

Missione 4 Istruzione e Ricerca

- "Nonlinear differential problems with applications to real phenomena"
- CUP: J53D23003920 006
 Grant N.: 2022ZXZTN2

Department of Mathematics and Computer Science - University of Perugia, Italy

Anna Rita Sambucini

A survey on the Riemann-Lebesgue integrability in non-additive setting

47th Summer Symposium in Real Analysis Madrid, June 16-20, 2025

The subject of this talk is in the field of integration in non-additive setting, which have applications, for instance, in

- statistics,
- computer science,
- control and game theories
- mathematical economics.

- (E

Image: A math a math

Let S be a non-empty set with $card(C) \ge \aleph_0$ and C a σ -algebra of subsets of S.

The integrability we consider in this paper is related to the partitions of the whole space S.

A finite (countable) partition of S is a finite (countable) family of nonempty sets $P = \{E_i\}_{i=1}^n$ $(\{E_n\}_{n \in \mathbb{N}}, \text{ resp.}) \subset C$ such that $E_i \cap E_j = \emptyset, i \neq j$ and $\bigcup_{i=1}^n E_i = S$ $(\bigcup_{n \in \mathbb{N}} E_n = S_i)$.

• If P and P' are two partitions of S, then P' is said to be *finer than* P,

 $P \leq P'$ (or $P' \geq P$), if every set of P' is included in some set of P. (1)

- ▶ The *common refinement* of two finite (countable) partitions $P = \{E_i\}$ and $P' = \{G_j\}$ is the partition $P \land P' := \{E_i \cap G_j\}$.
- ▶ A countable tagged partition of S if a family $\{(E_n, s_n), n \in \mathbb{N}\}$ such that $(E_n)_n$ is a countable partition of S and $s_n \in E_n$ for every $n \in \mathbb{N}$.

Grant Number: 2022ZXZTN2

Let X be a Banach space over \mathbb{R} . Let $\nu : \mathcal{C} \to [0,\infty)$ be a set function, such that $\nu(\emptyset) = 0$.

Definition of $|RL|^{1}_{\nu}(X)$ the class of all X-valued function that are |RL| integrable (on S) w.r.t. ν

A vector function $f : S \to X$ is called *absolutely (unconditionally* resp.) Riemann-Lebesgue (|RL|) (RL resp.) ν -integrable (on S) if $\exists a \in X$ such that for every $\varepsilon > 0$, $\exists P_{\varepsilon}$ of S, so that $\forall P = \{A_n\}_{n \in \mathbb{N}}$ of S with $P \ge P_{\varepsilon}$,

• f is bounded on every A_n , with $\nu(A_n) > 0$ and

► $\forall s_n \in A_n, n \in \mathbb{N}, \sum_{n=0}^{+\infty} f(s_n)\nu(A_n)$ is absolutely (unconditionally resp.) convergent and

$$\Big\|\sum_{n=0}^{+\infty}f(s_n)\nu(A_n)-a\Big\|<\varepsilon.$$

The vector *a* is called *the abs. (uncond.)* Riemann-Lebesgue ν -integral of *f* on *S* and it is denoted by $(|RL|)\int_{S} f \, d\nu \, ((RL)\int_{S} f \, d\nu \, \text{resp.}).$

In an analogous way we denote the class of all functions that are RL ν -integrable.

< 口 > < 同

- ▶ If a exists, then it is unique. Moreover, if $h \in |RL|^1_{\nu}(X) \Longrightarrow$ then $h \in RL^1_{\nu}(X)$
- if X is finite dimensional, then $|RL|^1_{\nu}(X) = RL^1_{\nu}(X)$.

In the countably additive case

- if (S, C, ν) is a finite measure space, then $L^1_{\nu}(X) \subset |RL|^1_{\nu}(X) \subset RL^1_{\nu}(X) \subset P_{\nu}(X)$.
- If X is a separable Banach space, then $L^1_{\nu}(X) = |RL|^1_{\nu}(X) \subset RL^1_{\nu}(X) = P_{\nu}(X)$
- If (S, C, ν) is σ -finite, then the Birkhoff integrability coincides with *RL* ν -integrability².
- If h : [a, b] → ℝ is Riemann integrable, then h is RL-integrable. The converse is not valid h = x_{[0,1]∩Q}

Missione 4 • Istruzione e Ricerca

¹Kadets, V. M., Tseytlin, L. M., *On integration of non-integrable vector-valued functions*, Mat. Fiz. Anal. Geom. 7 (2000), 49-65.

²Potyrala, M., Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions, Tatra Mt. Math. Publ. 35 (2007), 97–106.

In the non additive case:

 ν is said to be:

- monotone if $\nu(A) \leq \nu(B)$, $\forall A, B \in C$, with $A \subseteq B$;
- subadditive if $\nu(A \cup B) \leq \nu(A) + \nu(B), \forall A, B \in C$, with $A \cap B = \emptyset$;
- σ -subadditive if $\nu(A) \leq \sum_{n=0}^{+\infty} \nu(A_n), \quad \forall (A_n)_{n \in \mathbb{N}} \subset \mathcal{C} \text{ with } A_i \cap A_j = \emptyset, i \neq j \text{ and } A = \bigcup_{n=0}^{+\infty} A_n.$
- null-additive if, for every $A, B \in C$, $\nu(A \cup B) = \nu(A)$ when $\nu(B) = 0$.
- ▶ has the property σ if $\forall \{E_n\}_n \subset C$ with $\nu(E_n) = 0 \forall n \in \mathbb{N}$, we have $\nu(\cup_{n=0}^{\infty} E_n) = 0$;
- ▶ A set $A \in C$ is an atom of ν if $\nu(A) > 0$ and $\forall B \in C$, with $B \subseteq A$, $\implies \nu(B) = 0$ or $\nu(A \setminus B) = 0$.

The variation of ν is $\overline{\nu} : \mathcal{P}(S) \to [0, +\infty]$ defined by $\overline{\nu}(E) = \sup\{\sum_{i=1}^{n} \|\nu(A_i)\|, \{A_i\}_{i=1}^{n} \subset \mathcal{C} : A_i \subseteq E, A_i \cap A_j = \emptyset, i \neq j, \forall i \in \{1, \dots, n\}\}, \nu \text{ is said to be}$ of finite variation (on \mathcal{C}) if $\overline{\nu}(S) < +\infty$.

assumption on $\nu : \mathcal{C} \to [0, \infty), \nu(\emptyset) = 0$.

Grant Number: 2022ZXZTN2

Definition $Bs_{\nu}^{1}(X)$: the family of Birkhoff-simple functions on *S*.

 $\begin{array}{l} h: S \to X \text{ is called } \textit{Birkhoff simple ν-integrable (on S) if } \exists b \in X: \forall \varepsilon > 0, \; \exists P_{\varepsilon} \text{ of } S \text{ countable so that} \\ \forall P = \{A_n\}_{n \in \mathbb{N}} \text{ of } S, \text{ with } P \geq P_{\varepsilon} \text{ and } \forall s_n \in A_n, n \in \mathbb{N}, \; \limsup_{n \to +\infty} \left\| \sum_{k=0}^n h(s_k) \nu(A_k) - b \right\| < \varepsilon. \end{array}$

Definition $G_{\nu}^{1}(X)$: the family of Gould integrable functions on S.

 $h: S \to X$ is called *Gould* ν -integrable(on S) if $\exists a \in X$ such that $\forall \varepsilon > 0$, $\exists P_{\varepsilon}$ of S finite, so that $\forall P = \{E_i\}_{i=1}^n$ of S, with $P \ge P_{\varepsilon}$ and $\forall s_i \in E_i, i \in \{1, \ldots, n\}$, we have $\left\|\sum_{i=1}^n h(s_i)\nu(E_i) - a\right\| < \varepsilon$.

- $\blacktriangleright RL^1_{\nu}(X) \subset Bs^1_{\nu}(X)$
- ► $RL_{\nu}^{1}(\mathbb{R}) = G_{\nu}^{1}(\mathbb{R})$ when $\overline{\nu}(S) < +\infty$, monotone and σ -subadditive (for bounded function). Without the σ -subadditivity of ν , $h = 1 \in RL_{\nu}^{1}(\mathbb{R}) \setminus G_{\nu}^{1}(\mathbb{R})$, when $S = \mathbb{N}, C = \mathcal{P}(\mathbb{N})$ and $\nu(A) = 0$, if card $(A) < +\infty$, 1, otherwise.
- ▶ $h: S \to \mathbb{R}$, $RL^1_{\nu}(A) \subset G^1_{\nu}(A)$ on each atom $A \in C$ when ν is monotone, null additive and has (σ) .
- ▶ $RL^1_{\nu}(X) = G^1_{\nu}(X)$ when ν is complete measure and $\overline{\nu}(S) < +\infty$;

イロト イヨト イヨト イヨト

Theorem

 $u:\mathcal{C}
ightarrow [0,\infty),
u(\emptyset)=0$

(a) If $h \in |RL|^1_{\nu}(X)$, then h is |RL| ν -integrable on every $E \in \mathcal{C}$ ($\iff h\chi_E$ is $|RL|^1_{\nu}(X)$)

$$(|\mathsf{RL}|)\int_{\mathsf{E}}h\,\mathrm{d}\nu=(|\mathsf{RL}|)\int_{\mathsf{S}}h\chi_{\mathsf{E}}\,\mathrm{d}\nu.$$

Moreover, if $g, h \in |RL|^1_{\nu}(X)$ and $\alpha, \beta \in \mathbb{R}$. Then:

(b)
$$\alpha g + \beta h \in |RL|^{1}_{\nu}(X)$$
 and $(|RL|) \int_{S} (\alpha g + \beta h) d\nu = \alpha \cdot (|RL|) \int_{S} g d\nu + \beta \cdot (|RL|) \int_{S} h d\nu$,
(c) $h \in |RL|^{1}_{\alpha\nu}(X)$ for $\alpha \in [0, +\infty)$ and $(|RL|) \int_{S} h d(\alpha\nu) = \alpha (|RL|) \int_{S} h d\nu$.

The results also hold for the RL ν -integrability.

< A

• • = • • =

Theorem (monotonicity)

Let $g, h \in RL^1_{\nu}(\mathbb{R})$ such that $g(s) \leq h(s)$, for every $s \in S$, then

$$(RL)\int_{S} \mathbf{g} \,\mathrm{d}\nu \leq (RL)\int_{S} h\,\mathrm{d}\nu.$$

Let $\nu_1, \nu_2 : \mathcal{C} \to [0, +\infty)$ be set functions such that $\nu_1(A) \leq \nu_2(A), \forall A \in \mathcal{C} \text{ and } h \in RL^1_{\nu_i}(\mathbb{R}^+_0)$ for i = 1, 2. Then

$$(RL)\int_{S}h\,\mathrm{d}\nu_{1}\leq (RL)\int_{S}h\,\mathrm{d}\nu_{2}$$

 $\overline{\nu}(S) < +\infty$

Theorem

Let $\nu: S \to [0, \infty)$ be of finite variation and $h: S \to X$ be bounded (a) then $h \in |RL|^1_{\nu}(X)$ and $\left\| (|RL|) \int_S h \, d\nu \right\| \leq \sup_{s \in S} \|h(s)\| \cdot \overline{\nu}(S)$. (b) If h = 0 ν -a.e.^a, then $h \in |RL|^1_{\nu}(X)$ and $(|RL|) \int_S h \, d\nu = 0$.

Moreover let $g, h: S \rightarrow X$ be vector functions.

(c) If
$$\sup_{s \in S} \|g(s) - h(s)\| < +\infty$$
, $g \in |RL|^{1}_{\nu}(X)$ and $g = h \nu$ -a.e., then $h \in |RL|^{1}_{\nu}(X)$ and
 $(|RL|) \int_{S} g \, d\nu = (|RL|) \int_{S} h \, d\nu$.
(d) If $g, h \in |RL|^{1}_{\nu}(X)$ then $\|(|RL|) \int_{S} g \, d\nu - (|RL|) \int_{S} h \, d\nu \| \le \sup_{s \in S} \|g(s) - h(s)\| \cdot \overline{\nu}(S)$.

 ${}^{a}h = 0$ holds ν -a.e. if there exists $\exists \ E \in C$, with $\nu(E) = 0$ and h = 0 is valid on $S \setminus E$.

Definition

For every $h: S \to X$ that is |RL| (*RL* resp.) ν -integrable $\forall E \in C$, $T_h: C \to X$, defined by,

$$T_h(E) = (|RL|) \int_E h \, \mathrm{d}\nu \qquad \big(T_h(E) = (RL) \int_E h \, \mathrm{d}\nu \quad \mathrm{resp.}\big), \quad \forall \, E \in \mathcal{C}$$

► order-continuous (shortly, o-continuous) if $\lim_{n \to +\infty} \nu(A_n) = 0$, $\forall (A_n)_{n \in \mathbb{N}} \subset C$, with $A_n \searrow \emptyset$;

• exhaustive if $\lim_{n \to +\infty} \nu(A_n) = 0$, $\forall (A_n)_{n \in \mathbb{N}} \subset C$, with $A_i \cap A_j = \emptyset$, $i \neq j$.

Theorem

Let $h \in |RL|^1_{\nu}(X)$. If h is bounded, and ν is of finite variation then

- (a) \blacktriangleright T_h is of finite variation too;
 - $\overline{T_h} \ll \overline{\nu}$ in the $\varepsilon \delta$ sense;
 - Moreover, if $\overline{\nu}$ is o-continuous (exhaustive resp.), then T_h is also o-continuous (exhaustive resp.).

(b) If $h: S \to [0,\infty)$, ν is monotone, then the same holds for T_h .

Convergence results

Theorem

 $\text{Let } h, h_n: S \to X, \ \nu: \mathcal{C} \to [0, +\infty), \ \overline{\nu}(S) < +\infty. \ \text{If } h, h_n \in |RL|^1_{\nu}(X) \ \forall n \in \mathbb{N} \text{ and } h_n \rightrightarrows h \text{ then } h \text$

$$\lim_{n\to\infty} (|RL|) \int_{S} h_n \,\mathrm{d}\nu = (|RL|) \int_{S} h \,\mathrm{d}\nu.$$

▶ ν satisfies the condition (E) if for every double sequence $(B_n^m)_{n,m\in\mathbb{N}^*} \subset C$, such that for every $m \in \mathbb{N}^*$, $B_n^m \searrow B^m (n \to \infty)$ and $\nu(\bigcup_{m=1}^{\infty} B^m) = 0$, there exist two increasing sequences $(n_p)_p, (m_p)_p \subset \mathbb{N}$ such that $\lim_{k\to\infty} \nu(\bigcup_{p=k}^{\infty} B_{n_p}^{m_p}) = 0$.

▶ the semivariation of ν is the set function $\tilde{\nu} : \mathcal{P}(S) \to [0, +\infty]$ defined for every $A \subseteq S$, by

$$\widetilde{\nu}(A) = \inf\{\overline{\nu}(B); A \subseteq B, B \in \mathcal{C}\}.$$

Theorem (scalar case)

Suppose $\nu : \mathcal{C} \to [0, +\infty)$ is a monotone set function with $\overline{\mu}(S) < +\infty$ and $\widetilde{\nu}$ satisfies (E).

▶ $\forall n \in \mathbb{N}$, let (h_n) be uniformly bounded. Then

$$(RL) \int_{S} (\liminf_{n \to \infty} h_n) \, \mathrm{d}\nu \leq \liminf_{n \to \infty} \left((RL) \int_{S} h_n \, \mathrm{d}\nu \right). \quad (\mathsf{Fatou})$$

▶ If $\exists h$ such that $\sup_{s \in S, n \in \mathbb{N}} \left\{ h(s), h_n(s) \right\} < +\infty$ and $h_n \xrightarrow{\nu - ae} h$ or $h_n \xrightarrow{\widetilde{\nu}} h$ then

$$\lim_{n\to\infty} (RL) \int_{S} h_n \,\mathrm{d}\nu = (RL) \int_{S} h \,\mathrm{d}\nu.$$

Missione 4	•	struzione	е	R	icerca

イロト イヨト イヨト イヨト

If p > 0 and $g: S \to \mathbb{R}$: $|g|^p \in RL^1_{\nu}(\mathbb{R})$ and measurable, then $||g||_p = (RL) \int_c |g|^p d\nu^{1/p}$

Theorem (Inequalities)

Let $\nu: \mathcal{C} \to [0,\infty)$ be suitable σ -subadditive set function and g, h be scalar measurable functions.

• Let
$$p,q \in (1,\infty)$$
, with $p^{-1} + q^{-1} = 1$.

- (a) If $|g \cdot h|, |g|^{p}, |h|^{q} \in RL^{1}_{\nu}(\mathbb{R})$, then $||g \cdot h||_{1} \leq ||g||_{p} \cdot ||h||_{q}$. (Hölder Inequality) (b) Let $p \geq 1$. If $|g + h|^{p}, |g + h|^{q(p-1)}, |g|^{p}, |h|^{p} \in RL^{1}_{\nu}(\mathbb{R})$, then $||g + h||_{p} \leq ||g||_{p} + ||h||_{p}$ (Minkowski Inequality)

• Let
$$p, q \in (0, \infty)$$
, with $0 and $p^{-1} + q^{-1} = 1$.$

- (c) If $|g \cdot h|, |g|^p, |h|^q \in RL^1_{\nu}(\mathbb{R})$ and $0 < (RL) \int_S |h|^q d\nu$, then $\|g \cdot h\|_1 \ge \|g\|_p \cdot \|h\|_q$ (Reverse Hölder Inequality).
- (d) If $|g+h|^p, |g+h|^{(p-1)q}, |g|^p, |h|^p$ are *RL*-integrable, then $|||g|+|h|||_p \ge ||g||_p + ||h||_p$ (Reverse Minkowski Inequality).

 $ck(\mathbb{R})$ denotes the family of all non-empty, convex, compact subsets of \mathbb{R} , by convention, $\{0\} = [0, 0]$. We consider on $ck(\mathbb{R})$

- ► the Minkowski addition $A \oplus B := \{a + b \mid a \in A, b \in B\},$ $\forall A, B \in ck(\mathbb{R})$
- ▶ and the multiplication by scalars $\lambda A = \{\lambda a \mid a \in A\},$ $\forall \lambda \in \mathbb{R}, \forall A \in ck(\mathbb{R}).$
- ▶ d_H denotes the Hausdorff distance $d_H([r, s], [x, y]) = \max\{|x r|, |y s|\}, \quad \forall r, s, x, y \in \mathbb{R};$
- ► $[r, s] \cdot [x, y] = [rx, sy];$
- ▶ $[r,s] \preceq [x,y] \iff r \le x \text{ and } s \le y$ ($[r,s] \lor [x,y] = [\max\{r,x\}, \max\{s,y\}]$)

Given $h_1, h_2 : S \to \mathbb{R}^+_0$ with $h_1(s) \le h_2(s)$ $\forall s \in S$, let $H : S \to ck(\mathbb{R}^+_0)$ be the interval-valued multifunction defined by

$$H(s) := [h_1(s), h_2(s)], \qquad \forall s \in S.$$
(2)

For two set functions $\nu_1, \nu_2 : \mathcal{C} \to \mathbb{R}_0^+$ with $\nu_1(\emptyset) = \nu_2(\emptyset) = 0$ and $\nu_1(A) \le \nu_2(A) \ \forall A \in \mathcal{C}$ let $\Gamma : \mathcal{C} \to ck(\mathbb{R}_0^+)$ be an interval-valued set function defined by

$$\Gamma(A) = [\nu_1(A), \nu_2(A)], \quad \forall A \in \mathcal{C}.$$
(3)

 Γ is an interval-valued multisubmeasure if

- ► $\Gamma(\emptyset) = \{0\}; \Gamma(A) \leq \Gamma(B)$ for every $A, B \in C$ with $A \subseteq B$ (monotonicity) and $\Gamma(A \cup B) \leq \Gamma(A) \oplus \Gamma(B)$ for every disjoint sets $A, B \in C$. (subadditivity).
- Γ is of finite variation $\iff \overline{\nu}_2(S) < +\infty$.

$$\sum_{n=1}^{\infty} H(s_n) \cdot \Gamma(B_n) = \sum_{n=1}^{\infty} \left[h_1(s_n) \nu_1(B_n), h_2(s_n) \nu_2(B_n) \right] = \Big\{ \sum_{n=1}^{\infty} y_n, y_n \in \left[h_1(s_n) \nu_1(B_n), h_2(s_n) \nu_2(B_n) \right], n \in \mathbb{N} \Big\}.$$

Definition: Riemann-Lebesgue integrability with respect to Γ (on S)

A multifunction $H: S \to ck(\mathbb{R}_0^+)$ is RL integrable w.r.t. Γ (on S) if $\exists [c, d] \in ck(\mathbb{R}_0^+)$ such that $\forall \varepsilon > 0$, $\exists P_{\varepsilon}$ of S countable, so that $\forall P = \{(B_n, s_n)\}_{n \in \mathbb{N}}$ of S with $P \ge P_{\varepsilon}$,

• the series $\sum_{n=1}^{\infty} [h_1(s_n)\nu_1(B_n), h_2(s_n)\nu_2(B_n)]$ is convergent with respect to the Hausdorff distance d_H and

$$\bullet \quad d_H(\sum_{n=1}^{\infty} [h_1(s_n)\nu_1(B_n), h_2(s_n)\nu_2(B_n)], [c, d]) < \varepsilon.$$

Theorem

An interval-valued multifunction $H = [h_1, h_2]$ is *RL* integrable w.r.t. Γ on $S \iff h_1$ and h_2 are *RL* integrable w.r.t. ν_1 and ν_2 respectively and

$$(\mathsf{RL})\int_{S} H\,\mathrm{d}\Gamma = \Big[(\mathsf{RL})\int_{S}h_{1}\,\mathrm{d}\nu_{1}, (\mathsf{RL})\int_{S}h_{2}\,\mathrm{d}\nu_{2}\Big].$$

Monotone Convergence

Suppose $\Gamma = [\nu_1, \nu_2]$ with ν_i , $i \in \{1, 2\}$ non negative submeasures of finite variation. $\forall n \in \mathbb{N}$, let $H_n = [h_1^{(n)}, h_2^{(n)}]$ be such that $(h_2^{(n)})$ is uniformly bounded and $H_n \leq H_{n+1}$ for every $n \in \mathbb{N}$. Then

$$(RL)\int_{S}\bigvee_{n}H_{n}\,\mathrm{d}\Gamma=\bigvee_{n}(RL)\int_{S}H_{n}\,\mathrm{d}\Gamma.$$

Grant Number: 2022ZXZTN2

Convergence type theorem for varying multisubmeasures

Let $(H_n)_n := ([h_1^{(n)}, h_2^{(n)}])_n$ be a sequence of bounded multifunctions, and $(\Gamma_n)_n := ([\nu_1^{(n)}, \nu_2^{(n)}])_n$ a sequence of multisubmeasures. Suppose $\exists \Gamma := [\nu_1, \nu_2]$, with ν_2 of finite variation (interval-valued multisubmeasure) and a bounded multifunction $H := [h_1, h_2]$ such that:

(a) $H_n \preceq H_{n+1}$ for every $n \in \mathbb{N}$ and $d_H(H_n, H) \to 0$ uniformly on S,

(b) $\Gamma_n \preceq \Gamma_{n+1} \preceq \Gamma$ for every $n \in \mathbb{N}$ and $(\Gamma_n)_n$ setwise converges to Γ

Then

$$\lim_{n\to\infty} d_H\Big(({}^{RL})\int_S H_n\,\mathrm{d}\Gamma_n,({}^{RL})\int_S H\,\mathrm{d}\Gamma\Big)=0.$$

 $\nu_n \xrightarrow{\text{setwise}} \nu$ if $\lim_n \overline{\nu_n - \nu}(A) = 0$, $\forall A \in C$. $(\Gamma_n)_n$ setwise converges to Γ (namely $\nu_i^{(n)} \xrightarrow{\text{setwise}} \nu_i, i = 1, 2 \implies \lim_n d_H(\Gamma_n(A), \Gamma(A)) = 0, \forall A \in C$).

・ロト ・ 戸下 ・ ヨト ・ ヨト

- D. Candeloro, A. Croitoru, A. Gavrilut, A. Iosif, A.R. Sambucini, Properties of the Riemann-Lebesgue integrability in the non-additive case, Rendiconti del Circolo Matematico di Palermo, (2019).
- Costarelli, D., Croitoru, A., Gavriluţ, A., Iosif, A., Sambucini, A.R., The Riemann-Lebesgue integral of interval-valued multifunctions, Mathematics 8 (12), 2250 (2020) 1–17.
- A. Croitoru, A. Gavrilut, A. Iosif, A.R. Sambucini, A note on convergence results for varying interval valued multisubmeasures, Mathematical Foundation of Computing, (2021), 4 (4), 299-310.
- Croitoru, A. Gavrilut, A., Iosif, A., Sambucini, A.R., Convergence theorems in interval-valued Riemann-Lebesgue integrability, Mathematics 10 (3), 450 (2022), 1–15
- Croitoru, A. Gavrilut, A., Iosif, A., Sambucini, A.R., Inequalities in RL-integrability, Mathematics, (2024), 12 (1), 49; Doi: 10.3390/math12010049
- Croitoru, A. Gavrilut, A., Iosif, A., Sambucini, A.R., A Survey on the Riemann-Lebesgue Integrability in Nonadditive Setting in Selected Topics on Generalized Integration Doi: /10.1142/9789819812202_0004, pp. 59-94, June 2025, World Scientific.

and thanks for your attention!

イロト イボト イヨト