Radon-Nikodýmification of Integral Geometric Measures

47th Summer Symposium in Real Analysis

Thierry De Pauw

Westlake University

Radon-Nikodýmification of Integral Geometric Measures - p. 1/??

Papers

DP, On *SBV* Dual, *Indiana Math. J.*, 1998

- Bouafia DP, Radon-Nikodýmification of arbitrary measure spaces, *Extracta Math.*, 2023
- **DP**, Undecidably semilocalizable metric measure spaces, *Commun. Contemp. Math.*, 2024
- Bouafia DP, A representation formula for members of SBV dual, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2024

Dual of $L_1(X, \mathscr{A}, \mu)$

Dual of L_1

Let (X, \mathscr{A}, μ) be an *arbitrary* measure space. There is a canonical embedding:

$$\Upsilon: \mathbf{L}_{\infty}(X, \mathscr{A}, \mu) \to \mathbf{L}_{1}(X, \mathscr{A}, \mu)^{*}.$$

Theorem. Υ is a (bijective) isometric isomorphism in case (X, \mathscr{A}, μ) is σ -finite.

In general, Υ is neither injective nor surjective.

Injectivity of Υ

Let (X, \mathscr{A}, μ) be an *arbitrary* measure space.

 $\Upsilon: \mathbf{L}_{\infty}(X, \mathscr{A}, \mu) \to \mathbf{L}_{1}(X, \mathscr{A}, \mu)^{*}.$

Theorem. Υ is injective if and only if (X, \mathscr{A}, μ) is semi-finite.

A measure space (X, \mathscr{A}, μ) is semi-finite, by definition, if for every $A \in \mathscr{A}$ such that $\mu(A) = \infty$ there exists $B \in \mathscr{A}$ such that $B \subseteq A$ and $0 < \mu(B) < \infty$. Obviously, σ -finite measure spaces are semi-finite.

Semi-finite measure spaces

Let (X, \mathscr{A}, μ) be an *arbitrary* measure space and define

$$\mathcal{N}_{\mu} = \mathscr{A} \cap \{N : \mu(N) = 0\}$$
$$\mathscr{A}^{f} = \mathscr{A} \cap \{A : \mu(A) < \infty\}$$
$$\mathcal{N}_{\mu, \text{loc}} = \mathscr{A} \cap \{A : A \cap F \in \mathcal{N}_{\mu} \text{ for all } F \in \mathscr{A}^{f}\}.$$

It is easy to observe that the following are equivalent:

- (X, \mathscr{A}, μ) is semi-finite
- Every $A \in \mathscr{A} \setminus \mathscr{N}_{\mu}$ contains some $F \in \mathscr{A}^f \setminus \mathscr{N}_{\mu}$

$$\blacksquare \mathscr{N}_{\mu,\mathrm{loc}} = \mathscr{N}_{\mu}.$$

Semi-finite version

Let (X, \mathscr{A}, μ) be an *arbitrary* measure space. It is not difficult to modify slightly the measure μ , leaving the underlying measurable space (X, \mathscr{A}) untouched, in order to make it semi-finite. Specifically,

$$\mu_{\rm sf}(A) = \sup\{\mu(A \cap F) : F \in \mathscr{A}^f\},\$$

 $A \in \mathscr{A}$. One checks that $(X, \mathscr{A}, \mu_{sf})$ is semi-finite and $\mathcal{N}_{\mu_{sf}} = \mathcal{N}_{\mu, \text{loc}}$.

Surjectivity of Υ

Given
$$\alpha \in \mathbf{L}_1(X, \mathscr{A}, \mu)^*$$
 and $A \in \mathscr{A}^f$ we consider

$$\mathbf{L}_1(A, \mathscr{A}_A, \mu_A) \xrightarrow{\iota_A} \mathbf{L}_1(X, \mathscr{A}, \mu) \xrightarrow{\alpha} \mathbb{R}$$

There exists $g_A \in L_{\infty}(A, \mathscr{A}_A, \mu_A)$ representing $\alpha \circ \iota_A$. The family $\langle g_A \rangle_{A \in \mathscr{A}^f}$ is *compatible*: for all $A, A' \in \mathscr{A}^f$

 $A \cap A' \cap \{g_A \neq g_{A'}\} \in \mathscr{N}_{\mu}.$

A gluing of $\langle g_A \rangle_{A \in \mathscr{A}^f}$ is an \mathscr{A} -measurable function $g: X \to \mathbb{R}$ such that for all $A \in \mathscr{A}^f$

 $|A \cap \{g_A \neq g\} \in \mathscr{N}_{\mu}.$

MSN

- A Measurable Space with Negligibles $(X, \mathscr{A}, \mathscr{N})$ is a measurable space (X, \mathscr{A}) and a σ -ideal $\mathscr{N} \subseteq \mathscr{A}$.
- **L** $_{\infty}(X, \mathscr{A}, \mathscr{N})$ makes sense.
- Given $\mathscr{E} \subseteq \mathscr{A}$, a family $\langle g_E \rangle_{E \in \mathscr{E}}$ of \mathscr{A}_E -measurable functions $g_E : E \to \mathbb{R}$ is *compatible* if, by definition, $E \cap E' \cap \{g_E \neq g_{E'}\} \in \mathscr{N}$ for all $E, E' \in \mathscr{E}$.
- A gluing of a compatible family $\langle g_E \rangle_{E \in \mathscr{E}}$ is an \mathscr{A} -measurable function $g: X \to \mathbb{R}$ such that $E \cap \{g_E \neq g\} \in \mathscr{N}$ for all $E \in \mathscr{E}$.

Let $(X, \mathscr{A}, \mathscr{N})$ be an MSN and $\mathscr{E} \subseteq \mathscr{A}$. An essential supremum of \mathscr{E} is an $A \in \mathscr{A}$ such that $\blacksquare \forall E \in \mathscr{E} : E \setminus A \in \mathscr{N}$ $\blacksquare \forall B \in \mathscr{A} : [\forall E \in \mathscr{E} : E \setminus B \in \mathscr{N}] \Rightarrow A \setminus B \in \mathscr{N}$ **Theorem.** Let $(X, \mathscr{A}, \mathscr{N})$ be an MSN. TFAE The Boolean algebra A / N is order complete **Each** $\mathscr{E} \subseteq \mathscr{A}$ admits an essential supremum **Each** compatible family $\langle g_E \rangle_{E \in \mathscr{E}}$ admits a gluing. We say these MSNs are *localizable*.

Examples

- (Tarski, 1937) If (X, \mathscr{A}, μ) is a $(\sigma$ -)finite measure space then $(X, \mathscr{A}, \mathscr{M}_{\mu})$ is localizable.
- In $(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathscr{N}_{\mathscr{L}^1})$ an essential supremum of $\{\{x\} : x \in \mathbb{R}\}\$ is \emptyset .
- In $(\mathbb{R}, \mathscr{B}(\mathbb{R}), \{\emptyset\})$ an essential supremum of $\{\{x\} : x \in \mathbb{R}\}$ is \mathbb{R} .

Surjectivity of Υ

Theorem (DP, 2024). Let (X, \mathscr{A}, μ) be an arbitrary measure space. TFAE

- Y is surjective
- \blacksquare (*X*, *A*, $\mathscr{N}_{\mu, \text{loc}}$) is localizable.

Theorem. Let (X, \mathscr{A}, μ) be an arbitrary measure space. *TFAE*

Is an isometric isomorphism

 $(X, \mathscr{A}, \mu) \text{ is semi-finite and } (X, \mathscr{A}, \mathscr{N}_{\mu}) \text{ is localizable.}$

Hausdorff measures: Injectivity

- If X is a complete separable metric space and
 0 < d < ∞ then (X, 𝔅(X), 𝔅(d)) is semi-finite.
 X = ℝ^m due to Davies, general case to Howroyd.
- The measure space (R², A_{H1}, H¹) is not semi-finite. Here, A_{H1} is the σ-algebra of H¹-measurable sets in the sense of Caratheorody. Due to Fremlin.

Theorem (Grzegorek, 1981). Define

 $\mathsf{non}\left(\mathscr{N}_{\mathscr{L}^1}\right) := \min\{\mathrm{card}\, S : S \subseteq \mathbb{R} \text{ and } S \notin \mathscr{N}_{\mathscr{L}^1}\}.$

There exists a universally negligible set $Y \subseteq \mathbb{R}$ with $\operatorname{card} Y = \operatorname{non}(\mathscr{N}_{\mathscr{L}^1}).$

Hausdorff measures: Surjectivity

- $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2), \mathscr{N}_{\mathscr{H}^1, \text{loc}})$ is not localizable. We will explain how this follows from Fubini's Theorem.
- Whether the MSN $(\mathbb{R}^2, \mathscr{A}_{\mathscr{H}^1}, \mathscr{N}_{\mathscr{H}^1, \mathrm{loc}})$ is localizable is undecidable in ZFC. It is localizable under the Continuum Hypothesis.

Define

 $\blacksquare V_s = \{s\} \times \mathbb{R}, s \in \mathbb{R}$

 $\blacksquare H_t = \mathbb{R} \times \{t\}, t \in \mathbb{R}$

and assume that $A \in \mathscr{B}(\mathbb{R}^2)$ is an $\mathscr{N}_{\mathscr{H}^1,\text{loc}}$ -essential supremum of $\{V_s : s \in \mathbb{R}\}$. Then

Fubini

2

•
$$\forall s \in \mathbb{R} : \mathscr{H}^1(V_s \setminus A) = 0$$

• $\forall t \in \mathbb{R} : \mathscr{H}^1(H_t \cap A) = 0 \text{ (take } B = A \setminus H_t)$
Thus,
 $\mathscr{L}^2(\mathbb{R}^2 \setminus A) = \int_{\mathbb{R}} \mathscr{H}^1(V_s \setminus A) d\mathscr{L}^1(s) = 0$
and

$$\mathscr{L}^{2}(A) = \int_{\mathbb{R}} \mathscr{H}^{1}(H_{t} \cap A) d\mathscr{L}^{1}(s) = 0,$$

a contradiction.

This reasoning does not apply if:

- A is not \mathscr{L}^2 -measurable (because Fubini's Theorem then fails)
- \mathbb{R}^2 is replaced by an ambient set X such that
 $\mathscr{L}^2(X) = 0$ (because no contradiction ensues).

 $\operatorname{\mathsf{non}}\left(\mathscr{N}_{\mathscr{L}^1}\right) := \min\{\operatorname{card} S : S \subseteq \mathbb{R} \text{ and } S \notin \mathscr{N}_{\mathscr{L}^1}\},\\ \operatorname{\mathsf{cov}}\left(\mathscr{N}_{\mathscr{L}^1}\right) := \min\{\operatorname{card} I : \mathbb{R} \subseteq \bigcup_{i \in I} N_i \text{ and } N_i \in \mathscr{N}_{\mathscr{L}^1}, i \in I\}$

Theorem. It is consistent with ZFC to assume that

 $\operatorname{\mathsf{non}}\left(\mathscr{N}_{\mathscr{L}^1}
ight)<\operatorname{\mathsf{cov}}\left(\mathscr{N}_{\mathscr{L}^1}
ight).$

Necessity of a larger ambient X

Theorem (DP, 2024). *Assume that*

- $\square \mathsf{non}\left(\mathscr{N}_{\mathscr{L}^1}\right) < \mathsf{cov}\left(\mathscr{N}_{\mathscr{L}^1}\right)$
- $\blacksquare C \subseteq [0, 1]$ is some Cantor set of dimension 0
- $\blacksquare X = C \times [0, 1]$
- $\blacksquare \mathscr{B}(X) \subseteq \mathscr{A} \subseteq \mathscr{P}(X)$
- $\blacksquare \mathscr{N} = \mathscr{A} \cap \mathscr{N}_{\mathscr{H}^1} \text{ or } \mathscr{N} = \mathscr{A} \cap \mathscr{N}_{p.u.}$

Then $(X, \mathscr{A}, \mathscr{N})$ is not localizable. (If we replace the first condition by CH instead then $(X, \mathscr{A}_{\mathscr{H}^1}, \mathscr{N}_{\mathscr{H}^1})$ is localizable.)

General Theorem

Radon-Nikodýmification of Integral Geometric Measures – p. 19/??

Stone-Čech compactification

Objets: Topological Spaces Arrows: Continuous Maps

Alternatively, the forgetful functor

 $\mathsf{Forget}:\mathsf{Comp}\to\mathsf{Top}$

has a left adjoint.

Universal property: first attempt

Objects: Saturated MSN Arrows: Equivalence Classes of Measurable Morphisms

This is a first attempt at defining the *localizable version* of an arbitrary MSN.

The categories MSN and LOC

- An MSN $(X, \mathscr{A}, \mathscr{N})$ is *saturated* if for each $N \in \mathscr{N}$ and each $N' \subseteq N$ one has $N' \in \mathscr{A}$
- A measurable morphism between two MSNs $(X, \mathscr{A}, \mathscr{N})$ and $(Y, \mathscr{B}, \mathscr{M})$ is a map $f : X \to Y$ such that
 - For all $B \in \mathscr{B}$: $f^{-1}(B) \in \mathscr{A}$ For all $M \in \mathscr{M}$: $f^{-1}(M) \in \mathscr{N}$
- Two measurable morphisms f, f' between $(X, \mathscr{A}, \mathscr{N})$ and $(Y, \mathscr{B}, \mathscr{M})$ are *equivalent* if $X \cap \{f \neq f'\} \in \mathscr{N}.$
- This defines the categories MSN and LOC

Localizable version of $(X, \mathscr{A}, \{\emptyset\})$

If \mathscr{A} contains all singletons then the localizable version of $(X, \mathscr{A}, \{\emptyset\})$ should be $(X, \mathscr{P}(X), \{\emptyset\})$.

For $\mathbf{q} = \mathrm{id}_{\mathbb{R}}$ and $r \in \mathbf{r}$ one has $\mathbb{R} \cap \{r \neq \mathrm{id}_{\mathbb{R}}\} \in \mathscr{N}_{\mathscr{L}^1}$, contradicting the existence of non \mathscr{L}^1 -measurable sets. In fact, \mathbf{q} should not be an arrow of the category.

Supremum preserving morphisms

- An equivalence class of measurable morphisms between (X, A, N) and (Y, B, M) is supremum preserving if the following holds. For every
 ℱ ⊆ ℬ, if ℱ admits an ℳ-essential supremum F then f⁻¹(F) is an 𝒩-essential supremum of f⁻¹(ℱ).
- This defines the categories MSN_{sp} and LOC_{sp}.
- If X is uncountable and $\mathscr{C}(X)$ is the countable cocountable σ -algebra in X then $(X, \mathscr{P}(X), \{\emptyset\})$ is *not* the (new) localizable version of $(X, \mathscr{C}(X), \{\emptyset\})$.

Local determinacy

In (X, A, N) we say & ⊆ A is N-generating if X is an N-essential supremum of &. For example, if (X, A, μ) is semi-finite then A^f is N_μ-generating.
(X, A, N) is *locally determined* if for every N-generating family & ⊆ A one has:

 $\forall A \in \mathscr{P}(X) : [\forall E \in \mathscr{E} : A \cap E \in \mathscr{A}] \Rightarrow A \in \mathscr{A}$

- For instance if ϕ is an outer measure on X and has measurable hulls then $(X, \mathscr{A}_{\phi}, \mathscr{N}_{\phi})$ is locally determined.
- This defines the category LLD_{sp}.

lld versions

Arrows are in MSN_{sp} and $(\hat{X}, \hat{\mathscr{A}}, \hat{\mathscr{N}})$ is (saturated) localizable and locally determined.

It is an open question whether each saturated MSN admits an IId version. It boils down to whether coequalizers exist in MSN_{sp}.

Countable chain condition

- (X, A, M) satisfies the Countable Chain Condition
 (ccc) if each almost disjointed family & ⊆ A (i.e.
 E ∩ E' ∈ M whenever E, E' ∈ & are distinct) is at most countable. For example, if (X, A, μ) is
 σ-finite then (X, A, M_μ) satisfies the ccc.
- If $(X, \mathscr{A}, \mathscr{N})$ is ccc then it is lld.
- (Zorn) In an MSN $(X, \mathscr{A}, \mathscr{N})$ if $\mathscr{C} \subseteq \mathscr{A}$ is \mathscr{N} -generating then there exists an almost disjointed and \mathscr{N} -generating $\mathscr{E} \subseteq \mathscr{A}$ each member of which is contained in some member of \mathscr{C} .
- $(X, \mathscr{A}, \mathscr{N})$ is cccc if it is a coproduct (in MSN_{sp}) of ccc MSNs. A cccc MSN is also lld.

General Theorem

Theorem (Bouafia - DP, 2023). Let $(X, \mathscr{A}, \mathscr{N})$ be a saturated MSN such that the collection $\mathscr{E}_{ccc} := \{Z : (Z, \mathscr{A}_Z, \mathscr{N}_Z) \text{ is } ccc\} \text{ is } \mathscr{N} \text{ -generating. Then}$ (1) $(X, \mathscr{A}, \mathscr{N})$ admits a cccc version. (2) If furthermore \mathscr{E}_{ccc} contains an \mathscr{N} -generating subcollection \mathscr{E} such that card $\mathscr{E} \leq \mathfrak{c}$ and each (Z, \mathscr{A}_Z) is countably separated, for $Z \in \mathscr{E}$, then

 $(X, \mathscr{A}, \mathscr{N})$ admits an lld version which is also its *cccc version*.

The hypothesis is satisfied by $(X, \mathscr{A}, \mathscr{N}_{\mu})$ in case (X, \mathscr{A}, μ) is complete and semi-finite, since \mathscr{A}^{f} is \mathscr{N}_{μ} -generating.

Radon-Nikodýmification

Theorem (Bouafia - DP, 2023). Let (X, \mathscr{A}, μ) be a complete semi-finite measure space and $[(\hat{X}, \hat{\mathscr{A}}, \hat{\mathscr{N}}), \mathbf{p}]$ its corresponding cccc version. Let $p \in \mathbf{p}$. There exists a unique (and independent of the choice of p) measure $\hat{\mu}$ defined on $\hat{\mathscr{A}}$ such that $p_{\#}\hat{\mu} = \mu$ and $\mathcal{N}_{\hat{\mu}} = \hat{\mathcal{N}}$. Furthermore $(\hat{X}, \hat{\mathscr{A}}, \hat{\mu})$ is a strictly localizable measure space, and the Banach spaces $\mathbf{L}_1(X, \mathscr{A}, \mu)$ and $\mathbf{L}_1(\hat{X}, \hat{\mathscr{A}}, \hat{\mu})$ are isometrically isomorphic.

Integral Geometric Measure

Radon-Nikodýmification of Integral Geometric Measures – p. 30/??

Integral geometric measure

We consider the measure space $(\mathbb{R}^m, \mathscr{B}(\mathbb{R}^m), \mathscr{I}_{\infty}^k)$ where $1 \leq k \leq m-1$ are integers and \mathscr{I}_{∞}^k is the integral geometric measure. It is not semi-finite. Thus, we replace it with its complete semi-finite version

 $(\mathbb{R}^m, \mathscr{B}(\mathbb{R}^m), \widetilde{\mathscr{I}_{\infty}^k}).$

We let \mathscr{E} be the collection of k-dimensional submanifolds $M \subseteq \mathbb{R}^m$ of class C^1 such that $\phi_M = \mathscr{H}^k \sqcup M$ is locally finite. It follows from the Besicovitch - Federer - Mickle Structure Theorem that \mathscr{E} is $\mathscr{N}_{\tilde{\mathscr{I}}^k}$ -generating.

Integral geometric measure

For each $x \in \mathbb{R}^m$ we define $\mathscr{E}_x = \mathscr{E} \cap \{M : x \in M\}$ and we define on \mathscr{E}_x an equivalence relation as follows. We declare that $M \sim_x M'$ if and only if

$$\lim_{r \to 0^+} \frac{\mathscr{H}^k(M \cap M' \cap \mathbf{B}(x, r))}{\alpha(k)r^k} = 1.$$

Letting $[M]_x$ denote the equivalence class of $M \in \mathscr{E}_x$, we prove that the underlying set of the cccc, lld, and strictly localizable version of the MSN $(\mathbb{R}^m, \mathscr{B}(\mathbb{R}^m), \mathscr{N}_{\mathscr{J}_{\infty}^k})$ can be taken to be

$$\hat{X} = \{ (x, [M]_x) : x \in \mathbb{R}^m \text{ and } M \in \mathscr{E}_x \}.$$

Thank you!

Radon-Nikodýmification of Integral Geometric Measures - p. 33/??