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EXTRACTION OF CRITICAL POINTS OF SMOOTH FUNCTIONS ON

BANACH SPACES

MIGUEL GARCÍA-BRAVO

Abstract. Let E be an infinite-dimensional separable Hilbert space. We show that for every C1

function f : E → R
d, every open set U with Cf := {x ∈ E : Df(x) is not surjective} ⊂ U and every

continuous function ε : E → (0,∞) there exists a C1 mapping ϕ : E → R
d such that ||f(x)− ϕ(x)|| ≤

ε(x) for every x ∈ E, f = ϕ outside U and ϕ has no critical points (Cϕ = ∅). This result can be
generalized to the case where E = c0 or E = lp, 1 < p < ∞. In the case E = c0 it is also possible to
get that ||Df(x) −Dϕ(x)|| ≤ ε(x) for every x ∈ E.

1. Introduction and main results

Our goal in this paper is to prove the following result:

Theorem 1.1. Let E be one of the classical infinite-dimensional Banach spaces c0 or lp with 1 < p <

∞. Let f : E → Rd be a C1 function and ε : E → (0,∞) a continuous function. Take any open set U
containing the critical set of points of f , that is Cf := {x ∈ E : Df(x) is not surjective}. Then there

exists a C1 function ϕ : E → Rd such that,

(1) ||f(x)− ϕ(x)|| ≤ ε(x) for all x ∈ E;
(2) f(x) = ϕ(x) for all x ∈ E \ U ;
(3) Dϕ(x) is surjective for all x ∈ E, i.e. ϕ has no critical points; and
(4) in the case that E = c0 we also have that ||Df(x)−Dϕ(x)|| ≤ ε(x) for all x ∈ E.

We can make ϕ be of class Ck inside the open set U , where k denotes the order of smoothness of the
space lp, 1 < p < ∞ or c0. A brief explanation of this fact can be found in Remark 4.2.
This theorem is a particular case of the following two more technical results.

Theorem 1.2. Let E be an infinite-dimensional Banach space with an unconditional basis and with
a C1 equivalent norm || · || that locally depends on finitely many coordinates. Let f : E → Rd be a C1

function and ε : E → (0,∞) a continuous function. Take any open set U such that Cf ⊂ U . Then

there exists a C1 function ϕ : E → Rd such that,

(1) ||f(x)− ϕ(x)|| ≤ ε(x) for all x ∈ E;
(2) f(x) = ϕ(x) for all x ∈ E \ U ;
(3) ||Df(x)−Dϕ(x)|| ≤ ε(x) for all x ∈ E; and
(4) Dϕ(x) is surjective for all x ∈ E.

Theorem 1.3. Let E be an infinite-dimensional Banach space with a C1 strictly convex equivalent
norm || · || and with a 1-suppression unconditional basis {en}n∈N, that is a Schauder basis such that
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for every x =
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∥

.

Let f : E → Rd be a C1 function and ε : E → (0,∞) a continuous function. Then for every open set
U such that Cf ⊂ U there exists a C1 function ϕ : E → Rd such that,

(1) ||f(x)− ϕ(x)|| ≤ ε(x) for every x ∈ U .
(2) f(x) = ϕ(x) for all x ∈ E \ U .
(3) Dϕ(x) is surjective for all x ∈ E.

The case c0 and lp, 1 < p < ∞ in Theorem 1.1 follow from Theorem 1.2 and Theorem 1.3 respectively.
The reader can find the details of why this is so in Remark 4.3.

Note that the approximating function that we build does not have any critical point, hence it is an
open mapping.

The classical Morse-Sard theorem [18, 22] states that for a given Ck function f : Rn → Rd, if k ≥
max{n − d + 1, 1} then its set of critical values is of Lebesgue measure zero in Rd. This set is
defined to be the image of the set of critical points, which in turn is defined as Cf = {x ∈ Rn :
rankDf(x) is not maximum}.
In general if E and F are Banach spaces, for a differentiable mapping f : E −→ F , Cf stands for
the set of points x ∈ E at which the differential Df(x) is not surjective, and f(Cf ) is thus the set
of critical values of f . In the case that E is of infinite dimension a natural question appears: is it
possible to know that f(Cf ) is small in any sense by just assuming enough regularity conditions on
f? Unfortunately the answer is no because there exist C∞ smooth functions f : ℓ2 → R so that their
set of critical values f(Cf ) contain intervals (see Kupka’s counterexample [16]).
A weaker question that we can ask ourselves is if at least any continuous mapping can be uniformly ap-
proximated by another one with small critical set of values. Let us mention that for many applications
of the Morse-Sard theorem this is sufficient.
The first result of that type was in the case of a continuous function f : E → R, where E is a
separable Hilbert space. Eells and McAlpin proved in [11] that in such case f can be uniformly
approximated by a smooth function g whose set of critical values g(Cg) is of measure zero. This was
so called an approximate Morse-Sard result. However in [4], a much stronger result was obtained by
Azagra and Cepedello-Boiso: every continuous mapping from E, a separable Hilbert space, into Rd

can be uniformly approximated by smooth mappings with no critical points. Hájek and Johanis [14]
established a similar result for d = 1 in the case that E is a separable Banach space which contains c0
and admits a Ck smooth bump function. Also in the case d = 1, Azagra and Jiménez-Sevilla [7] were
able to characterize the class of separable Banach spaces E such that any continuous f : X → R can
be uniformly approximated by another one of class C1 without any critical point, as those Banach
spaces E with separable dual.
Let us comment finally about the very recent paper [3]. In this work, due to Azagra, Dobrowolski and
the author, many of the previous results are generalized. It is proved that for the case of E = c0, ℓp, L

p,
1 < p < ∞, and F a quotient of E, any continuous function f : E → F can be uniformly approximated
by a Ck smooth one with no critical points, where k is denoting the order of smoothness of the space
E (see [3, Theorems 1.6, 1.7] for more details).

In the present paper we consider a different approach to this problem. Suppose that our given con-
tinuous function f : E → Rd is already of class C1 and we know that its set of critical points Cf is
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included in some open set U . The question is, are we able not only to uniformly approximate f by
another C1 function ϕ without critical points but also to make ϕ be equal to f outside U?
The key will be to use a C1-fine approximating result for the function f |U : U → Rd, and this is
provided by the results of [19, 5]. This corresponds to Section 3 of the paper.

As a matter of fact, in [19], Moulis was already able to relate C1-fine approximations with approximate
Morse-Sard type results. She proved that for every C1 function f : E → F , where E is an infinite-
dimensional separable Hilbert space and F is a separable Hilbert space, and every continuous function
ε : E → (0,∞) there exists a C∞ function g : E → F such that ||f(x) − g(x)|| ≤ ε(x), ||Df(x) −
Dg(x)|| ≤ ε(x) for every x ∈ E and such that g(Cg) has empty interior in F . Obviously we strengthen
this conclusion by being able to get Cg = ∅ and considering other Banach spaces, not necessarily
Hilbertian. On the other hand for the Hilbert case we cannot write as the target space an infinite-
dimensional Banach space as Moulis does and also we do not get the approximation in the derivatives.

The proof of both Theorems 1.2 and 1.3 will follow these two steps:

• Step 1: Firstly we construct a C1 function g : U → Rd such that ||f(x)− g(x)|| ≤ ε(x)/2 and
||Df(x)−Dg(x)|| ≤ ε(x) and such that Cg either is the empty set for the case of Theorem 1.2,
or is locally contained in a finite union of complemented subspaces of infinite codimension in
E for the case of Theorem 1.3.

• Step 2: We extend the function g to the whole space E by letting it be equal to f outside U .
Because of the C1-fine approximation of Step 1 this extension is still of class C1 on E. For the
case of Theorem 1.2 we are done. For the case of Theorem 1.3 we must find a C1 diffeomorphism
h : E → E \Cg which will be the identity outside U and such that {{x, h(x)} : x ∈ E} refines
G (in other words, h is limited by G), where G is an open cover of E by open balls B(z, δz)
chosen in such a way that if x, y ∈ B(z, δz) then

‖ϕ(y) − ϕ(x)‖ ≤
ε(z)

4
≤

ε(x)

2
.

The existence of such a diffeomorphism h follows by a result of Section 2, which is a consequence
of some results on extractibility theory from the paper [3, Section 2]. Then, the mapping
ϕ(x) := g(h(x)) has no critical point, is equal to f outside U and satisfies ‖f(x)−ϕ(x)‖ ≤ ε(x)
for all x ∈ E.

Let us fix now some notations and definitions.
We call {en}n∈N the unconditional basis of E and {e∗n}n∈N the associated biorthogonal functionals.
Let also Pn : E → span{e1, . . . , en} be the natural projections defined as Pn(

∑∞
j=1 xjej) =

∑n
j=1 xjej

and let Ku be the unconditional constant for the basis. This constant is defined to be the least number
such that for every {εj}

n
j=1 ⊂ {−1,+1} and every

∑n
j=1 xjej ∈ E,

||
n
∑

j=1

εjxjej || ≤ Ku||
n
∑

j=1

xjej ||.

Note that ||Pn|| ≤ Ku for every n ∈ N. We shall not confuse Ku with the suppression unconditional
constant Ks, defined as the least number such that for all (equivalent finite) set A ⊂ N, ‖PA‖ ≤ Ks,
where PA represents the projection PA(x) =

∑

j∈A xjej . We have the relation Ks ≤ Ku ≤ 2Ks.
Observe also that in the statement of Theorem 1.3 it is required that Ks = 1.
We say that the norm || · || locally depends on finitely many coordinates if for every x ∈ E there
exists a natural number lx, an open neighbourhood Ux of x, some functionals L1, . . . , Llx ∈ E∗ and a
function γ : Rlx → R such that

||y|| = γ(L1(y), . . . , Llx(y))
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for every y ∈ Ux. In particular we will make use of the fact that if the norm is of class C1 and we take

v ∈
⋂lx

j=1KerLj, then

D|| · ||(y)(v) = lim
t→0

||y + tv|| − ||y||

t
= 0,

for every y ∈ Ux \ {0}.
A function h : E → E is said to be limited by an open cover G provided that the set {{x, h(x)} : x ∈ E \X}
refines G; that is, for every x ∈ E \X, we may find a Gx ∈ G such that both x and h(x) are in Gx.
When we say that a closed set X ⊂ E is locally contained in a finite union of complemented subspaces
of infinite codimension we mean that for every x ∈ X there exists an open neighbourhood Ux of x and
some closed subspaces E1, . . . , Enx ⊂ E complemented in E and of infinite codimension such that

X ∩ Ux ⊂
nx
⋃

j=1

Ej.

Finally for a C1 function f : E → Rd, where f = (f1, . . . fd), we write its Fréchet derivative at a
point x ∈ E by Df(x) = (Df1(x), . . . ,Dfd(x)) : E → Rd, where each Df i(x) is a continuous linear
functional on E. If f is R-valued we sometimes simply write f ′(x) for its derivative.
We will also use indistinctly the symbol || · || to denote the norm in E, E∗ and the euclidean norm in
Rd.

2. A comment about the strong Ck extraction property

In the proof of Theorem 1.3 we will need the following.

Proposition 2.1. Let E be a Banach space with a Ck smooth norm. Take an open cover G of an open
set U and a closed set X ⊂ U that is locally contained in a finite union of complemented subspaces of
infinite codimension in E. Then there exists a Ck diffeomorphism h : E → E \X which is the identity
outside U and is limited by G.

To achieve this we will use some recent results on diffeomorphic extraction of closed sets that appear
in [3, Section 2]. In that paper the next definitions are introduced.

Definition 2.2. A subset X of Banach space E has the strong Ck extraction property with respect
to an open set U if X ⊆ U , X is relatively closed in U , and for every open set V ⊆ U , every subset
Y ⊆ X relatively closed in U there exists a Ck diffeomorphism ϕ from U \ Y onto U \ (Y \ V ) which
is the identity on (U \ V ) \ Y . If in addition for any ε > 0 we can ask the diffeomorphism not to
move points more than ε (that is, ||ϕ(x) − x|| ≤ ε for all x) we will say that X has the ε-strong Ck

extraction property with respect to U .
We will also say that such a closed set X has locally the strong (or ε-strong) Ck extraction property
if for every point x ∈ X there exists an open neighbourhood Ux of x such that X ∩ Ux has the strong
(ε-strong respectively) Ck extraction property with respect to every open set U for which X ∩ Ux is
a relatively closed subset of U .

We have the following properties.

Lemma 2.3. Let us suppose that X,X1,X2 ⊂ E have the ε-strong Ck extraction property with respect
to an open set U of E. Then

(1) For every set Y ⊆ X, relatively closed in U , Y has the ε-strong Ck extraction property with
respect to U ;

(2) For every open subset U ′ ⊆ U , X ∩ U ′ has the ε-strong Ck extraction property with respect to
U ′.

(3) X1 ∪X2 has the ε-strong Ck extraction property with respect to U .
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Proof.

(1) This follows directly from the definition.
(2) See [3, Lemma 2.22 (2)].
(3) Take Y ⊆ X1 ∪ X2 relatively closed in U and an open set V ⊆ U . We want to find a Ck

diffeomorphism ϕ from U \ Y onto U \ (Y \ V ) which is the identity on (U \ V ) \ Y and does
not move points more than ε.
Define the sets Y1 = Y ∩ X1 and Y2 = Y ∩ X2, which are relatively closed in U and satisfy
Y1 ∪ Y2 = Y . In particular by (1) they have the ε-strong Ck extraction property with respect
to U .
(a) There exists a Ck diffeomorphism ϕ1 : U \ Y1 → U \ (Y1 \ V ) which is the identity on

(U \ V ) \ Y1 and does not move points more than ε/2.
(b) For the open set U \ Y1, using (2) we know that Y2 ∩ (U \ Y1) = Y2 \ Y1 has the ε-strong

Ck extraction property with respect to U \ Y1. Hence there exists a Ck diffeomorphism
ϕ2 : U \(Y1∪Y2) → (U \Y1)\((Y2\Y1)\V ), which is the identity on ((U \Y1)\V )\(Y2\Y1)
and does not move points more than ε/2.

Observe that

ϕ1((U \ Y1) \ ((Y2 \ Y1) \ V )) = [U \ (Y1 \ V )] \ [ϕ1((Y2 \ Y1) \ V )] =

= [U \ (Y1 \ V )] \ [(Y2 \ Y1) \ V ] =

= U \ (Y1 ∪ Y2) \ V ).

Hence we can define a Ck diffeomorphism

ϕ := ϕ1 ◦ ϕ2 : U \ (Y1 ∪ Y2) → U \ ((Y1 ∪ Y2) \ V,

which is the identity on (U \ V ) \ (Y1 ∪ Y2) and does not move points more than ε.

�

For this kind of sets the following abstract extractibility result holds.

Theorem 2.4. [3, Theorem 2.24] Let E be a Banach space and X be a closed subset of E which has
locally the ε-strong Ck extraction property. Let U be an open subset of E and G = {Gr}r∈Ω be an

open cover of E. Then there exists a Ck diffeomorphism g from E \ (X \ U) onto E \X which is the
identity on (E \ U) \X and is limited by G.

Proof of Proposition 2.1. For every x ∈ X there exists an open neighbourhood Ux of x and some
closed subspaces E1, . . . , Enx ⊂ E complemented in E and of infinite codimension such that

X ∩ Ux ⊆
nx
⋃

j=1

Ej .

If E admits an equivalent Ck smooth norm it is known (see for instance [3, Theorem 1.4]) that given
a complemented subspace H ⊂ E of infinite codimension and the open set Ux, then H ∩ Ux has the
ε-strong Ck extraction property with respect to any open set U ′ for which H ∩Ux is a relatively closed
subset of U ′. Therefore thanks to Lemma 2.3 (3) the set

⋃nx

j=1Ej ∩Ux has the ε-strong Ck extraction

property with respect to any open set U ′ for which
⋃nx

j=1Ej ∩ Ux is relatively closed on U ′.

Now, using Lemma 2.3 (1), the set X ∩ Ux ⊆
⋃nx

j=1Ej ∩ Ux has the ε-strong Ck strong extraction

property with respect to any open set U ′ for which X ∩Ux is relatively closed on U ′. And this means
that X has locally the ε-strong Ck strong extraction property. To conclude the proof apply Theorem
2.4, noting that we have X ⊂ U and hence X \ U = ∅.

�
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For more information about diffeomorphic extraction of closed sets in Banach spaces see for instance
[8, 24, 20, 21, 10, 1, 2, 3].

3. C1-fine approximation controlling the set of critical points

Let us proceed with Step 1 of the scheme of the proof of the main Theorems 1.2 and 1.3, described in
the introduction. We intend to prove the following two theorems.

Theorem 3.1. Let E be an infinite-dimensional Banach space with an unconditional basis and with
a C1 equivalent norm that locally depends on finitely many coordinates. Let U be an open subset of E,
f : U → Rd a C1 function and ε : U → (0,∞) a continuous function. Then there exists a C1 function
g : U → Rd such that

(1) ||f(x)− g(x)|| ≤ ε(x) for every x ∈ U .
(2) ||Df(x)−Dg(x)|| ≤ ε(x) for every x ∈ U .
(3) Cg = ∅, i.e. g has no critical points.

Theorem 3.2. Let E be an infinite-dimensional Banach space with a C1 strictly convex equivalent
norm and with a 1-suppression unconditional basis (in particular Ku-unconditional with 1 ≤ Ku ≤ 2).
Let U be an open subset of E, f : U → Rd a C1 function and ε : U → (0,∞) a continuous function.
Then there exists a C1 function g : U → Rd such that:

(1) |f(x)− g(x)| ≤ ε(x) for every x ∈ U .
(2) ||Df(x)−Dg(x)|| ≤ ε(x) for every x ∈ U .
(3) Cg is locally contained in a finite union of complemented subspaces of infinite codimension in

E.

The proofs of these results appear in Subsections 3.1 and 3.2 respectively, following the ideas of the
papers [19, 5].

However, we must previously introduce an important result that is an easier and slightly different
version of [5, Lemma 5]. The proof will mainly be the same but here we want also to study the structure
of the critical set of points of the approximating function and we do not care if the approximating
function has more regularity than the initial function. If the given function is C1, it is enough for the
approximating function to be C1 as well.
For the readers convenience we present a self-contained proof, even though the arguments are the same
as in [19, 5].

Lemma 3.3. Let E and F be a Banach spaces. Suppose that E is infinite-dimensional and has a
Ku-unconditional basis and a C1 equivalent norm. Take an open set U of E. For every open ball
B0 = B(z0, r0) with B(z0, 2r0) ⊆ U , and for every C1 function f1 : U → F and numbers ε, η > 0 with
supx∈B(z0,2r0) ||Df1(x)|| < η, there exists a C1 function Ψ : E → E such that for f2 := f1 ◦Ψ, we have

(1) supx∈B0
||f1(x)− f2(x)|| < ε.

(2) supx∈B0
||Df2(x)|| < (Ku)

28η.
(3) For every x ∈ E there exists n0 ∈ N and a neighbourhood V0 of x such that

DΨ(y)(v) =

n0
∑

n=1

[an(y)D|| · ||(y − Pn−1(y))(v − Pn−1(v))yn + ξn(y)vn] en

for every v =
∑∞

n=1 vnen ∈ E and y ∈ V0, where ξn, an : V0 → R are C1 functions.

Proof. Choose 0 < r < min{ ε
Kuη

, r0
Ku

}. Let ϕ : R→ [0, 1] be a C∞ smooth function such that ϕ(t) = 1

if |t| < 1
2 , ϕ(t) = 0 if |t| > 1 and ϕ′(R) ⊆ [−3, 0].
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For every n ∈ N we define the functions ξn : E → R and Ψ : E → E,

ξn(x) = 1− ϕ

(

||x− Pn−1(x)||

r

)

,

Ψ(x) =

∞
∑

n=1

ξn(x)xnen,

where x =
∑∞

n=1 xnen ∈ E. We denote by P0 the zero operator.

Fact 3.4. The mapping Ψ : E → span{en : n ∈ N} is well-defined, C1 smooth on E, and has the
following properties:

(1) ||Ψ′(x)|| ≤ (Ku)
28 for all x ∈ E;

(2) ||x−Ψ(x)|| ≤ Kur for all x ∈ E;
(3) Ψ(B0) ⊆ B(z0, 2r0).

Proof. For any x ∈ E, because Pn(x) → x and the ||Pn|| are uniformly bounded, there exists a
neighbourhood V0 of x and an n0 ∈ N such that ξn(y) = 0 for all y ∈ V0 and n > n0, and so
Ψ(V0) ⊂ span{e1, . . . , en0

}. Thus Ψ : E →
⋃∞

n=1 span{e1, . . . , en} is a well-defined C1 smooth map.
We next compute and estimate its derivative.
We have that

(ξn(y)yn)
′ = ξ′n(y)yn + ξn(y)e

∗
n.

If v ∈ E and y ∈ V0

ξ′n(y)(v) = −ϕ′

(

||y − Pn−1(y)||

r

)

D|| · ||(y − Pn−1(y))(v − Pn−1(v))r
−1 =

= an(y)D|| · ||(y − Pn−1(y))(v − Pn−1(v)),

where an : E → R are C1 functions, defined by an(y) = −ϕ′
(

||y−Pn−1(y)||
r

)

r−1.

Looking at the expression of Ψ we compute its derivative for every y ∈ V0,

DΨ(y)(v) =

n0
∑

n=1

[

ξ′n(y)(v)yn + ξn(y)vn
]

en =

=

n0
∑

n=1

[an(y)D|| · ||(y − Pn−1(y))(v − Pn−1(v))yn + ξn(y)vn] en.

Observe that we have proved (3) of Lemma 3.3.
Now since |ϕ′(t)| ≤ 3, ||(I−Pn−1)

′(y)|| ≤ 1+Ku and the derivative of the norm always has norm one,
for all y and all n we get that

||ξ′n(y)|| ≤

∣

∣

∣

∣

ϕ′

(

||y − Pn−1(y)||

r

)
∣

∣

∣

∣

r−1||(I − Pn−1)
′(y)|| ≤ 3(1 +Ku)r

−1.
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For a fixed x, define n1 = n1(x) to be the smallest integer with ||x − Pn1−1(x)|| ≤ r. Then for any
m < n1, ξm(x) = 1 and ξ′m(x) = 0, and so, for every v ∈ B(0, 1),

||DΨ(x)(v)|| ≤ ||
∞
∑

n=n1

ξ′n(x)(v)xnen||+ ||
∞
∑

n=1

ξn(x)vnen|| ≤

≤ Ku sup
n1≤n

|ξ′n(x)(v)| ||
∞
∑

n=n1

xnen||+Ku sup
n

|ξn(x)| ||
∞
∑

n=1

vnen|| ≤

≤ 3Ku(1 +Ku)r
−1||

∞
∑

n=n1

xnen||+Ku ≤ 4Ku + 3(Ku)
2 < 8(Ku)

2,

proving (1).
We next estimate ||x−Ψ(x)||.

||x−Ψ(x)|| = ||
∑

n≥n1

xn(1− ξn(x))en|| ≤ Ku sup
n

|1− ξn(x)| ||
∑

n≥n1

xnen|| ≤ Kur ≤ r0,

which proves (2). Lastly, property (3) is immediate from (2) and the choice of r. �

Going back to the proof of Lemma 3.3 define

f2(x) := f1(Ψ(x)),

which is a C1 function. Firstly we have that for every x ∈ B0,

||f1(x)− f2(x)|| ≤ η||x−Ψ(x)|| ≤ ηKur < ε,

using the Lipschitzness of f1 in B(z0, 2r0).
Secondly for every x ∈ B0,

||Df2(x)|| ≤ ||Df1(Ψ(x))|| ||DΨ(x)|| ≤ η(Ku)
28.

The proof of the Lemma is now complete.
�

3.1. Proof of Theorem 3.1.

Proof of Theorem 3.1. Using the openness of U , the continuity of ε and f ′, the separability of E and
the assumption that the norm || · || locally depends on finitely many coordinates, we find a covering

⋃

j=1

B(xj, rj) = U

of U such that

(i) B(xj, 4rj) ⊂ U with rj ≤ 1 for every j ∈ N.

(ii) ε(x) ≥ ε(xj)
2 for every x ∈ B(xj, 2rj).

(iii) ||Df(x)−Df(xj)|| ≤ ε(xj)
(Ku)272

for every x ∈ B(xj , 4rj).

(iv) For every j ∈ N there exist a number lj ∈ N, some linear functionals Lj(1), . . . , Lj(lj), and a

C1 function γj : R
lj → R such that

||y|| = γj(Lj(1)(y), . . . , Lj(lj)(y))

for every y ∈ B(xj , 2rj).
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Now for every j ∈ N choose functions ϕj ∈ C1(E; [0, 1]) with bounded derivative so that ϕj(x) = 1
for x ∈ B(xj , rj) and ϕj(x) = 0 for x /∈ B(xj , 2rj). We precisely take ϕj(x) = θj(||x − xj||) where

θj : R→ [0, 1] is C∞ and θ−1
j (1) = (−∞, rj ] and θ−1

j (0) = [2rj ,∞). It must be noted here that despite

the fact that the norm || · || is not differentiable at the origin, the functions ϕj are C1 for every x ∈ E
because in a neighbourhood of xj they are constantly one.
We introduce the following constants,

M̃k = sup
x∈B(xk,2rk)

||ϕ′
k(x)||,

Mj = max{1,

j
∑

k=1

M̃k}.

Next define for every j ∈ N,

hj = ϕj

∏

k<j

(1− ϕk).

One can easily check that we have the following properties:

• For every x ∈ U there exists nx = min{m ∈ N : x ∈ B(xm, rm)} such that 1−ϕnx(x) = 0 and
hence hm(y) = 0 for every m > nx and y ∈ B(xnx , rnx).

•
∑∞

j=1 hj(x) = 1 for every x ∈ U .

• ||h′j(x)|| ≤ Mj for every j ∈ N and x ∈ B(xj, 2rj).

In particular {hj}j∈N is a C1 partition of unity which is subordinate to {B(xj, 2rj)}j∈N.

For every j ∈ N we apply the previous Lemma 3.3 for each ball B(xj , 2rj), the function f1(x) =

f(xj) + Df(xj)(x − xj) − f(x) and the constants ε(xj)
2j+3Mj

and ε(xj)
(Ku)272

for ε and η respectively. Note

that we can apply the Lemma 3.3 because

sup
x∈B(xj ,4rj)

||Df1(x)|| = sup
x∈B(xj ,4rj)

||Df(xj)−Df(x)|| ≤
ε(xj)

(Ku)272
.

The resulting functions from the proof of the lemma will be called δj = f1 ◦Ψj. In particular we have

(3.1) ||f(xj) +Df(xj)(x− xj)− δj(x)− f(x)|| ≤
ε(xj)

2j+3Mj

and

(3.2) ||Dδj(x)|| ≤ 8
ε(xj)

72
.

for every x ∈ B(xj , 2rj).

Let us define finally

(3.3) g(x) :=
∞
∑

j=1

hj(x)(f(x
j) +Df(xj)(x− xj)− δj(x) + Tj(x− xj)),

where Tj : E → Rd is a continuous linear surjective operator which we next construct. Define

Tj = (T 1
j , . . . , T

d
j ) inductively such that for each i = 1, . . . , d, T i

j is a non-null element of E∗ satisfying
that

T i
j /∈ span{e∗n,Dfk(xn), Ln(1), . . . , Ln(ln), T

k
1 , . . . , T

k
j−1, T

1
j , . . . , T

i−1
j : n ∈ N, 1 ≤ k ≤ d}
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(note that it is the span, not the closed span); which can never fill the whole space E∗ because Banach
spaces of infinite dimension can not have a countable Hamel basis. We also impose that their norms
are small enough, more precisely,

(3.4) ||Tj || ≤ ε(xj)M−1
j 2−j−4 ≤

ε(xj)

8
.

An important property that derives from this definition of Tj is that the set {T 1
j , . . . , T

d
j } is linearly

independent and hence Tj : E → Rd is a surjective linear operator. We also have that

T i
j /∈ span{e∗n,Dfk(xn), Ln(1), . . . , Ln(ln), T

k
1 , . . . , T

k
j−1, T

p
j : n ∈ N, 1 ≤ k ≤ d, 1 ≤ p ≤ d, p 6= i}.

Using the expression (3.3) let us check that properties (1), (2) and (3) of the statement of the main
theorem are satisfied for this choice of T i

j .

Firstly if hj(x) 6= 0, then x ∈ B(xj, 2rj) and

||f(xj) +Df(xj)(x− xj)−δj(x) + Tj(x− xj)− f(x)|| ≤

≤ ||f(xj) +Df(xj)(x− xj)− δj(x)− f(x)||+ ||Tj(x− xj)||) ≤

≤
ε(xj)

2j+3Mj
+

ε(xj)2rj
8

≤
ε(xj)

2
≤ ε(x).

Therefore for every x ∈ U ,

||g(x)−f(x)|| = ||
∞
∑

j=1

hj(x)(f(x
j)+Df(xj)(x−xj)−δj(x)+Tj(x−xj)−f(x))|| ≤ ε(x)

n
∑

j=1

hj(x) = ε(x).

We have proved (1).
In order to show (2) and 3), let us analyze what the derivative of g looks like, and inspect its critical
set.

Claim 3.5. For every x ∈ U there exist n, k1, . . . , kn ∈ N and a neighbourhood Vx = V ⊂ B(xn, rn)
of x such that:

(i) For every y ∈ B(xn, rn),

(3.5) g(y) :=

n
∑

j=1

hj(y)(f(x
j) +Df(xj)(y − xj)− δj(y) + Tj(y − xj)), and

(3.6)

Dg(y) =

n
∑

j=1

h′j(y)
[

f(xj) +Df(xj)(y − xj)− δj(y) + Tj(y − xj)
]

+

n
∑

j=1

hj(y)
[

Df(xj)−Dδj(y) + Tj

]

.

(ii) For every y ∈ V and 1 ≤ j ≤ n, Dδj(y)(v) = Df(Ψj(y)) ◦ (DΨj(y)(v)) has the form

(3.7) Df(Ψj(y)) ◦







kj
∑

n=1

[

ajn(y)D|| · ||(y − Pn−1(y))(v − Pn−1(v))yn + ξjn(y)vn
]

en







.

Proof. Recall that for every x ∈ U there is nx = n = min{m ∈ N : x ∈ B(xm, rm)} such that
hm(y) = 0 for every m > n and every y ∈ B(xn, rn). So expression (3.3) becomes

g(y) :=

n
∑

j=1

hj(y)(f(x
j) +Df(xj)(y − xj)− δj(y) + Tj(y − xj))
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for all y ∈ B(xn, rn). Computing the derivative we get

Dg(y) =

n
∑

j=1

h′j(y)
[

f(xj) +Df(xj)(y − xj)− δj(y) + Tj(y − xj)
]

+

n
∑

j=1

hj(y)
[

Df(xj)−Dδj(y) + Tj

]

,

for every y ∈ B(xn, rn).
For every j = 1, . . . , n, by (3) of Lemma 3.3, we can find a neighbourhood Vx,j ⊂ B(xn, rn) of x and
a number kj such that such that for every y ∈ Vx,j,

Dδj(y)(v) = Df(Ψj(y)) ◦ (DΨj(y)(v)) =

Df(Ψj(y)) ◦
{

∑kj
n=1

[

ajn(y)D|| · ||(y − Pn−1(y))(v − Pn−1(v))yn + ξjn(y)vn

]

en

}

.

Define then Vx :=
⋂n

j=1 Vx,j ⊂ B(xn, rn). �

Using equation (3.6) of Claim 3.5, we can write

||Dg(x) −Df(x)|| ≤||
n
∑

j=1

h′j(x)(f(x
j) +Df(xj)(x− xj)− δj(x) + Tj(x− xj)− f(x)||+

+ ||
n
∑

j=1

hj(x)(Df(xj)−Dδj(x) + Tj −Df(x))|| ≤

≤
n
∑

j=1

||h′j(x)|| (||f(x
j) +Df(xj)(x− xj)− δj(x)− f(x)||+ ||Tj(x− xj)||)+

+
n
∑

j=1

hj(x)
(

||Df(xj)−Df(x)||+ ||Dδj(x)|| + ||Tj ||
)

for every x ∈ U . Let us try to estimate all these quantities. Applying inequality (3.1) and the bound
of ||Tj || given by (3.4) we get

||f(xj) +Df(xj)(x− xj)− δj(x)− f(x)||+ ||Tj(x− xj)|| ≤
ε(xj)

2j+3Mj
+

ε(xj)2rj
2j+4Mj

for every x ∈ B(xj , 2rj). On the other hand ||Df(xj)−Df(x)|| ≤ ε(xj)
(Ku)272

≤ ε(xj)
72 by our choice of the

partition of unity, and using (3.2) and again (3.4) we have that for every x ∈ B(xj , 2rj),

||Df(xj)−Df(x)||+ ||Dδj(x)|| + ||Tj || ≤
ε(xj)

72
+ 8

ε(xj)

72
+

ε(xj)

8
=

ε(xj)

4
.

We also know that the norm of h′j(x) is bounded by Mj as was indicated when stating the properties
of the partition of unity. This fact together with these previous computations allow us to conclude
that

||Dg(x)−Df(x)|| ≤
n
∑

j=1

Mj

(

ε(xj)

2j+3Mj
+

ε(xj)2rj
2j+4Mj

)

+

n
∑

j=1

hj(x)

(

ε(xj)

4

)

≤

≤
n
∑

j=1

ε(xj)

2j+2
+

n
∑

j=1

hj(x)
ε(xj)

4
≤

ε(x)

2
+

ε(x)

2
= ε(x)

for every x ∈ U . We have then proved (2) of Theorem 3.1.

Let us focus now on studying the critical set of points of g.
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Use Claim 3.5 to choose a vector x ∈ U for which there exist numbers n, k1, . . . , kn and a neighbourhood
V = Vx ⊂ B(xn, rn) such that (i) and (ii) of the claim hold. Define also

ñ := max{n, k1, . . . , kn}.

Take (t1, . . . , td) ∈ R
d and y ∈ V . Our goal is to find a vector v ∈ E such that Dg(y)(v) = (t1, . . . , td).

Once we prove this we will get (3) of Theorem 3.1.

With y ∈ V fixed, looking at the formula (3.7) of Claim 3.5, we are interested in the expression of the
bounded linear operators h′j(y),Dδj(y),Df(xj), Tj for j = 1, . . . , n. Let m = my be the least number

such that y ∈ B(xm, rm), that is hm(y) = 1 (observe that necessarily m ≤ n), then we write equation
(3.6) as

Dg(y) =

m
∑

j=1

h′j(y)
[

f(xj) +Df(xj)(y − xj)− δj(y) + Tj(y − xj)
]

+

m
∑

j=1

hj(y)
[

Df(xj)−Dδj(y) + Tj

]

.

We want to find a vector v ∈ E for which






















h′j(y)(v) = 0 for every 1 ≤ j ≤ m,

Dδj(y)(v) = (0, . . . , 0); for every 1 ≤ j ≤ m,
Df(xj)(v) = (Df1(xj)(v), . . . ,Dfd(xj)(v)) = (0, . . . , 0), for every 1 ≤ j ≤ m,
Tj(v) = (0, . . . , 0) for every 1 ≤ j < m,
hm(y)Tm(v) = Tm(v) = (t1, . . . , td).

Let us pay attention to the vectors y − xj and y − Pi−1(y), for 1 ≤ j ≤ m and 1 ≤ i ≤ ñ. For
simplicity let us rename these vectors as {z1, . . . , zk0}. Each of these elements zk, 1 ≤ k ≤ k0, belongs

to some ball B(xk
′

, 2rk′) (for each k we associate a unique k′, not necessarily equal to k). So by
using property (iv) from the beginning of the proof there exists a finite number of continuous linear
functionals {Lk′(1), . . . , Lk′(lk′ )

} and a C1 function γk′ : R
lk′ → R such that

||zk|| = γk′(Lk′(1)(y), . . . , Lk′(lk′ )
(y)).

We intend to take a vector v ∈
⋂lk′

j=1Ker Lk′(j), so that D|| · ||(zk)(v) = 0 for every k = 1, . . . , k0.
For every i = 1, . . . , d, let us introduce the finite set of functionals

Ai :={e∗1, . . . , e
∗
ñ} ∪ {Df j(x1), . . . ,Df j(xm) : 1 ≤ j ≤ d} ∪ {Lk′(1), . . . , Lk′(lk′ )

: 1 ≤ k ≤ k0}∪

∪ {T j
1 , . . . , T

j
m−1 : 1 ≤ j ≤ d} ∪ {T j

m : 1 ≤ j ≤ d, j 6= i}.

By the definition of T i
m we have that T i

m /∈ span (Ai), which is equivalent to saying that
⋂

a∗∈Ai
Ker a∗  

Ker T i
m. Therefore there exists an element wi ∈ E such that T i

m(wi) 6= 0 and a∗(wi) = 0 for every
a∗ ∈ Ai.

For every i = 1, . . . , d, take vi = tiwi

T i
m(wi)

and define v := v1 + · · · + vd, so we have

Tm(v) = (T 1
m(v), . . . T d

m(v)) = (T 1
m(v1), . . . T d

m(vd)) = (t1, . . . , td).

Moreover, D||·||(y−xj)(v) = 0 for every 1 ≤ j ≤ m, D||·||(y−Pi−1(y))(v) = 0 for every 1 ≤ i ≤ ñ, and
Df(xj)(v) = (Df1(xj)(v), . . . ,Dfd(xj)(v)) = (0, . . . , 0) for every 1 ≤ j ≤ m. Furthermore, writing v
in coordinates, v =

∑∞
j=1 vjej we have that v1 = · · · = vñ = 0.

Recall that hj(y) = θj(||y − xj ||)
∏

k<j(1− θk(||y − xk||)), so

h′j(y)(·) =

j
∑

k=1

γk,j(y)D|| · ||(y − xk)(·),
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where γk,j : E → R are C1 functions. Hence with our choice of v we have h′j(y)(v) = 0 for every
1 ≤ j ≤ m.
On the other hand, looking at formula (3.7) of Claim 3.5, we also get Dδj(v) = 0 for every 1 ≤ j ≤ m.

Finally we also have Tj(v) = (T 1
j , . . . , T

d
j (v)) = (0 . . . , 0) for every j < m, because T 1

j , . . . , T
d
j ∈

⋂d
i=1 Ai

for every j < m.
Putting all these facts together, we have proved that Dg(y)(v) = (t1, . . . , td) and consequently the
critical set of points of g is empty.

�

3.2. Proof of Theorem 3.2.

The essence of the proof will be close to the one of the previous subsection. However there are some
important changes. Here we do not rely on a norm that locally depends on finitely many coordinates,
but on the property of the basis of being 1-suppression unconditional, which will provide us with the
necessary tools to approximate the function f and its derivative f ′ by another function with a small
critical set of points.

Proof of Theorem 3.2. E has a separable dual, so it does not contain copies of l1 and since it has
an unconditional basis, by [17, Theorem 1.c.9] we know that the basis is also shrinking, that is,
span{e∗n : n ∈ N} = E∗.
Using the openness of U , the continuity of ε and Df , and the facts that span{en : n ∈ N} = E and
span{e∗n : n ∈ N} = E∗, we find a covering

⋃

j=1

B(xj, rj) = U

of U and continuous linear functionals Fj : E → Rd for every j ∈ N such that:

(i) B(xj, 4rj) ⊂ U with rj ≤ 1 for every j ∈ N.

(ii) ε(x) ≥ ε(xj)
2 for all x ∈ B(xj , 2rj).

(iii) ||Df(x)−Df(xj)|| ≤ ε(xj)
(Ku)2144

for every x ∈ B(xj, 4rj).

(iv) ||Fj −Df(xj)|| ≤ ε(xj)
(Ku)2144

.

(v) For every j ∈ N,
{

xj =
∑Nj

i=1 αi,jei,

Fj = (F 1
j , . . . , F

d
j ) = (

∑Nj

i=1 β
1
i,je

∗
i , . . . ,

∑Nj

i=1 β
d
i,je

∗
i ).

for some α1,j, . . . , αNj ,j, β
q
1,j , . . . , β

q
Nj ,j

∈ R, 1 ≤ q ≤ d, where N1 ≤ N2 ≤ . . . is an increasing

sequence of natural numbers. Note that we allow some αi,j or βq
i,j to be null.

At this point we proceed exactly as in the previous subsection, defining the C1 partition of unity
{hj}j≥1 subordinate to {B(xj , 2rj)}j≥1, and also the constants M̃k and Mk. We also apply Lemma
3.3, exactly in the same way as before, but now to the function f1(x) = f(xj)+Fj(x−xj)− f(x) and

the constants ε(xj)
2j+3Mj

and ε(xj)
(Ku)272

for ε and η respectively, obtaining δj = f ◦Ψj.

We define finally

(3.8) g(x) :=

∞
∑

j=1

hj(x)(f(x
j) + Fj(x− xj)− δj(x) + Tj(x− xj)),

where Tj : E → Rd is a continuous linear surjective operator that will be defined in the following
paragraph.
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Choose a family of pairwise disjoint subsets {In}n≥1 of natural numbers such that each In ⊂ N has
infinite elements and, if we denote I =

⋃

n≥1 In, then N \ I is infinite. Write also In = I1n ∪ · · · ∪ Idn
as a pairwise disjoint union of sets, each of them having again infinite elements. For every j ∈ N and
i = 1, . . . , d we choose T i

j ∈ E∗ satisfying that

T i
j ∈ span{e∗n : n ∈ Iij} \ span{e

∗
n : n ∈ Iij}.

Define Tj := (T 1
j , . . . , T

d
j ) and also assume with no loss of generality that

||Tj || ≤ ε(xj)M−1
j 2−j−4 ≤

ε(xj)

8
.

Following the computation made for proving Theorem 3.1 (1) in the previous subsection, we can check
that for every x ∈ U ,

||g(x)− f(x)|| = ||
∞
∑

j=1

hj(x)(f(x
j)−Fj(x− xj)− δj(x) + Tj(x− xj)− f(x))|| ≤ ε(x)

n
∑

j=1

hj(x) = ε(x),

which proves (1).
To analyze the derivative of g and its set of critical points in order to show (2) and (3) we also have
at our disposal the following.

Claim 3.6. For every x ∈ U there exist n, k1, . . . , kn ∈ N and a neighbourhood Vx = V ⊂ B(xn, rn)
of x such that:

(i) For every y ∈ B(xn, rn),

(3.9) g(y) :=
n
∑

j=1

hj(y)(f(x
j) + Fj(y − xj)− δj(y) + Tj(y − xj)), and

(3.10) Dg(y) =
n
∑

j=1

h′j(y)
[

f(xj) + Fj(y − xj)− δj(y) + Tj(y − xj)
]

+
n
∑

j=1

hj(y) [Fj −Dδj(y) + Tj ] .

(ii) For every y ∈ V and 1 ≤ j ≤ n, Dδj(y)(v) = Df(Ψj(y)) ◦ (DΨj(y)(v)) has the form

(3.11) Df(Ψj(y)) ◦







kj
∑

n=1

[

ajn(y)D|| · ||(y − Pn−1(y))(v − Pn−1(v))yn + ξjn(y)vn
]

en







.

Proof. Follow the proof of Claim 3.5. �

Using equation (3.10) of Claim 3.6, a straightforward calculation as in the previous subsection gives

||Dg(x) −Df(x)|| ≤
n
∑

j=1

||h′j(x)|| (||f(x
j) + Fj(x− xj)− δj(x)− f(x)||+ ||Tj(x− xj)||)+

+
n
∑

j=1

hj(x)
(

||Fj −Df(xj)||+ ||Df(xj)−Df(x)||+ ||Dδj(x)|| + ||Tj ||
)

≤ ε(x)

for every x ∈ U . We have thus proved (2) of Theorem 3.2.

It remains to study the critical set of g.
Take a vector x ∈ U . By Claim 3.6 there exist numbers n, k1, . . . , kn and a neighbourhood V = Vx ⊂
B(xn, rn) such that (i) and (ii) of the claim hold. Define also

ñ := max{n,Nn, k1, . . . , kn}.
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Let us divide the set N \ I = J in another disjoint infinite family of subsets {Jn}n≥1, each of them
having infinite elements. Consider also the set

(3.12) A =
{

y − xj, y − Pi−1(y) : j = 1, . . . , n i = 1 . . . , ñ
}

,

and define k0 := dim({span(A)}) ≤ n+ ñ.
In order to establish 3 of Theorem 3.2 our goal is to show that if

y ∈ V \

(

k0
⋃

k=1

span{ej : j = 1, . . . , ñ or j ∈ N \ Jk}

)

,

and t = (t1, . . . , td) ∈ R then there exists a vector v ∈ E such that Dg(y)(v) = t. Indeed for every
x ∈ U we would have found a neighbourhood Vx = V such that

Cg ∩ V ⊆

(

k0
⋃

k=1

span{ej : j = 1, . . . , ñ or j ∈ N \ Jk}

)

.

Fix y ∈ V \
(

⋃k0
k=1 span{ej : j = 1, . . . , ñ or j ∈ N \ Jk}

)

and look at the formula of Dg(y) given by

property (i) of Claim 3.6. We are interested in the expression of the continuous linear operators
h′j(y), Fj ,Dδj(y), Tj for j = 1, . . . , n. Let m = my be the least number such that y ∈ B(xm, rm), that

is hm(y) = 1 (observe that necessarily m ≤ n), then we may write equation (3.10) as

Dg(y) =
m
∑

j=1

h′j(y)
[

f(xj) + Fj(y − xj)− δj(y) + Tj(y − xj)
]

+
m
∑

j=1

hj(y) [Fj −Dδj(y) + Tj] .

We need to find a vector v ∈ E for which























h′j(y)(v) = 0 for every 1 ≤ j ≤ m,

Dδj(y)(v) = (0, . . . , 0); for every 1 ≤ j ≤ m,
Fj(v) = (F 1

j (v), . . . , F
d
j (v)) = (0, . . . , 0), for every 1 ≤ j ≤ m,

Tj(v) = (0, . . . , 0) for every 1 ≤ j < m,
hm(y)Tm(v) = Tm(v) = (t1, . . . , td).

By definition of y there exist j(1), . . . , j(k0) > ñ such that j(1) ∈ J1, . . . , j(k0) ∈ Jk0 and yj(1), . . . , yj(k0) 6=

0. Furthermore the vectors y−xj have their j(1), . . . , j(k0)
th-coordinates non-null because we had xj ∈

span{e1, . . . , eNj
} ⊆ span{e1, . . . , eNn} ⊆ span{e1, . . . , eñ}. This implies that the j(1), . . . , j(k0)

th-
coordinates of all the vectors in the set A (see expression (3.12)) are non-null.
We will need the following:

Fact 3.7. For every w =
∑∞

j=1wjej ∈ E \ {0} and every j0 ∈ N we have that

wj0 6= 0 =⇒ D|| · ||(w)(ej0) 6= 0.

Proof. This is a consequence of the facts that the norm is strictly convex and the basis {en}n∈N is
1-suppression unconditional. For details see for example [3, Fact 4.5]. �

Consequently we can assure that

ej(k) /∈
⋂

a∈A

Ker(D|| · ||(a))
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for every 1 ≤ k ≤ k0. For every i = 1, . . . , d, let us define Ei
(m,ñ) = span{en : n > ñ and n ∈ J ∪ Iim}.

Since k0 = codim
(
⋂

a∈A KerD|| · ||(a)
)

, we can write

E =

(

⋂

a∈A

KerD|| · ||(a)

)

⊕ span{ej(1), . . . , ej(k0)},

so

Ei
(m,ñ) =

(

⋂

a∈A

KerD|| · ||(a) ∩ Ei
(m,ñ)

)

⊕ span{ej(1), . . . , ej(k0)}.

On the other hand ej(1), . . . , ej(k0) ∈ Ker T i
m for every i = 1, . . . , d. In particular we can find an

element

wi ∈

(

⋂

a∈A

KerD|| · ||(a) ∩ Ei
(m,ñ)

)

\
(

Ker T i
m

)

.

Otherwise we would have
(

⋂

a∈A KerD|| · ||(a) ∩ Ei
(m,ñ)

)

⊂ Ker T i
m which implies that T i

m(wi) = 0

for every w ∈ Ei
(m,ñ), a contradiction with the definition of T i

m.

Let us now mix all these previous ingredients together. The vector v we are looking for is

v :=
d
∑

i=1

tiw
i

T i
m(wi)

.

We obviously have Tm(v) = (T 1
m(v), . . . , T d

m(v)) = (t1, . . . , td), so it remains to check that h′j(v) = 0,

that Dδj(v) = Fj(v) = (0, . . . , 0) for every j = 1, . . . ,m and that Tj(v) = (0, . . . , 0) for every j < m.

For the h′j , recall that hj(y) = θj(||y − xj ||)
∏

k<j(1− θk(||y − xk||)). So we have that

h′j(y)(·) =

j
∑

k=1

γk,j(y)D|| · ||(y − xk)(·),

where γk,j : E → R are C1 functions. The elements y − xj belong to the set A so it is clear that
h′j(v) = 0 for every 1 ≤ j ≤ m.

For the Dδj , using (3.11) and the facts that the elements y−Pi−1(y) belong to the set A and that the
coordinates v1, . . . , vñ = 0, we conclude that Dδj(v) = 0 for every 1 ≤ j ≤ m.
The fact that Fj(v) = (0, . . . , 0) is clear since

Fj = (F 1
j , . . . , F

d
j ) = (

Nj
∑

i=1

β1
i,je

∗
i , . . . ,

Nj
∑

i=1

βd
i,je

∗
i ),

Nj ≤ Nn ≤ ñ for every j = 1 . . . ,m and v1, . . . , vñ = 0.
Finally we also have Tj(v) = (0, . . . , 0) for every j < m, because v ∈ span{en : n ∈ J ∪ Im} and
(J ∪ Im) ∩ Ij = ∅ for every j < m.
We have proved that Dg(y)(v) = (t1 . . . , td) and consequently the critical set of points of g is locally
contained in a finite union of complemented subspaces of infinite codimension in E. �

4. Main result

Theorems 3.1 and 3.2 above give us an approximation of a C1 function f : E → Rd and of its derivative
by another function g : E → Rd which has a nice critical set of points Cg. In the case of Theorem 3.1
the term nice means we are in the best situation where Cg = ∅. And in the case of Theorem 3.2 the
term nice will mean for us that the closed set Cg ⊆ U has the ε-strong C1 extraction property with
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respect to E, that is, there exists a C1 diffeomorphism h : E → E \ Cg such that h is the identity
outside U and h refines a given open cover G of E. With these functions at our disposal, and with the
help of Proposition 2.1 we can prove our main Theorems 1.2 and 1.3.

Proofs of Theorems 1.2 and 1.3. Firstly we choose another C1 function δ : E → [0,∞) such that
δ−1(0) = E \ U and δ(x) ≤ ε(x) for every x ∈ E. This is doable because in every separable Banach
space with a C1 equivalent norm, every closed set is the zero set of a C1 function 1.
By Theorems 3.1 or 3.2 there exists a C1 function g : U → Rd such that

(1) ||f(x)− g(x)|| ≤ δ(x)
2 for every x ∈ U ;

(2) ||Df(x)−Dg(x)|| ≤ δ(x)
2 for every x ∈ U ;

(3) Cg = ∅ in the case of Theorem 1.2, or Cg is locally contained in subspaces of infinite codimension
in E in the case of Theorem 1.3.

Let us extend now this function g : U → Rd to the whole space E by letting it be equal to f outside
U . We keep calling this extension by g and it is important to note that this function is still of class
C1. The only points where this fact could not be clear are those from the boundary of U . However
the Fréchet derivative of g at those points x ∈ ∂U exists and is Df(x) because

lim sup
h→0

||g(x+ h)− g(x) −Df(x)(h)||

||h||
≤ lim sup

h→0

||g(x + h)− f(x+ h) + f(x)− g(x)||

||h||
+

+ lim sup
h→0

||f(x+ h)− f(x)−Df(x)(h)||

||h||
=

= lim sup
h→0

||g(x + h)− f(x+ h)||

||h||
+ 0 ≤

≤ lim
h→0

δ(x+ h)− δ(x)

||h||
= 0.

Here we are using the facts that f is Fréchet differentiable in ∂U and that f(x) = g(x) and δ(x) =
δ′(x) = 0 for every x ∈ ∂U .
We have just shown that g is Fréchet differentiable on E, but it remains to show that it is C1.
Straightforwardly for every x ∈ ∂U ,

lim
y→x,y /∈U

||Dg(y)−Df(x)|| = lim
y→x,y /∈U

||Df(y)−Df(x)|| = 0

and

lim sup
y→x,y∈U

||Dg(y) −Df(x)|| ≤ lim
y→x,y∈U

(||Dg(y) −Df(y)||+ ||Df(y)−Df(x)||) ≤ lim
y→x,y∈U

δ(y) = 0,

by the continuity of Df , property (2) of Theorems 3.1 and 3.2 and because δ−1(0) = E \ U .

(1) Case of Theorem 1.2: Define ϕ = g and we obtain that

||ϕ(x) − f(x)|| , ||Dϕ(x)−Df(x)|| ≤ δ(x) ≤ ε(x)

for all x ∈ E and ϕ(x) = f(x) for every x ∈ E \ U . Besides, it is clear that ϕ does not have
any critical point.

1Wells proved in his thesis [23] that if a separable Banach space E admits a C1 smooth Lipschitz bump function, that
is a C1 non-null function λ : E → [0,∞) with bounded derivative and bounded support, then every closed set X of E
is the zero set of some C1 function. Since a Banach space admitting an equivalent C1 norm has a C1 smooth Lipschitz
bump function our statement is correct.
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(2) Case of Theorem 1.3: We will extract the critical set Cg in the following way. Observe
that Cg is a closed set included in U (note that Cg ∩ ∂U = ∅ because Dg(x) = Df(x) is
surjective for every x ∈ ∂U), and by (3) of Theorem 3.2 is locally contained in a finite union
of complemented subspaces of infinite codimension. Using Proposition 2.1, there exists a C1

diffeomorphism h : E → E \ Cg which is the identity outside U and is limited by the open
cover G that we next define. Recall that we have

||f(x)− g(x)|| ≤ δ(x)/2

for all x ∈ E. Since g and δ are continuous, for every z ∈ E there exists ηz > 0 so that if
x, y ∈ B(z, ηz) then ||g(y) − g(x)|| ≤ δ(z)/4 ≤ δ(x)/2. We set G = {B(x, ηx) : x ∈ E}.
Finally, let us define

ϕ = g ◦ h.

Since h is limited by G we have that, for any given x ∈ E, there exists z ∈ E such that
x, h(x) ∈ B(z, ηz), and therefore |g(h(x)) − g(x)| ≤ δ(z)/4, that is, we have that

||g(x) − ϕ(x)|| ≤ δ(z)/4 ≤ δ(x)/2.

We obtain that

||f(x)− ϕ(x)|| ≤ δ(x) ≤ ε(x)

for all x ∈ E. Furthermore h is the identity outside U so ϕ(x) = g(x) = f(x) for every
x ∈ E \U . Besides, it is clear that ϕ does not have any critical point: since h(x) /∈ Cg, we have
that the linear map Dg(h(x)) is surjective for every x ∈ E, and Dh(x) : E → E is a linear
isomorphism, so Dϕ(x) = Dg(h(x)) ◦Dh(x) is surjective for every x ∈ E.

�

The following corollary should be compared with [6, Theorem 1.1], [4, Theorem 1.5] or [7, Corollary
8]. These results are related with the failure of Rolle’s theorem in infinite-dimensional Banach spaces.

Corollary 4.1. Let E be a Banach space satisfying the conditions of Theorem 1.2 (in particular
E = c0). Then for every open set U there exists a C1 bump function λ : E → [0,∞) whose support is
the closure of U and does not have any critical point in U .

Remark 4.2. We could have gotten that the approximating function ϕ is of class Ck (where k is the
order of smoothness of the space E) inside the open set U . To achieve this one should get a version of
Lemma 3.3 exactly as in [5, Lemma 5]. Doing this we would get from that lemma that the functions
δj(x) are of class Ck. Hence the approximating function g from Theorems 3.1 and 3.2,

g(x) =
∞
∑

j=1

hj(x)(f(x
j) + Fj(x− xj)− δj(x) + Tj(x− xj))

is a function of class Ck on U .
Moreover, we can find an extracting diffeomorphism h : E → E \ Cg of class Ck by Proposition 2.1,

hence ϕ = g ◦ h will be a Ck mapping on U .

Remark 4.3.

(1) The space c0 satisfies the conditions of Theorem 1.2. The supremum norm in c0 locally depends
on finitely many coordinates, so applying [13, Theorem 1] one gets the existence of an equivalent
C∞ smooth norm on c0 that locally depends on finitely many coordinates. The space C(K),
with K a metrizable countable compactum, also satisfies the conditions of Theorem 1.2.
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(2) The space lp satisfies the conditions of Theorem 1.3. For every 1 < p < ∞ the canonical norm
of lp is

||x|| = ||
∞
∑

n=1

xnen|| =

(

∞
∑

n=1

|xn|
p

)1/p

.

With this expression it is easy to check that the basis is in fact 1-suppression unconditional
with unconditional constant Ku = 1. It is also a norm of class Ck, where k is defined as follows:
k = ∞ if p = 2n, n ∈ N; k = 2n+ 1 if p = 2n+ 1, n ∈ N, and k is equal to the integer part of
p if p /∈ N.
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[13] P. Hajek, Smooth norms that depend locally on finitely many coordinates, Proc. Amer. Math. Soc. 123 (1995),
3817–3821.

[14] P. Hajek and M. Johanis, Smooth approximations without critical points, Cent. Eur. J. Math. 1 (2003), no. 3,
284–291.

[15] P. Hajek and M. Johanis, Smooth analysis in Banach spaces, De Gruyter Series in Nonlinear Analysis and Applica-
tions, Berlin/Boston 2014.

[16] I. Kupka, Counterexample to the Morse-Sard theorem in the case of infinite-dimensional manifolds, Proc. Amer.
Math. Soc. 16 (1965), 954–957.

[17] J. Lindenstrauss, and L. Tzafriri, Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York, 1977.

[18] A. Morse, The behavior of a function on its critical set, Annals of Math. 40 (1939), 62–70.
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