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Introduction

Let T : X → X be a measure-preserving transformation on a probability space
(X ,A, µ).

Theorem - Birkhoff, 1931
If f ∈ L1(X ), then the limit

lim
n→∞

1
n

n−1∑
j=0

f (T jx)

exists for almost every x ∈ X .

Question : Can this be generalized to higher dimensions ?
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Introduction - Some known results

Let S,T : X → X be a pair of commuting, invertible, measure-preserving, ergodic
transformations on a probability space (X ,A, µ).

i

j

Theorem
If f ∈ L1(X ), then the limit

lim
n→∞

1
n2

n−1∑
i,j=0

f (S iT jx)

exists for almost every x ∈ X .
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Introduction - Some known results

i

j

Theorem - Dunford and Zygmund (independently), 1951
If f ∈ L log L(X ), then the limit

lim
m,n→∞

1
mn

m−1∑
i=0

n−1∑
j=0

f (S iT jx)

exists for almost every x ∈ X .
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Introduction - Some known results

Remark : There appears to be a strong analogy between ergodic averages and the
differentiation of integrals.

Theorem - Jessen, Marcinkiewicz, and Zygmund, 1935
Let I denote the set of all rectangles in the plane whose sides are parallel to the
coordinate axes. If f ∈ L log L(R2), then for almost every x ∈ R2, if
{Rk(x)}k∈N ⊂ I is a sequence of rectangles containing x and such that
limk→∞ diam(Rk) = 0, one has :

lim
k→∞

1
|Rk(x)|

∫
Rk (x)

f = f (x).
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Introduction - Some known results

Question : what about directional rectangles ?

i

j

Definition
If R ⊂ R2 is a rectangle let l(R) be the length of its shortest side.
An averaging process is a sequence of rectangles {Rn}n∈N containing the
origin (0, 0) and such that l(Rn)→∞ as n→∞.
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The Maximal Operator

Let {Rn}n∈N be an averaging process, and define for n ∈ N

Mn : f 7→ 1
#(Rn ∩ Z2)

∑
(i,j)∈Rn

f (S iT j).

Definition
We define the maximal operator associated to the averaging process {Rn}n∈N as

M∗ : f 7→ M∗f := sup
n∈N

Mn|f |.

The maximal operator M∗ is of weak-type (p, p), 1 6 p <∞, if for any
f ∈ Lp(X ) and any λ > 0 one has

µ({x ∈ X : M∗f (x) > λ}) .
(‖f ‖Lp(X)

λ

)p

.
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A Sawyer-Stein principle

Sawyer-Stein principle - Oniani, 2023
Let {Rn}n∈N be an averaging process and 1 6 p <∞. The following are
equivalent.

1 Given any f ∈ Lp(X ), the limit

lim
n→∞

Mnf (x) = lim
n→∞

1
#(Rn ∩ Z2)

∑
(i,j)∈Rn

f (S iT jx)

exists for almost every x ∈ X .
2 The maximal operator M∗ is of weak-type (p, p).
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A result in the theory of differentiation of integrals

Definition
We define the slope of a rectangle as the tangent of the angle formed between its
longest side and the horizontal axis.

Definition
Let Ω = {u−1

k }k∈N∗ , where {uk}k∈N∗ is an increasing sequence of nonnegative
real numbers. We say that Ω satisfies the property (P) if the following two
properties holds

∀ k ∈ N∗, 1 + u2
k−1 > c(uk − uk−1)2; (1)

sup
k∈N

sup
1 6 l 6 k

(
uk+2l − uk+l
uk+l − uk

+ uk+l − uk
uk+2l − uk+l

)
<∞; (2)

(we let u0 := 0).
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A result in the theory of differentiation of integrals

Exemple
The set of slopes Ω = {k−s}k∈N∗ for s > 0 satisfies the property (P).

Theorem - D’Aniello, Gauvan, Moonens, Rosenblatt, 2023
Let Ω = {u−1

k }k∈N∗ be a sequence satisfying the property (P). Then, there exists
a sequence of rectangles {Rk}k∈N in R2 such that :
(i) for each k ∈ N∗, the slope of the rectangle Rk is 1

uk
;

(ii) diam(Rk)→ 0 as k →∞ ;
(iii) there exists a function f ∈ L∞(R2) such that

1
|Rk |

∫
x+Rk

f

fails to converge for almost every x ∈ R2 when k →∞.
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Transfer lemma

Let {Rn}n∈N be an averaging process. For ϕ ∈ `∞(Z2), we define

Anϕ(k, l) := 1
#(Rn ∩ Z2)

∑
(i,j)∈Rn

ϕ(k + i , l + j)

and
A∗ϕ(k, l) := sup

n∈N
An|ϕ|(k, l).

Lemma
Let 1 6 p <∞. The following are equivalent.

1 The maximal operator M∗ is of weak-type (p, p).
2 The maximal operator A∗ is of weak-type (p, p) in `p(Z2).
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A negative result

Theorem
Let Ω = {u−1

k }k∈N∗ be a sequence satisfying property (P). Then, there exists an
averaging process {Rk}k∈N such that
(i) for each k ∈ N∗, the slope of the rectangle Rk is 1

uk
;

(ii) for all 1 6 p <∞, there exists a function f ∈ Lp(X ) such that the averages

1
#(Rk ∩ Z2)

∑
(i,j)∈Rk

f (S iT j)

fail to converge almost everywhere.
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A positive result

Is it possible to have some convergence for all f ∈ Lp(X ) ?

Definition
A sequence of nonnegative numbers {uk}k∈N is lacunary if there exists λ ∈ (0, 1)
such that

∀ k ∈ N, uk+1 6 λuk .

Theorem
Let Ω ⊂ (0, 1) be a lacunary sequence converging to 0 and let {Rn}n∈N be an
averaging process such that for any n ∈ N, the slope of Rn is in Ω. Then M∗ is of
weak-type (p, p) for any 1 < p <∞.
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A positive result

Corollary
Let Ω ⊂ (0, 1) be a lacunary sequence converging to 0 and let {Rn}n∈N be a
averaging process such that for any n ∈ N, the slope of Rn is in Ω. Then for any
p ∈ (1,∞], if f ∈ Lp(X ), the averages

1
#(Rn ∩ Z2)

∑
(i,j)∈Rn

f (S iT j)

converge almost everywhere.
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Thanks for your attention !


