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Gronwall inequality – classical version
If u,K ,L : [t0, t0 + T ] → [0,∞) are continuous functions
satisfying the integral inequality

u(t) ≤ K (t) +
∫ t

t0
L(s)u(s)ds, t ∈ [t0, t0 + T ],

then we have the a priori bound

u(t) ≤ K (t)+
∫ t

t0
K (s)L(s) exp

(∫ t

s
L(τ)dτ

)
ds, t ∈ [t0, t0+T ].

Special cases were first obtained by T. H. Gronwall (1919) and
R. Bellman (1953).
If equality holds in the first relation, then it also holds in the
second relation. If K is a constant function, we get the simpler
estimate

u(t) ≤ K exp

(∫ t

t0
L(τ)dτ

)
.
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The goal

We are interested in Gronwall-type results with ordinary
integrals replaced by Stieltjes integrals. A natural starting point
might be to assume

u(t) ≤ K (t) +
∫ t

t0
L(s)u(s)dg(s), t ∈ [t0, t0 + T ],

where g is a nondecreasing function.
But the integral on the right-hand side can be rewritten as∫ t

t0
u(s)dP(s), where P(s) =

∫ s
t0

L(τ)dg(τ). Hence, it suffices to
study the simpler integral inequality

u(t) ≤ K (t) +
∫ t

t0
u(s)dP(s), t ∈ [t0, t0 + T ],

where P is a nondecreasing function. Our goal is to obtain
a priori estimates for u.
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Earlier results

Gronwall-type inequalities for Stieltjes integrals were
investigated by several authors (Groh, Kurzweil, Schwabik,
Márquez Albés). It is usually assumed that K is a constant
function, or that P is a left-continuous or right-continuous
function. We will show that these assumptions are not
necessary, and offer a short proof based on the integral version
of the quotient rule for Stieltjes integrals.

All Stieltjes integrals will be understood in the Kurzweil–Stieltjes
sense, but they also exist in the Lebesgue–Stieltjes sense.
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Kurzweil-Stieltjes integral

A function f : [a,b] → R is Kurzweil-Stieltjes-integrable with
respect to g : [a,b] → R if there exists a number I ∈ R such that
given an ε > 0, there is a gauge δ : [a,b] → (0,∞) such that∣∣∣∣∣∣

k∑
j=1

f (tj)(g(αj)− g(αj−1))− I

∣∣∣∣∣∣ < ε

for every partition with division points

a = α0 ≤ α1 ≤ · · · ≤ αk−1 ≤ αk = b

and tags tj ∈ [αj−1, αj ], j ∈ {1, . . . , k}, such that

[αj−1, αj ] ⊂ (tj − δ(tj), tj + δ(tj)), j ∈ {1, . . . , k}.
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Preliminaries: substitution & the quotient rule

Theorem (McLeod, 1980)

Assume that g,h : [a,b] → R are such that
∫ b

a g dh exists. Then
for each function f : [a,b] → R, we have∫ b

a
f (x)d

(∫ x

a
g(z)dh(z)

)
=

∫ b

a
f (x)g(x)dh(x),

whenever either side of the equation exists.

Theorem (Márquez Albés & Slavík, 2023)

If f ,g : [a,b] → R have bounded variation and for each
t ∈ [a,b], we have g(t) ̸= 0, g(t−) ̸= 0, and g(t+) ̸= 0, then

f (b)
g(b)

− f (a)
g(a)

=

∫ b

a

df (t)
g(t+)

−
∫ b

a

f (t−)dg(t)
g(t−)g(t+)

.
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Preliminaries: generalized exponential function

If P : [a,b] → R has bounded variation and satisfies
1 +∆+P(t) ̸= 0 for all t ∈ [a, t0) and 1 −∆−P(t) ̸= 0 for all
t ∈ (t0,b], then the linear integral equation

x(t) = 1 +

∫ t

t0
x(s)dP(s), t ∈ [a,b],

has a unique solution, which is known as the generalized
exponential function, and is denoted by t 7→ edP(t , t0).
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Generalized exponential function: explicit formula

If P is continuous, then edP(t , t0) = eP(t)−P(t0).

edP(t , t0) =



1, t = t0,

eP(t−)−P(t0+)

e
∑

s∈(t0,t)
∆P(s)

∏
s∈[t0,t)

(1 +∆+P(s))∏
s∈(t0,t]

(1 −∆−P(s))
, t > t0,

e
∑

s∈(t,t0)
∆P(s)

eP(t0−)−P(t+)

∏
s∈(t ,t0]

(1 −∆−P(s))∏
s∈[t ,t0)

(1 +∆+P(s))
, t < t0.

Corollary: If P is left-continuous and nondecreasing, then

edP(t , t0) ≤ eP(t)−P(t0), t ≥ t0.
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Main result
Let P : [t0, t0 + T ] → R be a nondecreasing function such that
1 −∆−P(s) > 0 for all s ∈ (t0, t0 + T ].
If K : [t0, t0 + T ] → [0,+∞) is such that

∫ t0+T
t0

K (s)dP(s) exists
and u : [t0, t0 + T ] → R satisfies

u(t) ≤ K (t) +
∫ t

t0
u(s)dP(s), t ∈ [t0, t0 + T ], (1)

then

u(t) ≤ K (t) +
∫ t

t0

K (s)edP(t , s)
(1 +∆+P(s))(1 −∆−P(s))

dP(s), t ∈ [t0, t0 + T ],

(2)
If equality holds in (1), then it also holds in (2).
Finally, if K is bounded on [t0, t ] ⊂ [t0, t0 + T ], then

u(t) ≤

(
sup

ξ∈[t0,t]
K (ξ)

)
edP(t , t0).
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Proof outline (1)

We have
u(t) ≤ K (t) + U(t), t ∈ [t0, t0 + T ],

where

U(t) =
∫ t

t0
u(s)dP(s), t ∈ [t0, t0 + T ].

Use quotient rule, substitution theorem and the properties of
the generalized exponential function to get

U(t)
edP(t , t0)

=

∫ t

t0

dU(s)
edP(s+, t0)

−
∫ t

t0

U(s−)

edP(s−, t0)edP(s+, t0)
d(edP(s, t0))

=

∫ t

t0

u(s)dP(s)
(1 +∆+P(s))edP(s, t0)

−
∫ t

t0

U(s−)dP(s)
(1 −∆−P(s))(1 +∆+P(s))edP(s, t0)

for all t ∈ [t0, t0 + T ].
For the next step, observe that U(s−) = U(s)− u(s)∆−P(s).
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Proof outline (2)

U(t)
edP(t , t0)

=

∫ t

t0

u(s)
(1 +∆+P(s))edP(s, t0)

dP(s)

+

∫ t

t0

(−U(s) + u(s)∆−P(s))
(1 −∆−P(s))(1 +∆+P(s))edP(s, t0)

dP(s)

=

∫ t

t0

1
(1 +∆+P(s))edP(s, t0)

(
−U(s) + u(s)∆−P(s)

(1 −∆−P(s))
+ u(s)

)
dP(s)

=

∫ t

t0

1
(1 +∆+P(s))edP(s, t0)

· u(s)− U(s)
1 −∆−P(s)

dP(s).

Recall that u(s) ≤ K (s) +U(s) and 1−∆−P(s) > 0. Therefore,

U(t)
edP(t , t0)

≤
∫ t

t0

K (s)
(1 +∆+P(s))(1 −∆−P(s))edP(s, t0)

dP(s).
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Proof outline (3)

U(t)
edP(t , t0)

≤
∫ t

t0

K (s)
(1 +∆+P(s))(1 −∆−P(s))edP(s, t0)

dP(s)

Multiply previous inequality by edP(t , t0) and observe that
edP(t , t0)/edP(s, t0) = edP(t , s) to get

u(t) ≤ K (t)+U(t) ≤ K (t)+
∫ t

t0

edP(t , s)K (s)
(1 +∆+P(s))(1 −∆−P(s))

dP(s).

If equality holds in the assumption (1), then it also holds in the
conclusion (2).
If K is bounded on [t0, t ], then

u(t) ≤

(
sup

ξ∈[t0,t]
K (ξ)

)(
1 +

∫ t

t0

edP(t , s)
(1 +∆+P(s))(1 −∆−P(s))

dP(s)
)
.

It remains to show that the last term is edP(t , t0); use the
quotient rule.
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A comparison with existing results

Schwabik (1992) as well as Monteiro & Slavík & Tvrdý
(2019) assume that K is a constant, P is left-continuous
and nondecreasing, and show that u(t) ≤ KeP(t)−P(t0).
But edP(t , t0) ≤ eP(t)−P(t0), and the inequality is strict if P is
not right-continuous.
Kurzweil (2012) assumes that K is a constant and P is
nondecreasing with 1 −∆−P(t) > 0 for t ∈ (t0, t0 + T ], and
1 −∆+P(t) > 0 for t ∈ [t0, t0 + T ). The conclusion is that
u(t) ≤ KedP(t , t0) for t ∈ [t0, t0 + T ].
Márquez Albés (2021) deals with Lebesgue-Stieltjes
integrals, P is left-continuous. In the second part, we
assume that K is bounded instead of requiring that
t 7→ K (t)(1 +∆+P(t)) is nondecreasing.
Groh (1980) assumes that K is a constant function and
u has bounded variation. The assumptions on P are the
same as ours.

Antonín Slavík A general form of Gronwall inequality with Stieltjes integrals



Application: a uniqueness result for measure DEs

Consider the measure differential equation

x(t) = x0 +

∫ t

t0
f (s, x(s))dg(s), t ∈ [t0, t0 + T ], (3)

where f : [t0, t0 + T ]× Rn → Rn, and g : [t0, t0 + T ] → R has
bounded variation.
Suppose there exists a function L : [t0, t0 + T ] → [0,+∞) such
that 1 − L(s)|∆−g(s)| > 0 for all s ∈ (t0, t0 + T ], and∥∥∥∥∥
∫ d

c
[f (s, x(s))− f (s, y(s))]dg(s)

∥∥∥∥∥ ≤
∫ d

c
L(s)∥x(s)− y(s)∥d(vars

t0g)

for all [c,d ] ⊆ [t0, t0 + T ] and all regulated functions
x , y : [t0, t0 + T ] → Rn. Then Eq. (3) has at most one solution.
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Corollary: a uniqueness result for nabla dynamic
equations (1)

Let us focus on nabla dynamic equations of the form

x∇(t) = f (t , x(t)), t ∈ [t0, t0 + T ]T,

where f : [t0, t0 + T ]T × Rn → Rn.
If ρ is the backward jump operator given by
ρ(t) = sup{s ∈ T : s < t} and ν is the backward graininess
given by ν(t) = t − ρ(t), then the nabla derivative x∇(t) is

x∇(t) =

{
x(t)−x(ρ(t))

ν(t) if ν(t) > 0,

x ′(t) if ν(t) = 0.

Nabla dynamic equations are implicit in the sense that if
ν(t) > 0 and if we know the value x(ρ(t)), then finding the value
x(t) requires solving the equation

x(t) = x(ρ(t)) + f (t , x(t))ν(t).
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Corollary: a uniqueness result for nabla dynamic
equations (2)

Consider the nabla dynamic equation in the integral form

x(t) = x0 +

∫ t

t0
f (s, x(s))∇s, t ∈ [t0, t0 + T ]T, (4)

where f : [t0, t0 + T ]T × Rn → Rn.
Suppose there exists a function L : [t0, t0 + T ]T → [0,+∞) such
that 1 − L(s)ν(s) > 0 for all s ∈ (t0, t0 + T ]T, and∥∥∥∥∥

∫ d

c
[f (s, x(s))− f (s, y(s))]∇s

∥∥∥∥∥ ≤
∫ d

c
L(s)∥x(s)− y(s)∥∇s

for all [c,d ] ⊆ [t0, t0 + T ]T and all regulated functions
x , y : [t0, t0 + T ]T → Rn. Then Eq. (4) has at most one solution.
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Grøn wall & proving uniqueness
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