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Construction

• Let a = (an) ∈ (0, 1)N.

• Let I := [0, 1] and P be an open interval centred at 1/2 of
length a1.

I \ P = I0 ∪ I1.

• For n ∈ N, s ∈ {0, 1}n let Ps be an open interval concentric with
Is and such that |Ps | = an+1|Is |.

Is \ Ps = Is0 ∪ Is1.

Cn(a) =
⋃

s∈{0,1}n
Is ,

C (a) :=
⋂
n∈N

Cn(a).

C (a) is called a central Cantor set.
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The length of each basic interval of level n is equal to

dn =
1
2n

(1− a1) . . . (1− an).

For A,B ⊂ R, A− B := {a − b : a ∈ A, b ∈ B}. The set A− A is
called the difference set of A.

Definition

Every nonempty, compact, perfect and nowhere dense subset of R
is called a Cantor set.

Definition

We say that a nonempty perfect set E ⊂ R is an M-Cantorval (a
Cantorval) if it is not an interval and both endpoints of all gaps are
accumulation points of other gaps and accumulation points of
non-trivial components of E .
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Theorem [Anisca, Ilie, 2001]

For any a ∈ (0, 1)N, the set C (a)− C (a) has one of the following
forms:
1) a finite union of closed intervals;
2) a Cantor set;
3) a Cantorval.

Theorem [Anisca, Ilie, 2001], [Sannami, 1992]

Let a = (an) ∈ (0, 1)N. Then C (a)− C (a) is:

(1) the interval [−1, 1] if and only if an ¬ 13 for all n ∈ N;
(2) a finite union of intervals if and only if the set
{n ∈ N : an >

1
3} is finite;

(3) a Cantor set if the set {n ∈ N : an ¬ 13} is finite.
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Basic assumptions and additional notation

Assume that a = (aj)j∈N ∈ (0, 1)N is a sequence such that: an > 13
for infinitely many terms, an ¬ 13 for infinitely many terms, and
k0 ∈ N ∪ {0} is such that ak0+1 < 13 . Let (kn) be the sequence of
all indices greater than k0, for which akn >

1
3 . Denote

δn := min{3di − di−1 : i ∈ {kn−1 + 1, . . . , kn − 1}},

∆n := max{3di − di−1 : i ∈ {kn−1 + 1, . . . , kn − 1}},

where max ∅ = −∞,min ∅ =∞.
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Theorem 1 [Filipczak, N., 2023]

Let a ∈ (0, 1)N satisfy basic assumptions. Put

m′n := min{δn−1 − (dkn−1 − dkn), 4dkn −∆n−1, δn}

M ′n := max{δn−1 − (dkn−1 − dkn), 4dkn −∆n−1,∆n}

for n ∈ N. If for any n ∈ N we have

m′n = M ′n =
∞∑
i=n

(dki−1 − dki ),

then the set C (a)− C (a) is a Cantorval.
Moreover, if k0 = 0, then

|C (a)− C (a)| = 2− 2
∞∑
n=1

3n−1 (dkn−1 − 3dkn) .
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Definition

Let x = (xj)j∈N be a nonincreasing sequence of positive numbers
such that the series

∑∞
j=1 xj is convergent. The set

E (x) :=

∑
j∈A

xj : A ⊂ N


(where

∑
j∈∅ xj := 0) of all subsums of

∑∞
j=1 xj is called the

achievement set of x .

Notation

S :=
∑∞

j=1 xj ,
rn :=

∑∞
j=n+1 xj .

Definition

If xn > rn for n ∈ N, then the series is called fast convergent.
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Proposition

The following conditions hold.
1 If a = (aj)j∈N ∈ (0, 1)N, λn = 1−an

2 for n ∈ N, then the series∑∞
j=1 xj given by the formula

x1 = 1− λ1 and xj = λ1 · . . . · λj−1 · (1− λj) for j > 1,

is fast convergent, S = 1 and C (a) = E (x).

2 If a series
∑∞

j=1 xj is fast convergent and aj =
xj−rj
rj−1
for j ∈ N,

then (aj)j∈N ∈ (0, 1)N and E (x) = S · C (a).
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Theorem 2 [Filipczak, N., 2023]

Let (kn)n∈N be an increasing sequence of natural numbers such
that k1 > 1 and the set N \ {kn : n ∈ N} is infinite. Put

xj :=

{
2
3j−1 if j ∈ {kn : n ∈ N}
1
3j−1 if j /∈ {kn : n ∈ N} ,

S :=
∑∞

j=1 xj , rn :=
∑∞

j=n+1 xj , and an := xn−rn
rn−1
for n ∈ N. The

following conditions hold.
1 The sequence a = (an) is the only sequence satisfying the
assumptions of Theorem 1 with k0 = 0 such that an > 13 if
and only if n = ki for some i ∈ N.

2 The set E (x)− E (x) is a Cantorval and E (x) = S · C (a) .

3 |E (x)− E (x)| = 3.
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Example 1

Assume that kn = 2n and the sequences x and a are defined as in
Theorem 2. Then for n ∈ N a2n−1 =

1
15 , a2n = 11

21 , C (a)− C (a) is
a Cantorval and |C (a)− C (a)| = 8

5 .

Example 2

Assume that kn = 3n and the sequences x and a are defined as in
Theorem 2. Then for n ∈ N a3n−2 =

5
21 , a3n−1 =

1
12 , a3n = 19

33 ,
C (a)− C (a) is a Cantorval and |C (a)− C (a)| = 13

7 .

Example 3

Assume that (kn) = (2, 3, 5, 6, 8, 9, . . .) and the sequences x and a
are defined as in Theorem 2. Then for n ∈ N a3n−2 =

1
51 ,

a3n−1 =
29
75 , a3n = 35

69 , C (a)− C (a) is a Cantorval and
|C (a)− C (a)| = 26

17 .
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Theorem 3

Suppose that a = (an) ∈ (0, 1)N satisfies basic assumptions. Put

mn := min{δn − (dkn−1 − dkn), 4dkn −∆n}

for n ∈ N. If for any n ∈ N we have

mn ­ 2 ·
∞∑

i=n+1

(dki−1 − dki ),
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Corollary 1

Let a = (a1, a2, a1, a2, . . . ), where a1 < 13 , a2 >
1
3 . If a1 ¬

1
35 and

a2 ¬
−a1 − 5+

√
a21 + 34a1 + 33

2− 2a1

or a1 ∈ ( 135 ,
6
√
5−13
11 ) and

a2 ¬
3a1 + 1− 4

√
a21 + a1

1− a1
,

then the set C (a)− C (a) is a Cantorval.
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Cantorvals for sequences (a1, a2, a1, a2, . . . )
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S-Cantor sets

Notation

A ⊂ Z - a finite set, p ∈ N, p ­ 2.

Ap :=

{ ∞∑
i=1

xi
pi

: xi ∈ A

}
.

Definition

We say that a nonempty perfect set E ⊂ R is an L-Cantorval
(R-Cantorval, respectively) if it is not an interval and the left
(right) endpoints of all gaps are accumulation points of other gaps
and accumulation points of nontrivial components of E and the
right (left) endpoints of all gaps are also endpoints of nontrivial
components of E .
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S-Cantor sets

Definition

Let l , r , p ∈ N be such that p > 2 and l + r < p. A set
C (l , r , p) := A(l , r , p)p, where

A(l , r , p) := {0, 1, . . . , l − 1} ∪ {p − r , p − r + 1, . . . , p − 1}

is called a special Cantor set (or an S-Cantor set).
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p, l1, r1, l2, r2 ∈ N, p > 2, l1 + r1 < p, l2 + r2 < p

Conditions

(S1) l1 + l2 + r2 ­ p or l1 + r1 + r2 ­ p;

(S1∗) l1 + l2 + r2 > p or l1 + r1 + r2 > p;

(S2) l1 + r1 + l2 ­ p or r1 + l2 + r2 ­ p;

(S2∗) l1 + r1 + l2 > p or r1 + l2 + r2 > p;

(S3) l1 + r1 + l2 + r2 ¬ p.
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Theorem

Assume that l1, r1, l2, r2, p ∈ N, p > 2, l1 + r1 < p and l2 + r2 < p.

(1) C (l1, r1, p)−C (l2, r2, p) = [−1, 1] if and only if (S1) and (S2)
hold.

(2) C (l1, r1, p)− C (l2, r2, p) is a Cantor set if and only if (S3)
holds.

(3) C (l1, r1, p)− C (l2, r2, p) is an L-Cantorval if and only if (S1∗),
holds, but (S2) does not hold.

(4) C (l1, r1, p)− C (l2, r2, p) is an R-Cantorval if and only if (S2∗)
holds, but (S1) does not hold.

(5) C (l1, r1, p)− C (l2, r2, p) is an M-Cantorval if and only if
(S1∗), (S2∗), (S3) do not hold and at least one from (S1),
(S2) also does not hold.
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Corollary 1

Let l , r , p ∈ N, p > 2, l + r < p. Then

(1) C (l , r , p)− C (l , r , p) = [−1, 1] if and only if

2l + r ­ p or l + 2r ­ p;

(2) C (l , r , p)− C (l , r , p) is a Cantor set if and only if

2l + 2r ¬ p;

(3) C (l , r , p)− C (l , r , p) is an M-Cantorval if and only if

2l + r < p and l + 2r < p and 2l + 2r > p.
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Example

Let r1 = 2, l1 = 3, r2 = 3, l2 = 1, p = 7. Then
l1 + r1 < p, l2 + r2 < p,

l1 + r1 + r2 > p ⇒ (S1∗),

(l1 + r1 + l2 < p ∧ r1 + l2 + r2 < p)⇒ ¬(S2).

In consequence,

C (l1, r1, p)− C (l2, r2, p) = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 5, 6}7

is an L-Cantorval, and

C (l2, r2, p)− C (l1, r1, p) = {−6,−5,−2,−1, 0, 1, 2, 3, 4, 5, 6}7

is an R-Cantorval. At the same time, 2l1 + r1 ­ p and 2r2 + l2 ­ p,
thus

C (l1, r1, p)− C (l1, r1, p) = C (l2, r2, p)− C (l2, r2, p) = [−1, 1].
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C (l , r , p) is symmetric with respect to 12 if and only if l = r .

Definition

Any set C (l , p) := C (l , l , p) is called a symmetric S-Cantor set.

Corollary 2

Let l1, l2, p ∈ N, p > 2, 2l1 < p, 2l2 < p. Then

(1) C (l1, p)− C (l2, p) = [−1, 1] if and only if

2l1 + l2 ­ p or l1 + 2l2 ­ p;

(2) C (l1, p)− C (l2, p) is a Cantor set if and only if

2l1 + 2l2 ¬ p;

(3) C (l1, p)− C (l2, p) is an M-Cantorval if and only if

2l1 + l2 < p and l1 + 2l2 < p and 2l1 + 2l2 > p.
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Corollary 3

Let l , p ∈ N, p > 2, 2l < p. Then

(1) C (l , p)− C (l , p) = [−1, 1] if and only if

l

p
­ 1
3
;

(2) C (l , p)− C (l , p) is a Cantor set if and only if

l

p
¬ 1
4
;

(3) C (l , p)− C (l , p) is an M-Cantorval if and only if

l

p
∈
(
1
4
,
1
3

)
.
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Example

Let l1 = 2, l2 = 1, p = 5. Then 2l1 + l2 ­ p, so
C (l1, p)− C (l2, p) = [−1, 1]. Moreover, l1p ­

1
3 and

l2
p <

1
4 ,

therefore C (l1, p)− C (l1, p) = [−1, 1], but C (l2, p)− C (l2, p) is a
Cantor set.

Example

Let l = 1, p = 3. The set C = C (l , p) is the classical Cantor
ternary set. By Corollary 3, C − C = [−1, 1].

Example

Let l = 2, p = 7. Then l
p ∈ (14 ,

1
3), and therefore

C (l , p)− C (l , p) = {−6,−5,−4,−1, 0, 1, 4, 5, 6}7

is an M-Cantorval.
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Let l = 2, p = 7. Then l
p ∈ (14 ,

1
3), and therefore

C (l , p)− C (l , p) = {−6,−5,−4,−1, 0, 1, 4, 5, 6}7

is an M-Cantorval.
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