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Amenable Groups



Banach-Tarski Paradox (1924)
An orange can be cut into finitely many pieces and those pieces can
be reassembled to yield two oranges each of which has the same
size as the original one. [V. Runde – “Amenable Banach Algebras. A Panorama”]

F2 := {a, b, a−1, b−1, a2b3a−1, . . .} – free group in 2 generators,

F2 = {1F2} ⨿W (a)⨿W (a−1)⨿W (b)⨿W (b−1) &

W (a) ∪ aW (a−1) = F2 = W (b) ∪ bW (b−1).

Define A =


1
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, B =

1 0 0
0 1
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√

2
3

0 2
√

2
3

1
3

.

Proposition
F2 ∼= ⟨A,B⟩ < SO(3).
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Banach-Tarski Paradox (1924)
Special orthogonal group SO(3) contains a group isomorphic copy
of the free group in two generators F2 and F2 admits a paradoxical
decomposition.
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Proposition
Let G be a discrete group. TFAE:

(i) there is µ ∈ L∞(G )∗ satisfying:
• ⟨1G , µ⟩ = ∥µ∥ = 1,
• ⟨Ls f , µ⟩ = ⟨f , µ⟩ for all s ∈ G , f ∈ L∞(G );

(ii) G admits no paradoxical decomposition.

Examples

1. Amenable: compact (Haar measure is finite), abelian
(Markov-Kakutani fixed point theorem).

2. Non-amenable: Fn,GL(n,K), SL(n,K).
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Amenable Banach Algebras



Theorem (B.E. Johnson, 1972)
Let G be a locally compact group. TFAE:

(1) G is amenable,

(2) Every continuous derivation δ : L1(G ) → X ∗ from the group
algebra L1(G ) into any dual Banach L1(G )-bimodule X ∗ is
inner.

Remark. A linear map δ : A → X is a derivation if δ(ab) = a · δ(b) + δ(a) · b.
A derivation δ is inner if δ(a) = adx (a) := a · x − x · a for some x ∈ X .

Definition
We say that a Banach algebra A is:

(i) amenable if every cont. derivation into any dual A-bimodule is
inner,

(ii) weakly amenable if every cont. derivation into A∗ is inner,

(iii) strongly amenable if every cont. derivation into any
A-bimodule is inner.
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Theorem
Let G be a locally compact group. Then:

1. (Johnson, 1972) L1(G ) is amenable ⇔ G is amenable.

2. (Johnson, 1991) L1(G ) is always weakly amenable.

3. (Selivanov, 1976) L1(G ) is strongly amenable ⇔ G is finite.

Theorem

1. (Connes, 1978 + Haagerup, 1983) A C ∗-algebra A is
amenable ⇔ it is nuclear, i.e. for every C ∗-algebra B there
exists a unique C ∗-norm on A⊗ B .

2. (Haagerup, 1983) Every C ∗-algebra is weakly amenable.

3. (Selivanov, 1976) A C ∗-algebra is strongly amenable ⇔ it is
finite dimensional.
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Towards Quantitative Approach



Theorem (B.E. Johnson, 1972)
A Banach algebra A is amenable if and only if there is
an approximate diagonal, i.e.
a bounded net (dα)α ∈ A⊗̂A such that for every a ∈ A we have

a · dα − dα · a → 0 ∧ a · π(dα) → a.

We then say A is C - amenable where C := supα ∥dα∥.

Remark. Define a · (x ⊗ y) := ax ⊗ y , (x ⊗ y) · a := x ⊗ ya and π(a⊗ b) := ab and

extend linearly.

Definition
If A is a Banach algebra then
AM (A) := inf{C > 0 : A is C - amenable}.

Proposition
If A is either a convolution algebra or a C ∗-algebra then
AM (A) = 1 or AM (A) = ∞.
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Theorem (B.E. Johnson, 1972)
A Banach algebra A is strongly amenable if and only if there is

a diagonal , i.e.
an element d ∈ A⊗̂A such that for every a ∈ A we have

a · d − d · a = 0 ∧ π(d) = 1.

We then say A is C -strongly amenable where C := ∥d∥ .

Remark. Define a · (x ⊗ y) := ax ⊗ y , (x ⊗ y) · a := x ⊗ ya and π(a⊗ b) := ab and

extend linearly.

Definition
If A is a Banach algebra then
SAM(A) := inf{C > 0 : A is C -strongly amenable}.

Proposition
If A is either a convolution algebra or a C ∗-algebra then
SAM(A) = 1 or SAM(A) = ∞.
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Natural Question
Is there a quantitative version of weak amenability?

A is a weakly amenable Banach algebra ⇒
for every δ ∈ Z(A,A∗) there is φ ∈ A∗ such that δ = adφ ⇒
En := {δ ∈ Z(A,A∗) | ∃φ ∈ A∗ : δ = adφ ∧ ∥φ∥ ≤ n} ⇒
Z(A,A∗) =

⋃
n∈N En ⇒

If En ⊃ (δk)k∈N −→
k

δ then ∃ (φk)k ⊂ A∗ with

δk = adφk
∧ ∥φk∥ ≤ n ∧ ⟨b, δ(a)⟩ = limk→∞⟨ba− ab, φk⟩ ⇒

φ(u) := limk→∞ φk(u) is bounded on the commutator subspace
C(A) =

{∑k
i=1[ai , bi ] : ai , bi ∈ A, k ∈ N

}
⇒

the H.–B. ext. φ̂ : δ = adφ̂ and ∥φ̂∥ ≤ n thus En is closed ⇒
Baire Category Theorem gives an n ∈ N s.t. IntEn ̸= ∅.

Theorem (KK–KP, 2024)
A Banach algebra A is weakly amenable if and only if there is
C > 0 s.t. it is C -weakly amenable, i.e. for every δ ∈ Z(A,A∗)

there is φ ∈ A∗ with δ = adφ ∧ ∥φ∥ ≤ C∥δ∥.
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⋃
n∈N En ⇒

If En ⊃ (δk)k∈N −→
k

δ then ∃ (φk)k ⊂ A∗ with

δk = adφk
∧ ∥φk∥ ≤ n ∧ ⟨b, δ(a)⟩ = limk→∞⟨ba− ab, φk⟩ ⇒

φ(u) := limk→∞ φk(u) is bounded on the commutator subspace
C(A) =

{∑k
i=1[ai , bi ] : ai , bi ∈ A, k ∈ N

}
⇒

the H.–B. ext. φ̂ : δ = adφ̂ and ∥φ̂∥ ≤ n thus En is closed ⇒
Baire Category Theorem gives an n ∈ N s.t. IntEn ̸= ∅.

Theorem (KK–KP, 2024)
A Banach algebra A is weakly amenable if and only if there is
C > 0 s.t. it is C -weakly amenable, i.e. for every δ ∈ Z(A,A∗)

there is φ ∈ A∗ with δ = adφ ∧ ∥φ∥ ≤ C∥δ∥.

8



Natural Question
Is there a quantitative version of weak amenability?

A is a weakly amenable Banach algebra ⇒
for every δ ∈ Z(A,A∗) there is φ ∈ A∗ such that δ = adφ ⇒
En := {δ ∈ Z(A,A∗) | ∃φ ∈ A∗ : δ = adφ ∧ ∥φ∥ ≤ n} ⇒
Z(A,A∗) =

⋃
n∈N En ⇒

If En ⊃ (δk)k∈N −→
k

δ then ∃ (φk)k ⊂ A∗ with

δk = adφk
∧ ∥φk∥ ≤ n ∧ ⟨b, δ(a)⟩ = limk→∞⟨ba− ab, φk⟩ ⇒

φ(u) := limk→∞ φk(u) is bounded on the commutator subspace
C(A) =

{∑k
i=1[ai , bi ] : ai , bi ∈ A, k ∈ N

}
⇒

the H.–B. ext. φ̂ : δ = adφ̂ and ∥φ̂∥ ≤ n thus En is closed ⇒
Baire Category Theorem gives an n ∈ N s.t. IntEn ̸= ∅.

Theorem (KK–KP, 2024)
A Banach algebra A is weakly amenable if and only if there is
C > 0 s.t. it is C -weakly amenable, i.e. for every δ ∈ Z(A,A∗)

there is φ ∈ A∗ with δ = adφ ∧ ∥φ∥ ≤ C∥δ∥.
8



Definition
If A is a Banach algebra then

WAM(A) := inf{C > 0 : A is C -weakly amenable}.

Easy Observations
Let A be a weakly amenable Banach algebra. Then:

(i) if A is commutative then WAM(A) = 0,

(ii) if A is non-commutative then WAM(A) ≥ 1
2 ,

(iii) if A is amenable then WAM(A) ≤ AM(A).

Attractive Problem
Compute WAM(A) for weakly amenable and non-commutative A.
First of all for convolution algebras and C ∗-algebras. Not easy?
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Amenability vs Vector-Valued



Theorem
Let A be a Banach algebra.

(1) c0(A) is amenable if and only if so is A.

(2) (Zhang, 2015) C (K ,A) is amenable if and only if so is A. If A
is commutative then C (K ,A) is weakly amenable if and only if
so is A.

(3) (Lau–Loy–Willis, ’96) If A is a C ∗-algebra then ℓ∞(A) is
amenable if and only if A∗∗ ∈ (AP). In particular, K(ℓ2) is
amenable whereas ℓ∞(K(ℓ2)) is not.

Remark. If X is a Banach space and 1 ≤ p ≤ ∞ then

ℓp(X ) := {(xn)n∈N ⊂ X : ∥(∥xn∥X )n∥ℓp < ∞}.
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Theorem (KK–KP, 2024)
Let A be a Banach algebra and let 1 ≤ p < ∞.

(1) ℓp(A) is never amenable.

(2) If A is commutative and weakly amenable then so is ℓp(A).

(3) If A is non-commutative and p ̸= 1 then ℓp(A) is not weakly
amenable.

Theorem (KK-KP, 2024)
Let A be a Banach algebra. TFAE:

(i) A is weakly amenable,

(ii) ℓ1(A) is weakly amenable,

(iii) c0(A) is weakly amenable.
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WAM in Matrix Algebras



Recall that WAM(A) = inf{C > 0 : A is C -weakly amenable} and
WAM(A) ≥ 1

2 for non-commutative A. Moreover, if a ∈ Mn(C)
and 1 ≤ p ≤ ∞ then

∥a∥p = ∥(
√
λk)

n
k=1∥ℓp

where λk ’s are eigenvalues of a∗a.

Denote Ap := (M2(C), ∥ · ∥p)

and Bp := (T2, ∥ · ∥p), where T2 :=
{(α β

0 γ

)
: α, β, γ ∈ C

}
.

Theorem (KK–KP, 2024)

(i) WAM(A∞) = 1
2 , WAM(A2) =

√
2

2 , WAM(A1)
?
=

√
3

2 ,

(ii) WAM(B∞) = 1
2 , WAM(B2) =

√
2

2 , WAM(B1) =
√

3
2 .

Proof.
∥a∥1 =

√
tr(a∗a) + 2| det a| + for all α, β, γ, δ ∈ C there are

u, v ∈ T such that

2(|β|2+|γ|2)+|(α−δ)2+4βγ| = |βu+γv |2+|(α−δ)2uv+(βu+γv)2|.
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