On the almost-everywhere convergence of two-parameter ergodic averages along directional rectangles 47th Summer Symposium in Real Analysis

Bastien LECLUSE

Laboratoire de Mathématiques d'Orsay - Université Paris-Saclay

16/06/2025

Let $T: X \to X$ be a measure-preserving transformation on a probability space (X, \mathcal{A}, μ) .

Theorem - Birkhoff, 1931 If $f \in L^1(X)$, then the limit

 $\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)$

exists for almost every $x \in X$.

Question : Can this be generalized to higher dimensions?

Let $T: X \to X$ be a measure-preserving transformation on a probability space (X, \mathcal{A}, μ) .

Theorem - Birkhoff, 1931

If $f \in L^1(X)$, then the limit

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)$$

exists for almost every $x \in X$.

Question : Can this be generalized to higher dimensions?

Let $T: X \to X$ be a measure-preserving transformation on a probability space (X, \mathcal{A}, μ) .

Theorem - Birkhoff, 1931

If $f \in L^1(X)$, then the limit

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}f(T^jx)$$

exists for almost every $x \in X$.

Question : Can this be generalized to higher dimensions?

Let $S, T : X \to X$ be a pair of commuting, invertible, measure-preserving, ergodic transformations on a probability space (X, A, μ) .

Theorem

If $f \in L^1(X)$, then the limit

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i,j=0}^{n-1}f(S^iT^jx)$$

Let $S, T : X \to X$ be a pair of commuting, invertible, measure-preserving, ergodic transformations on a probability space (X, A, μ) .

Theorem

If $f \in L^1(X)$, then the limit

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i,j=0}^{n-1}f(S^iT^jx)$$

Theorem - Dunford and Zygmund (independently), 1951

If $f \in L \log L(X)$, then the limit

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}f(S^iT^jx)$$

Theorem - Dunford and Zygmund (independently), 1951

If $f \in L \log L(X)$, then the limit

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}f(S^iT^jx)$$

Remark : There appears to be a strong analogy between ergodic averages and the differentiation of integrals.

Theorem - Jessen, Marcinkiewicz, and Zygmund, 1935

Let \mathcal{I} denote the set of all rectangles in the plane whose sides are parallel to the coordinate axes. If $f \in L \log L(\mathbb{R}^2)$, then for almost every $x \in \mathbb{R}^2$, if $\{R_k(x)\}_{k \in \mathbb{N}} \subset \mathcal{I}$ is a sequence of rectangles containing x and such that $\lim_{k \to \infty} \operatorname{diam}(R_k) = 0$, one has :

$$\lim_{k\to\infty}\frac{1}{|R_k(x)|}\int_{R_k(x)}f=f(x).$$

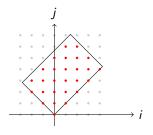
Remark : There appears to be a strong analogy between ergodic averages and the differentiation of integrals.

Theorem - Jessen, Marcinkiewicz, and Zygmund, 1935

Let \mathcal{I} denote the set of all rectangles in the plane whose sides are parallel to the coordinate axes. If $f \in L \log L(\mathbb{R}^2)$, then for almost every $x \in \mathbb{R}^2$, if $\{R_k(x)\}_{k \in \mathbb{N}} \subset \mathcal{I}$ is a sequence of rectangles containing x and such that $\lim_{k \to \infty} \operatorname{diam}(R_k) = 0$, one has :

$$\lim_{k\to\infty}\frac{1}{|R_k(x)|}\int_{R_k(x)}f=f(x).$$

Question : what about directional rectangles?

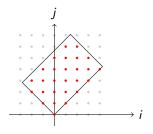


Definition

• If $R \subset \mathbb{R}^2$ is a rectangle let I(R) be the length of its shortest side.

• An averaging process is a sequence of rectangles $\{R_n\}_{n\in\mathbb{N}}$ containing the origin (0,0) and such that $I(R_n) \to \infty$ as $n \to \infty$.

Question : what about directional rectangles?

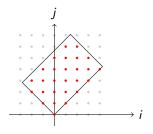


Definition

• If $R \subset \mathbb{R}^2$ is a rectangle let I(R) be the length of its shortest side.

An averaging process is a sequence of rectangles {R_n}_{n∈ℕ} containing the origin (0,0) and such that l(R_n) → ∞ as n → ∞.

Question : what about directional rectangles?



Definition

- If $R \subset \mathbb{R}^2$ is a rectangle let I(R) be the length of its shortest side.
- An averaging process is a sequence of rectangles $\{R_n\}_{n\in\mathbb{N}}$ containing the origin (0,0) and such that $I(R_n) \to \infty$ as $n \to \infty$.

The Maximal Operator

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process, and define for $n\in\mathbb{N}$

$$M_n: f \mapsto \frac{1}{\#(R_n \cap \mathbb{Z}^2)} \sum_{(i,j) \in R_n} f(S^i T^j).$$

Definition

We define the maximal operator associated to the averaging process $\{R_n\}_{n\in\mathbb{N}}$ as

$$M^*: f \mapsto M^* f := \sup_{n \in \mathbb{N}} M_n |f|.$$

The maximal operator M^* is of weak-type $(
ho,
ho),\,1\,\leqslant\,
ho<\infty,$ if for any $f\in L^p(X)$ and any $\lambda>0$ one has

$$\mu(\{x \in X : M^*f(x) > \lambda\}) \lesssim \left(\frac{\|f\|_{L^p(X)}}{\lambda}\right)^p$$

The Maximal Operator

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process, and define for $n\in\mathbb{N}$

$$M_n: f \mapsto \frac{1}{\#(R_n \cap \mathbb{Z}^2)} \sum_{(i,j) \in R_n} f(S^i T^j).$$

Definition

We define the maximal operator associated to the averaging process $\{R_n\}_{n\in\mathbb{N}}$ as

$$M^*: f \mapsto M^*f := \sup_{n \in \mathbb{N}} M_n |f|.$$

The maximal operator M^* is of weak-type (p, p), $1 \leq p < \infty$, if for any $f \in L^p(X)$ and any $\lambda > 0$ one has

$$\mu(\{x \in X : M^*f(x) > \lambda\}) \lesssim \left(\frac{\|f\|_{L^p(X)}}{\lambda}\right)^p$$

The Maximal Operator

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process, and define for $n\in\mathbb{N}$

$$M_n: f \mapsto \frac{1}{\#(R_n \cap \mathbb{Z}^2)} \sum_{(i,j) \in R_n} f(S^i T^j).$$

Definition

We define the maximal operator associated to the averaging process $\{R_n\}_{n\in\mathbb{N}}$ as

$$M^*: f \mapsto M^* f := \sup_{n \in \mathbb{N}} M_n |f|.$$

The maximal operator M^* is of weak-type (p, p), $1 \leq p < \infty$, if for any $f \in L^p(X)$ and any $\lambda > 0$ one has

$$\mu(\{x \in X : M^*f(x) > \lambda\}) \lesssim \left(\frac{\|f\|_{L^p(X)}}{\lambda}\right)^p.$$

Sawyer-Stein principle - Oniani, 2023

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process and $1 \leq p < \infty$. The following are equivalent.

• Given any $f \in L^p(X)$, the limit

$$\lim_{n\to\infty} M_n f(x) = \lim_{n\to\infty} \frac{1}{\#(R_n \cap \mathbb{Z}^2)} \sum_{(i,j)\in R_n} f(S^i T^j x)$$

exists for almost every $x \in X$.

2 The maximal operator M^* is of weak-type (p, p).

Definition

We define the slope of a rectangle as the tangent of the angle formed between its longest side and the horizontal axis.

Definition

Let $\Omega = \{u_k^{-1}\}_{k \in \mathbb{N}^*}$, where $\{u_k\}_{k \in \mathbb{N}^*}$ is an increasing sequence of nonnegative real numbers. We say that Ω satisfies the property (P) if the following two properties holds

$$\forall k \in \mathbb{N}^*, \quad 1 + u_{k-1}^2 \geqslant c(u_k - u_{k-1})^2;$$
 (1)

$$\sup_{k\in\mathbb{N}}\sup_{1\leqslant l\leqslant k}\left(\frac{u_{k+2l}-u_{k+l}}{u_{k+l}-u_{k}}+\frac{u_{k+l}-u_{k}}{u_{k+2l}-u_{k+l}}\right)<\infty;$$

(we let $u_0 := 0$).

Definition

We define the slope of a rectangle as the tangent of the angle formed between its longest side and the horizontal axis.

Definition

Let $\Omega = \{u_k^{-1}\}_{k \in \mathbb{N}^*}$, where $\{u_k\}_{k \in \mathbb{N}^*}$ is an increasing sequence of nonnegative real numbers. We say that Ω satisfies the property (*P*) if the following two properties holds

$$\forall k \in \mathbb{N}^*, \quad 1 + u_{k-1}^2 \ge c(u_k - u_{k-1})^2;$$
 (1)

$$\sup_{k\in\mathbb{N}}\sup_{1\leqslant l\leqslant k}\left(\frac{u_{k+2l}-u_{k+l}}{u_{k+l}-u_{k}}+\frac{u_{k+l}-u_{k}}{u_{k+2l}-u_{k+l}}\right)<\infty;$$
(2)

(we let $u_0 := 0$).

Exemple

The set of slopes $\Omega = \{k^{-s}\}_{k \in \mathbb{N}^*}$ for s > 0 satisfies the property (P).

Theorem - D'Aniello, Gauvan, Moonens, Rosenblatt, 2023

Let $\Omega = \{u_k^{-1}\}_{k \in \mathbb{N}^*}$ be a sequence satisfying the property (*P*). Then, there exists a sequence of rectangles $\{R_k\}_{k \in \mathbb{N}}$ in \mathbb{R}^2 such that :

(*i*) for each $k \in \mathbb{N}^*$, the slope of the rectangle R_k is $\frac{1}{\mu_k}$;

(*ii*) diam
$$(R_k) \rightarrow 0$$
 as $k \rightarrow \infty$;

(iii) there exists a function $f \in L^{\infty}(\mathbb{R}^2)$ such that

$$\frac{1}{|R_k|}\int_{x+R_k}f$$

fails to converge for almost every $x\in \mathbb{R}^2$ when $k o\infty.$

A result in the theory of differentiation of integrals

Exemple

The set of slopes $\Omega = \{k^{-s}\}_{k \in \mathbb{N}^*}$ for s > 0 satisfies the property (P).

Theorem - D'Aniello, Gauvan, Moonens, Rosenblatt, 2023

Let $\Omega = \{u_k^{-1}\}_{k \in \mathbb{N}^*}$ be a sequence satisfying the property (*P*). Then, there exists a sequence of rectangles $\{R_k\}_{k \in \mathbb{N}}$ in \mathbb{R}^2 such that :

(*i*) for each $k \in \mathbb{N}^*$, the slope of the rectangle R_k is $\frac{1}{\mu_k}$;

(ii) diam
$$(R_k) \rightarrow 0$$
 as $k \rightarrow \infty$;

(iii) there exists a function $f \in L^{\infty}(\mathbb{R}^2)$ such that

$$\frac{1}{|R_k|}\int_{x+R_k}t$$

fails to converge for almost every $x \in \mathbb{R}^2$ when $k \to \infty$.

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process. For $arphi\in\ell^\infty(\mathbb{Z}^2)$, we define

$$A_n \varphi(k,l) := rac{1}{\#(R_n \cap \mathbb{Z}^2)} \sum_{(i,j) \in R_n} \varphi(k+i,l+j)$$

and

$$A^*\varphi(k,l) := \sup_{n\in\mathbb{N}} A_n |\varphi|(k,l).$$

Lemma

Let $1 \leq p < \infty$. The following are equivalent.

If the maximal operator M^* is of weak-type (p, p).

) The maximal operator A^* is of weak-type (p,p) in $\ell^p(\mathbb{Z}^2).$

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process. For $\varphi\in\ell^\infty(\mathbb{Z}^2)$, we define

$$\mathcal{A}_n arphi(k,l) := rac{1}{\#(\mathcal{R}_n \cap \mathbb{Z}^2)} \sum_{(i,j) \in \mathcal{R}_n} arphi(k+i,l+j)$$

and

$$A^*\varphi(k,l) := \sup_{n\in\mathbb{N}} A_n |\varphi|(k,l).$$

Lemma

Let $1 \leq p < \infty$. The following are equivalent.

• The maximal operator M^* is of weak-type (p, p).

The maximal operator A^* is of weak-type (p, p) in $\ell^p(\mathbb{Z}^2)$.

Let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process. For $\varphi\in\ell^\infty(\mathbb{Z}^2)$, we define

$$A_n \varphi(k,l) := rac{1}{\#(R_n \cap \mathbb{Z}^2)} \sum_{(i,j) \in R_n} \varphi(k+i,l+j)$$

and

$$A^*\varphi(k,l) := \sup_{n\in\mathbb{N}} A_n |\varphi|(k,l).$$

Lemma

Let $1 \leq p < \infty$. The following are equivalent.

- The maximal operator M^* is of weak-type (p, p).
- **2** The maximal operator A^* is of weak-type (p, p) in $\ell^p(\mathbb{Z}^2)$.

Theorem

Let $\Omega = \{u_k^{-1}\}_{k \in \mathbb{N}^*}$ be a sequence satisfying property (*P*). Then, there exists an averaging process $\{R_k\}_{k \in \mathbb{N}}$ such that

(*i*) for each $k \in \mathbb{N}^*$, the slope of the rectangle R_k is $\frac{1}{\mu_k}$;

(ii) for all $1 \leq p < \infty$, there exists a function $f \in L^p(X)$ such that the averages

$$\frac{1}{\#(R_k\cap\mathbb{Z}^2)}\sum_{(i,j)\in R_k}f(S^iT^j)$$

fail to converge almost everywhere.

Is it possible to have some convergence for all $f \in L^p(X)$?

Definition

A sequence of nonnegative numbers $\{u_k\}_{k\in\mathbb{N}}$ is lacunary if there exists $\lambda \in (0, 1]$ such that

 $\forall k \in \mathbb{N}, \quad u_{k+1} \leqslant \lambda u_k.$

Theorem

Let $\Omega \subset (0,1)$ be a lacunary sequence converging to 0 and let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process such that for any $n\in\mathbb{N}$, the slope of R_n is in Ω . Then M^* is of weak-type (p, p) for any 1 .

Is it possible to have some convergence for all $f \in L^p(X)$?

Definition

A sequence of nonnegative numbers $\{u_k\}_{k\in\mathbb{N}}$ is lacunary if there exists $\lambda\in(0,1)$ such that

 $\forall k \in \mathbb{N}, \quad u_{k+1} \leqslant \lambda u_k.$

Theorem

Let $\Omega \subset (0,1)$ be a lacunary sequence converging to 0 and let $\{R_n\}_{n\in\mathbb{N}}$ be an averaging process such that for any $n\in\mathbb{N}$, the slope of R_n is in Ω . Then M^* is of weak-type (p, p) for any 1 .

Is it possible to have some convergence for all $f \in L^p(X)$?

Definition

A sequence of nonnegative numbers $\{u_k\}_{k\in\mathbb{N}}$ is lacunary if there exists $\lambda\in(0,1)$ such that

$$\forall k \in \mathbb{N}, \quad u_{k+1} \leqslant \lambda u_k.$$

Theorem

Let $\Omega \subset (0,1)$ be a lacunary sequence converging to 0 and let $\{R_n\}_{n \in \mathbb{N}}$ be an averaging process such that for any $n \in \mathbb{N}$, the slope of R_n is in Ω . Then M^* is of weak-type (p, p) for any 1 .

Corollary

Let $\Omega \subset (0,1)$ be a lacunary sequence converging to 0 and let $\{R_n\}_{n\in\mathbb{N}}$ be a averaging process such that for any $n\in\mathbb{N}$, the slope of R_n is in Ω . Then for any $p\in(1,\infty]$, if $f\in L^p(X)$, the averages

$$\frac{1}{\#(R_n\cap\mathbb{Z}^2)}\sum_{(i,j)\in R_n}f(S^iT^j)$$

converge almost everywhere.

Main references

- N. DUNFORD, An individual ergodic theorem for non-commutative transformations, *Acta Sci. Math. (Szeged), 14 :1-4*, (1951).
- E. D'ANIELLO, A. GAUVAN, L. MOONENS, J. ROSENBLATT, Almost everywhere convergence for Lebesgue differentiation processes along rectangles, *J. Fourier Anal. Appl. 29*, (2023).
- B. JESSEN, J. MARCINKIEWICZ, AND A. ZYGMUND, Note on the differentiability of multiple integrals, *Fundam. Math.*, 25 :217–234, (1935).
- B. L., On the almost everywhere convergence of two-parameter ergodic averages along directional rectangles, *(hal-05099328)* (2025).
- G. ONIANI, Almost everywhere convergence of nets of operators and weak type maximal inequalities, *Fund. Math. 262 No. 3, 287-304.*, (2023).
 - A. ZYGMUND, An individual ergodic theorem for non-commutative transformations, *Acta Sci. Math. (Szeged), 14 :103-110*, (1951).

Thanks for your attention !