ nϵ−1/6

By generalizing the energy-techniques of Mattila, we obtain the lower bound:

Theorem 4 (Bongers, T.)

1

n
≲ FavΓ(Kn)

The proof of the latter theorem does not depend on self-similarity and can
be generalized to much larger classes of transversal mappings.
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proof of upper bound: The key idea is to relate the circular projections to
the classical projections on small collections of squares.
Set-up: Let Kn denote the the n-th generation of the construction:

made up of 4n squares of side length 4−n := δ

We want to understand ϕα(Kn). We show that for a small enough piece of
Kn, there exists θ ∈ S1 so that |Φα(piece))| is comparable to |projθ(piece)|.
Consider ancestor Kn/2: made up of 4n/2 = 2n squares , {Qj} of side length

2−n :=
√
δ . Write Kn/2 =

⊔4n/2

j=1 Qj

Group squares together/ take advantage (but not too much
advantage) of subadditivity: Define Q̃j = Kn ∩ Qj , a shifted and√
δ−rescaled copy of Kn/2.

Q̃1 Q̃2

Q̃3 Q̃4

Figure: n=2: K1 consists of 4 grey Qj

Consider the image of one of these Q̃j
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Cover by tubes: Cover the image of Q̃j by δ-intervals. (Let N denote the

number of intervals needed). Now |Φα(Q̃j)| ∼ Nδ, and it suffices to

estimate N.

linearize: The pre-image of each δ-interval is contained in a δx
√
δ tube in

Q̃j . (a Vitaly-covering argument assures tubes are essentially disjoint)

The angle comparison: Choose an angle s.t. the orthogonal projection of
the tubes in this carefully chosen angle is approximately the same size as

that of the curved projection: |projθ(α)(Q̃j)| ∼ Nδ .
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use self-similarity: Since Q̃j is a shifted and
√
δ−rescaled copy of Kn/2,

self-similarity yields |projθ(α)(Kn/2)| ∼ N
√
δ.

Subadditivity combined with the above yields

|Φα(Kn)| ≲
∑4n/2

k=1 |Φα(Q̃j)| ≲ Nδ1/2 ∼ |projθ(α)(Kn/2)|

Integrating in α and applying the NPV bound completes the argument
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NPV sketch: The counting (or stacking) function

Fix θ and n.

Recall Kn consists of 4n squares, so that Projθ(Kn) is a union of 4n intervals
possibly with much overlap.

Define fn,θ as sum of characteristic functions of intervals:
fn,θ(x) = the number of squares of Kn which project onto x .

A standard technique in analysis: upper bound on L2 yields lower bound on
the support via Cauchy-Schwarz

1 =

(∫
Projθ(Kn)

fn,θ

)2

≤
(∫

R
f 2n,θ

)
|Projθ(Kn)|

So, if θ satisfies
∫
R f 2n,θ ≤ K , then 1

K ≤ |ProjRθ(Kn)|.
A small L2 norm, however, means that there is “not enough stacking”.
When seeking an upper bound, we need many θ to have a small projection.

A Fourier analytic argument shows that the L2 norm of fn,θ is large for
typical θ, and a combinatorial argument is used to handle the exceptional θ.
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stacking: small projection: big L2 norm

Figure: stacking

fn,θ(x) = 2n for x ∈ π0(Kn)

π0(Kn) consists of 2n intervals
of length 1

2n∫
f 2n,θ =

∑2n

i=1

∫
I

22ndt = 4n

Figure: no stacking; θ = arctan 1/2

fn,θ(x) = 1 for x ∈ πθ(Kn)

πθ(Kn) consists of 4n intervals
of length ∼ 1

2n∫
f 2n,θ =

∑2n

i=1

∫
I

1dt = 1
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Further work: Coverings and prescribed projections

Davies Theorem: Let A be a compact set in R2. Then, there exists
a collection of full lines L so that

A ⊂
⋃

ℓ∈L ℓ

proved using a Perron-tree like construction with rectangles. We
cover the set by longer and skinnier rectangles with mass
concentrating near A. Alternatively, Davies theorem follows from:

A prescribed projection theorem (Falconer’s sundial): For each
θ ∈ [0, π), let Aθ ⊂ R so that {(θ,Aθ) : θ ∈ [0, π)} is measurable.
Then there exists a set E ⊂ R2 so that:
(i) projθ(E ) ⊃ Aθ and (ii) |projθ(E )| = |Aθ|.
In joint work with Chang and McDonald, we prove nonlinear versions
for semi-circles (to appear in Analysis and PDE) stay tuned for the
story for full circles...
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Thank you for your attention

Figure: boy stacking problem

K. Taylor, Ohio State University Fractals and the Buffon Circle Problem 21 / 22



Summary & Further Research

The Favard length averages the lengths of the orthogonal projections of a
set. It is equivalent to the Buffon needle probability and can be used to
detect rectifiability or lack thereof. Favard length can be formulated in
higher dimensions and for more general families of projection operators

The Favard curve length gives a nonlinear formulation for curve projections.

FavΓ(E ) ∼ |E + Γ| ∼ (the Buffon curve probability of E )

The best-known bounds for FavΓ(Kn) agree with those for the classic
Fav(Kn) (up to a log)

Our upper bound exploits subadditivity and self-similarity, and we linearize
on small scales. Our lower bound uses Mattila’s energy techniques and
generalizes beyond curve projection operators to transversal families

Beyond the four-corner set, one can study a quantitative Besicovitch
projection theorem We are investigating: (1) a quantitative two projection
theorem (with Z. Li); (2) upper bounds for FavΓ beyond the four corner set
to include rotations in the construction of the set and more general
mappings (A. McDonald and C. Marshall); (3) reverse or prescribed
projection or covering problems
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