Little Lipschitz constant of functions on the real line

Martin Rmoutil

(joint with Thomas Zürcher and David Preiss)

Charles University, Prague

Madrid, 20/06/2025

big Lip VS little lip

A function $f : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz with constant L if

$$\frac{|f(y) - f(x)|}{|y - x|} \leqslant L, \quad \text{for all } x, y \in \mathbb{R}, \ x \neq y.$$

Then L is the "global" Lipschitz constant.

big Lip VS little lip

A function $f : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz with constant L if

$$\frac{|f(y) - f(x)|}{|y - x|} \leqslant L, \quad \text{for all } x, y \in \mathbb{R}, \ x \neq y.$$

Then L is the "global" Lipschitz constant.

Pointwise Lipschitz constant:

$$\operatorname{Lip} f(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|}$$

big Lip VS little lip

A function $f : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz with constant L if

$$\frac{|f(y) - f(x)|}{|y - x|} \leqslant L, \quad \text{for all } x, y \in \mathbb{R}, \ x \neq y.$$

Then L is the "global" Lipschitz constant.

Pointwise Lipschitz constant:

$$\operatorname{Lip} f(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|} \stackrel{\operatorname{Hw}}{=} \limsup_{r \searrow 0} \sup_{|y - x| \leqslant r} \frac{|f(y) - f(x)|}{r}.$$

big Lip VS little lip

A function $f : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz with constant L if

$$\frac{|f(y) - f(x)|}{|y - x|} \leqslant L, \quad \text{for all } x, y \in \mathbb{R}, \ x \neq y.$$

Then L is the "global" Lipschitz constant.

Pointwise Lipschitz constant:

$$\operatorname{Lip} f(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|} \stackrel{\operatorname{Hw}}{=} \limsup_{r \searrow 0} \sup_{|y - x| \leqslant r} \frac{|f(y) - f(x)|}{r}.$$

Little Lipschitz constant – only pointwise:

$$\lim f(x) = \liminf_{r \searrow 0} \sup_{|y-x| \leqslant r} \frac{|f(y) - f(x)|}{r}.$$

Rademacher (1919): Any Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable almost everywhere.

Rademacher (1919): Any Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable almost everywhere.

Stepanov (1923): Any measurable function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable a.e. in the set

$$L_f := \left\{ x \in \mathbb{R}^d \colon \operatorname{Lip} f(x) < \infty
ight\}.$$

Rademacher (1919): Any Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable almost everywhere.

Stepanov (1923): Any measurable function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable a.e. in the set

$$L_f := \left\{ x \in \mathbb{R}^d \colon \operatorname{Lip} f(x) < \infty
ight\}.$$

Zahorski (1946): Let $A \subseteq \mathbb{R}$. TFAE:

(i) There exists a Lipschitz $f : \mathbb{R} \to \mathbb{R}$ such that $A = \{x \in \mathbb{R} : \nexists f'(x)\}$; (ii) A is $G_{\delta\sigma}$ and Lebesgue null.

Rademacher (1919): Any Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable almost everywhere.

Stepanov (1923): Any measurable function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable a.e. in the set

$$L_f := \left\{ x \in \mathbb{R}^d \colon \operatorname{Lip} f(x) < \infty
ight\}.$$

Zahorski (1946): Let $A \subseteq \mathbb{R}$. TFAE:

(i) There exists a Lipschitz $f : \mathbb{R} \to \mathbb{R}$ such that $A = \{x \in \mathbb{R} : \nexists f'(x)\}$; (ii) A is $G_{\delta\sigma}$ and Lebesgue null.

Note that in higher dimensions it is not so easy: **Preiss (1989?):** There exists a Lebesgue null set $A \subseteq \mathbb{R}^2$ such that any Lipschitz function on \mathbb{R}^2 has a point of differentiability in A.

Balogh–Csörnyei (2006): There exist a set $A \subset [0, 1]$ of positive measure and a continuous function $f: [0, 1] \to \mathbb{R}$ such that $\lim f(x) < \infty$ for all $x \in [0, 1]$ and f has finite derivative at **no** point of A.

Balogh–Csörnyei (2006): There exist a set $A \subset [0, 1]$ of positive measure and a continuous function $f: [0, 1] \to \mathbb{R}$ such that $\lim f(x) < \infty$ for all $x \in [0, 1]$ and f has finite derivative at **no** point of A.

There exists a nowhere differentiable, continuous function $f: [0,1] \to \mathbb{R}$ such that lip f(x) = 0 for a.e. $x \in [0,1]$.

Balogh–Csörnyei (2006): There exist a set $A \subset [0, 1]$ of positive measure and a continuous function $f: [0, 1] \to \mathbb{R}$ such that $\lim f(x) < \infty$ for all $x \in [0, 1]$ and f has finite derivative at **no** point of A.

There exists a nowhere differentiable, continuous function $f: [0,1] \to \mathbb{R}$ such that $\lim f(x) = 0$ for a.e. $x \in [0,1]$.

Balogh–Csörnyei (2006): Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuous function such that $\lim f(x) < \infty$ for $x \in \mathbb{R}^d \setminus E$, where E has σ -finite (d-1)-dimensional Hausdorff measure. Assume that $\lim f \in L^p_{loc}(\mathbb{R}^d)$ for some $1 \le p \le \infty$. Then $f \in W^{1,p}_{loc}(\mathbb{R}^d)$. If moreover p > d, then we have

$$\operatorname{lip} f(x) = \operatorname{Lip} f(x) = \|\nabla f(x)\| \quad \text{for a.e. } x \in \mathbb{R}^d.$$

points x where lip $f(x) = \infty$

Definition

$$\lim_{r \to 0} f(x) = \liminf_{y \in B(x,r)} \sup_{y \in B(x,r)} \frac{|f(y) - f(x)|}{r}$$

points x where lip $f(x) = \infty$

Definition

$$\lim_{r \to 0} f(x) = \liminf_{y \in B(x,r)} \sup_{y \in B(x,r)} \frac{|f(y) - f(x)|}{r}$$

Definition

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any function. We define $L_f^{\infty} := \{x \in \mathbb{R}^d : \text{Lip } f(x) = \infty\}$ and $l_f^{\infty} := \{x \in \mathbb{R}^d : \text{lip } f(x) = \infty\}.$

points x where lip $f(x) = \infty$

Definition

$$\lim_{r \to 0} f(x) = \liminf_{y \in B(x,r)} \sup_{y \in B(x,r)} \frac{|f(y) - f(x)|}{r}$$

Definition

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any function. We define $L_f^{\infty} := \{x \in \mathbb{R}^d : \text{Lip } f(x) = \infty\}$ and $l_f^{\infty} := \{x \in \mathbb{R}^d : \text{Lip } f(x) = \infty\}.$

Easy:

(a) L_f^{∞} is always G_{δ} ; (b) I_f^{∞} is always $F_{\sigma\delta}$.

points x where lip $f(x) = \infty$

Definition

$$\lim_{r \to 0} f(x) = \liminf_{y \in B(x,r)} \sup_{y \in B(x,r)} \frac{|f(y) - f(x)|}{r}$$

Definition

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any function. We define $L_f^{\infty} := \{x \in \mathbb{R}^d : \text{Lip } f(x) = \infty\}$ and $l_f^{\infty} := \{x \in \mathbb{R}^d : \text{lip } f(x) = \infty\}.$

Easy:

- (a) L_f^{∞} is always G_{δ} ;
- (b) I_f^{∞} is always $F_{\sigma\delta}$.

Q: ls (b) optimal?

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

$$\lim_{r\to 0} f(x) = \liminf_{y\in B(x,r)} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad l_f^{\infty} = \{x\in\mathbb{R}: \text{ lip } f(x) = \infty\}.$$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

$$\lim_{r\to 0} f(x) = \liminf_{r\to 0} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad l_f^{\infty} = \{x\in\mathbb{R}: \ \lim f(x) = \infty\}.$$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Theorem (Buczolich, Hanson, R., Zürcher (2019))

Let $F \subset \mathbb{R}$ be any F_{σ} set (or G_{δ}). Then $\exists f \in C([0,1])$ s.t. $I_{f}^{\infty} = F$.

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

 $\lim_{r\to 0} f(x) = \liminf_{r\to 0} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad I_f^{\infty} = \{x\in \mathbb{R} \colon \lim f(x) = \infty\}.$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Theorem (Buczolich, Hanson, R., Zürcher (2019))

Let $F \subset \mathbb{R}$ be any F_{σ} set (or G_{δ}). Then $\exists f \in C([0,1])$ s.t. $I_{f}^{\infty} = F$.

Proof: The proof for F_{σ} consists of several steps.

1. *F* countable;

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

 $\lim_{r\to 0} f(x) = \liminf_{r\to 0} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad I_f^{\infty} = \{x\in \mathbb{R} \colon \lim f(x) = \infty\}.$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Theorem (Buczolich, Hanson, R., Zürcher (2019))

Let $F \subset \mathbb{R}$ be any F_{σ} set (or G_{δ}). Then $\exists f \in C([0,1])$ s.t. $I_{f}^{\infty} = F$.

- 1. F countable;
- 2. F perfect nowhere dense;

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

 $\lim_{r\to 0} f(x) = \liminf_{r\to 0} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad I_f^{\infty} = \{x\in \mathbb{R} \colon \lim f(x) = \infty\}.$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Theorem (Buczolich, Hanson, R., Zürcher (2019))

Let $F \subset \mathbb{R}$ be any F_{σ} set (or G_{δ}). Then $\exists f \in C([0,1])$ s.t. $I_{f}^{\infty} = F$.

- 1. F countable;
- 2. F perfect nowhere dense;
- 3. F countable union of perfect nowhere dense sets;

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

 $\lim_{r\to 0} f(x) = \liminf_{r\to 0} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad I_f^{\infty} = \{x\in \mathbb{R} \colon \lim f(x) = \infty\}.$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Theorem (Buczolich, Hanson, R., Zürcher (2019))

Let $F \subset \mathbb{R}$ be any F_{σ} set (or G_{δ}). Then $\exists f \in C([0,1])$ s.t. $I_{f}^{\infty} = F$.

- 1. F countable;
- 2. F perfect nowhere dense;
- 3. F countable union of perfect nowhere dense sets;
- 4. F countable union of nowhere dense sets;

Descriptive quality of I_f^{∞} in dimension 1

Definition (Little Lipschitz constant)

Let $f : \mathbb{R} \to \mathbb{R}$. We define

 $\lim_{r\to 0} f(x) = \liminf_{r\to 0} \sup_{y\in B(x,r)} \frac{|f(y)-f(x)|}{r} \quad \text{and} \quad I_f^{\infty} = \{x\in \mathbb{R} \colon \lim f(x) = \infty\}.$

Recall: I_f^{∞} is $F_{\sigma\delta}$ for any $f \in C([0,1])$.

Theorem (Buczolich, Hanson, R., Zürcher (2019))

Let $F \subset \mathbb{R}$ be any F_{σ} set (or G_{δ}). Then $\exists f \in C([0,1])$ s.t. $I_{f}^{\infty} = F$.

- 1. F countable;
- 2. F perfect nowhere dense;
- 3. F countable union of perfect nowhere dense sets;
- 4. F countable union of nowhere dense sets;
- 5. General case: Remove the interior of F.

Theorem (R., Zürcher)

Let $A \subseteq \mathbb{R}$ be $F_{\sigma\delta}$, |A| = 0. Then there exists a monotone, absolutely continuous $f : \mathbb{R} \to \mathbb{R}$ such that $l_f^{\infty} = A$.

Theorem (R., Zürcher)

Let $A \subseteq \mathbb{R}$ be $F_{\sigma\delta}$, |A| = 0. Then there exists a monotone, absolutely continuous $f : \mathbb{R} \to \mathbb{R}$ such that $l_f^{\infty} = A$.

The construction is completely different.

Theorem (R., Zürcher)

Let $A \subseteq \mathbb{R}$ be $F_{\sigma\delta}$, |A| = 0. Then there exists a monotone, absolutely continuous $f : \mathbb{R} \to \mathbb{R}$ such that $l_f^{\infty} = A$.

The construction is completely different.

Corollary

The result stating that I_f^{∞} is $F_{\sigma\delta}$ cannot, in general, be improved.

Theorem (R., Zürcher)

Let $A \subseteq \mathbb{R}$ be $F_{\sigma\delta}$, |A| = 0. Then there exists a monotone, absolutely continuous $f : \mathbb{R} \to \mathbb{R}$ such that $l_f^{\infty} = A$.

The construction is completely different.

Corollary

The result stating that I_f^{∞} is $F_{\sigma\delta}$ cannot, in general, be improved.

Conjecture (proof in progress) For any $F_{\sigma\delta}$ set $F \subseteq \mathbb{R}$ there exists a function $f \in C([0, 1])$ such that $l_f^{\infty} = F$.

Lemma

Suppose $E, F \subseteq \mathbb{R}$ are closed, $A, M \subseteq \mathbb{R}$ are measurable, |A| = 0 and M has EPM. Let $\varepsilon > 0$ and H be the closed set from the previous lemma:

- (1) $F \subseteq H \subseteq (F \cup M) \cap (F)_{\varepsilon}$;
- (2) H meets the middle third of every component of F^c ∩ (F)_ε in a set of positive measure.
- Then there is a nondecreasing absolutely continuous function $g: \mathbb{R} \to [0, \varepsilon]$ such that
 - (i) $\operatorname{spt}(g') \subseteq H$;
- (ii) Lip $g(x) < \infty$ for every $x \in \mathbb{R}$;
- (iii) g'(x) = 1 for every $x \in A \cap F \cap E^c$;
- (iv) $osc(g, U) \leq \varepsilon |U|$ whenever U is an interval meeting E;
- (v) $\|g'\|_1 < \varepsilon$.

Thank you for your attention. Gracias por su atención. Děkuji za pozornost.