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Dual of L1(X,A , µ)
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Dual of L1

Let (X,A , µ) be an arbitrary measure space. There is a
canonical embedding:

Υ : L∞(X,A , µ) → L1(X,A , µ)∗.

Theorem. Υ is a (bijective) isometric isomorphism in

case (X,A , µ) is σ-finite.

In general, Υ is neither injective nor surjective.
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Injectivity of Υ

Let (X,A , µ) be an arbitrary measure space.

Υ : L∞(X,A , µ) → L1(X,A , µ)∗.

Theorem. Υ is injective if and only if (X,A , µ) is
semi-finite.

A measure space (X,A , µ) is semi-finite, by definition,

if for every A ∈ A such that µ(A) = ∞ there exists

B ∈ A such that B ⊆ A and 0 < µ(B) < ∞.
Obviously, σ-finite measure spaces are semi-finite.
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Semi-finite measure spaces

Let (X,A , µ) be an arbitrary measure space and define

Nµ = A ∩ {N : µ(N) = 0}

A
f = A ∩ {A : µ(A) < ∞}

Nµ,loc = A ∩ {A : A ∩ F ∈ Nµ for all F ∈ A
f}.

It is easy to observe that the following are equivalent:

(X,A , µ) is semi-finite

Every A ∈ A \ Nµ contains some F ∈ A f \ Nµ

Nµ,loc = Nµ.
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Semi-finite version

Let (X,A , µ) be an arbitrary measure space. It is not
difficult to modify slightly the measure µ, leaving the

underlying measurable space (X,A ) untouched, in
order to make it semi-finite. Specifically,

µsf(A) = sup{µ(A ∩ F ) : F ∈ A
f},

A ∈ A . One checks that (X,A , µsf) is semi-finite and
Nµsf

= Nµ,loc.

Radon-Nikodýmification of Integral Geometric Measures – p. 7/??



Surjectivity of Υ

Given α ∈ L1(X,A , µ)∗ and A ∈ A f we consider

L1(A,AA, µA)
ιA−−→ L1(X,A , µ)

α
−−→ R

There exists gA ∈ L∞(A,AA, µA) representing α ◦ ιA.

The family 〈gA〉A∈A f is compatible: for all A,A′ ∈ A f

A ∩ A′ ∩ {gA 6= gA′} ∈ Nµ.

A gluing of 〈gA〉A∈A f is an A -measurable function

g : X → R such that for all A ∈ A f

A ∩ {gA 6= g} ∈ Nµ.
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MSN

A Measurable Space with Negligibles (X,A ,N ) is

a measurable space (X,A ) and a σ-ideal N ⊆ A .

L∞(X,A ,N ) makes sense.

Given E ⊆ A , a family 〈gE〉E∈E of AE-measurable
functions gE : E → R is compatible if, by definition,

E ∩ E ′ ∩ {gE 6= gE′} ∈ N for all E,E ′ ∈ E .

A gluing of a compatible family 〈gE〉E∈E is an
A -measurable function g : X → R such that
E ∩ {gE 6= g} ∈ N for all E ∈ E .
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Essential supremum

Let (X,A ,N ) be an MSN and E ⊆ A . An essential

supremum of E is an A ∈ A such that

∀E ∈ E : E \ A ∈ N

∀B ∈ A : [∀E ∈ E : E \B ∈ N ] ⇒ A \B ∈ N

Theorem. Let (X,A ,N ) be an MSN. TFAE

The Boolean algebra A /N is order complete

Each E ⊆ A admits an essential supremum

Each compatible family 〈gE〉E∈E admits a gluing.

We say these MSNs are localizable.
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Examples

(Tarski, 1937) If (X,A , µ) is a (σ-)finite measure

space then (X,A ,Nµ) is localizable.

In (R,B(R),NL 1) an essential supremum of

{{x} : x ∈ R} is ∅.

In (R,B(R), {∅}) an essential supremum of

{{x} : x ∈ R} is R.
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Surjectivity of Υ

Theorem (DP, 2024). Let (X,A , µ) be an arbitrary
measure space. TFAE

Υ is surjective

(X,A ,Nµ,loc) is localizable.

Theorem. Let (X,A , µ) be an arbitrary measure space.
TFAE

Υ is an isometric isomorphism

(X,A , µ) is semi-finite and (X,A ,Nµ) is

localizable.
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Hausdorff measures: Injectivity

If X is a complete separable metric space and

0 < d < ∞ then (X,B(X),H d) is semi-finite.
X = Rm due to Davies, general case to Howroyd.

The measure space (R2,AH 1,H 1) is not semi-
finite. Here, AH 1 is the σ-algebra of

H 1-measurable sets in the sense of Caratheorody.
Due to Fremlin.

Theorem (Grzegorek, 1981). Define

non (NL 1) := min{cardS : S ⊆ R and S 6∈ NL 1}.

There exists a universally negligible set Y ⊆ R with

cardY = non (NL 1).
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Hausdorff measures: Surjectivity

(R2,B(R2),NH 1,loc) is not localizable. We will

explain how this follows from Fubini’s Theorem.

Whether the MSN (R2,AH 1,NH 1,loc) is localizable

is undecidable in ZFC. It is localizable under the
Continuum Hypothesis.

Define

Vs = {s} × R, s ∈ R

Ht = R× {t}, t ∈ R

and assume that A ∈ B(R2) is an NH 1,loc-essential

supremum of {Vs : s ∈ R}. Then
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Fubini

∀s ∈ R : H 1(Vs \ A) = 0

∀t ∈ R : H 1(Ht ∩ A) = 0 (take B = A \Ht)

Thus,

L
2(R2 \ A) =

∫
R

H
1(Vs \ A)dL

1(s) = 0

and

L
2(A) =

∫
R

H
1(Ht ∩ A)dL 1(s) = 0,

a contradiction.
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Refining needed

This reasoning does not apply if:

A is not L 2-measurable (because Fubini’s Theorem
then fails)

R2 is replaced by an ambient set X such that

L 2(X) = 0 (because no contradiction ensues).
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Part of Cichoń diagram

non (NL 1) := min{cardS : S ⊆ R and S 6∈ NL 1},

cov (NL 1) := min{card I : R ⊆ ∪i∈INi and Ni ∈ NL 1, i ∈ I}

Theorem. It is consistent with ZFC to assume that

non (NL 1) < cov (NL 1) .
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Necessity of a larger ambient X

Theorem (DP, 2024). Assume that

non (NL 1) < cov (NL 1)

C ⊆ [0, 1] is some Cantor set of dimension 0

X = C × [0, 1]

B(X) ⊆ A ⊆ P(X)

N = A ∩ NH 1 or N = A ∩ Np.u.

Then (X,A ,N ) is not localizable. (If we replace the

first condition by CH instead then (X,AH 1,NH 1) is
localizable.)
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General Theorem
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Stone-Čech compactification

Objets: Topological Spaces
Arrows: Continuous Maps

Y X̂

X

∃!ζ

η∀ξ

Alternatively, the forgetful functor

Forget : Comp → Top

has a left adjoint.
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Universal property: first attempt

Objects: Saturated MSN
Arrows: Equivalence Classes of Measurable Morphisms

(Y,B,M ) (X̂, Â , ˆN )

(X,A ,N )

∀q

∃!r

p

This is a first attempt at defining the localizable version
of an arbitrary MSN.
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The categories MSN and LOC

An MSN (X,A ,N ) is saturated if for each

N ∈ N and each N ′ ⊆ N one has N ′ ∈ A

A measurable morphism between two MSNs
(X,A ,N ) and (Y,B,M ) is a map f : X → Y
such that

For all B ∈ B: f−1(B) ∈ A

For all M ∈ M : f−1(M) ∈ N

Two measurable morphisms f, f ′ between

(X,A ,N ) and (Y,B,M ) are equivalent if

X ∩ {f 6= f ′} ∈ N .

This defines the categories MSN and LOC
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Localizable version of (X,A , {∅})

If A contains all singletons then the localizable version

of (X,A , {∅}) should be (X,P(X), {∅}).

(R,AL 1,NL 1) (R,P(R), {∅})

(R,AL 1, {∅})

∀q

∃!r

p

For q = idR and r ∈ r one has R ∩ {r 6= idR} ∈ NL 1,

contradicting the existence of non L 1-measurable sets.
In fact, q should not be an arrow of the category.
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Supremum preserving morphisms

An equivalence class of measurable morphisms

between (X,A ,N ) and (Y,B,M ) is supremum
preserving if the following holds. For every
F ⊆ B, if F admits an M -essential supremum F
then f−1(F ) is an N -essential supremum of

f−1(F ).

This defines the categories MSNsp and LOCsp.

If X is uncountable and C (X) is the countable -

cocountable σ-algebra in X then (X,P(X), {∅}) is

not the (new) localizable version of (X,C (X), {∅}).
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Local determinacy

In (X,A ,N ) we say E ⊆ A is N -generating if X
is an N -essential supremum of E . For example, if

(X,A , µ) is semi-finite then A f is Nµ-generating.

(X,A ,N ) is locally determined if for every
N -generating family E ⊆ A one has:

∀A ∈ P(X) : [∀E ∈ E : A ∩ E ∈ A ] ⇒ A ∈ A

For instance if φ is an outer measure on X and has
measurable hulls then (X,Aφ,Nφ) is locally
determined.

This defines the category LLDsp.

Radon-Nikodýmification of Integral Geometric Measures – p. 25/??



lld versions

Arrows are in MSNsp and (X̂, Â , ˆN ) is (saturated)
localizable and locally determined.

(Y,B,M ) (X̂, Â , ˆN )

(X,A ,N )

∀q

∃!r

p

It is an open question whether each saturated MSN
admits an lld version. It boils down to whether
coequalizers exist in MSNsp.
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Countable chain condition

(X,A ,N ) satisfies the Countable Chain Condition
(ccc) if each almost disjointed family E ⊆ A (i.e.

E ∩ E ′ ∈ N whenever E,E ′ ∈ E are distinct) is at
most countable. For example, if (X,A , µ) is

σ-finite then (X,A ,Nµ) satisfies the ccc.

If (X,A ,N ) is ccc then it is lld.

(Zorn) In an MSN (X,A ,N ) if C ⊆ A is
N -generating then there exists an almost disjointed
and N -generating E ⊆ A each member of which is
contained in some member of C .

(X,A ,N ) is cccc if it is a coproduct (in MSNsp) of
ccc MSNs. A cccc MSN is also lld.
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General Theorem

Theorem (Bouafia - DP, 2023). Let (X,A ,N ) be a
saturated MSN such that the collection
Eccc := {Z : (Z,AZ ,NZ) is ccc} is N -generating. Then

(1) (X,A ,N ) admits a cccc version.

(2) If furthermore Eccc contains an N -generating
subcollection E such that cardE 6 c and each
(Z,AZ) is countably separated, for Z ∈ E , then

(X,A ,N ) admits an lld version which is also its
cccc version.

The hypothesis is satisfied by (X,A ,Nµ) in case

(X,A , µ) is complete and semi-finite, since A f is
Nµ-generating.
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Radon-Nikodýmification

Theorem (Bouafia - DP, 2023). Let (X,A , µ) be a

complete semi-finite measure space and [(X̂, Â , ˆN ),p]
its corresponding cccc version. Let p ∈ p. There exists a
unique (and independent of the choice of p) measure µ̂

defined on Â such that p#µ̂ = µ and Nµ̂ = ˆN .

Furthermore (X̂, Â , µ̂) is a strictly localizable measure

space, and the Banach spaces L1(X,A , µ) and

L1(X̂, Â , µ̂) are isometrically isomorphic.
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Integral Geometric Measure
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Integral geometric measure

We consider the measure space (Rm,B(Rm),I k
∞)

where 1 6 k 6 m− 1 are integers and I k
∞ is the integral

geometric measure. It is not semi-finite. Thus, we
replace it with its complete semi-finite version

(Rm, B̃(Rm), Ĩ k
∞).

We let E be the collection of k-dimensional
submanifolds M ⊆ Rm of class C1 such that

φM = H k M is locally finite. It follows from the
Besicovitch - Federer - Mickle Structure Theorem that E

is N
Ĩ k

∞

-generating.

Radon-Nikodýmification of Integral Geometric Measures – p. 31/??



Integral geometric measure

For each x ∈ Rm we define Ex = E ∩ {M : x ∈ M} and
we define on Ex an equivalence relation as follows. We

declare that M ∼x M
′ if and only if

lim
r→0+

H k(M ∩M ′ ∩B(x, r))

α(k)rk
= 1.

Letting [M ]x denote the equivalence class of M ∈ Ex, we
prove that the underlying set of the cccc, lld, and strictly

localizable version of the MSN (Rm, B̃(Rm),N
Ĩ k

∞

) can

be taken to be

X̂ = {(x, [M ]x) : x ∈ Rm and M ∈ Ex} .
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Thank you!
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