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STRONG BV -EXTENSION AND W 1,1-EXTENSION DOMAINS

MIGUEL GARCÍA-BRAVO AND TAPIO RAJALA

Abstract. We show that a bounded domain in a Euclidean space is a W
1,1-extension

domain if and only if it is a strong BV -extension domain. In the planar case, bounded and
strong BV -extension domains are shown to be exactly those BV -extension domains for which
the set ∂Ω \

⋃
i
Ωi is purely 1-unrectifiable, where Ωi are the open connected components of

R
2 \ Ω.
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1. Introduction

Let Ω ⊂ R
n be a domain for some n ≥ 2. For every 1 ≤ p ≤ ∞, we define the Sobolev

space W 1,p(Ω) to be

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω;Rn)},
where ∇u denotes the distributional gradient of u. We equip this space with the non-
homogeneous norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

We say that Ω is aW 1,p-extension domain if there exists an operator T : W 1,p(Ω) → W 1,p(Rn)
and a constant C > 0 so that

‖Tu‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω)
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and Tu|Ω = u for every u ∈W 1,p(Ω). We denote the minimal constant C above by ‖T‖. We
point out that by the results from [10, 21], for p > 1 one can always assume the operator T
to be linear, and also for the case of bounded simply connected planar domains if p = 1 by
[16]. It is not yet known if this is the case for general domains when p = 1.

It is well-known from the works of Calderón and Stein [5, 23] that Lipschitz domains are
W 1,p-extension domains for every p ≥ 1. Moreover, Jones showed in [12] that every uniform
domain Ω ⊂ R

n is a W 1,p-extension domain for all p ≥ 1. However, these conditions are not
necessary for a domain to be a Sobolev extension domain. For bounded simply connected
planar domains a geometric characterization of Sobolev extension domains by means of a
curve condition has been given in the works [22, 15, 16]. Namely, for the W 1,1 case we have
the following: A bounded planar simply connected domain Ω is a W 1,1-extension domain if
and only if for every x, y ∈ Ωc there exists a curve γ ⊂ Ωc connecting x and y with

ℓ(γ) ≤ C|x− y|, and H
1(γ ∩ ∂Ω) = 0. (1.1)

A typical example of a simply connected planar domain Ω which is not a W 1,p-extension
domain for any p ≥ 1 is the slit disk D = {(x, y) ∈ R

2 : x2+y2 < 1}\([0, 1)×{0})}. However,
by the results of [14], knowing that the complement is quasiconvex is enough to ensure that
D is a BV -extension domain.

Recall that

BV (Ω) = {u ∈ L1(Ω) : ‖Du‖(Ω) <∞}
is the space of functions of bounded variation where

‖Du‖(Ω) = sup

{∫

Ω
udiv(v) dx : v ∈ C∞

0 (Ω;Rn), |v| ≤ 1

}

denotes the total variation of u on Ω. We endow this space with the norm ‖u‖BV (Ω) =
‖u‖L1(Ω) + ‖Du‖(Ω). Note that ‖Du‖ is a Radon measure on Ω that is defined for every set
F ⊂ Ω as

‖Du‖(F ) = inf{‖Du‖(U) : F ⊂ U ⊂ Ω, U open}.
We say that Ω is a BV -extension domain if there exists a constant C > 0 and a (not

necessarily linear) extension operator T : BV (Ω) → BV (Rn) so that Tu|Ω = u and

‖Tu‖BV (Rn) ≤ C‖u‖BV (Ω)

for all u ∈ BV (Ω) and where C > 0 is an absolute constant, independent of u. Let us point
out that Ω being a W 1,1-extension domain always implies that it is also a BV -extension
domain (see [14, Lemma 2.4]).

Our first main result is the characterization of bounded W 1,1-extension domains in terms
of strong extendability of BV -functions, or equivalently, in terms of strong extendability of
sets of finite perimeter. The equivalence between strong extendability of BV -functions and
strong extendability of sets of finite perimeter is inspired by the work of Mazy’a and Burago
[4] (see also [20, Section 9.3]). They showed that for all u ∈ L1

loc(Ω) with finite total variation
we may find an extension Tu ∈ L1

loc(R
n) with ‖D(Tu)‖(Rn) ≤ C‖Du‖(Ω), for some constant

C > 0, if and only if any set E ⊂ Ω of finite perimeter in Ω admits an extension Ẽ ⊂ R
n

satisfying Ẽ ∩ Ω = E and P (Ẽ,Rn) ≤ CP (E,Ω) where C > 0 is some constant. Recall that
a Lebesgue measurable subset E ⊂ R

n has finite perimeter in Ω if χE ∈ BV (Ω), where χE

denotes the characteristic function of the set E. We set P (E,Ω) = ‖DχE‖(Ω) and call it the
perimeter of E in Ω. If a set E does not have finite perimeter in Ω we set P (E,Ω) = ∞.
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Before stating our characterization, we introduce the terminology of strong extendability,
following [11] and [17].

Definition 1.1 (Strong BV -extension domain). A domain Ω ⊂ R
n is called a strong BV -

extension domain if there exists a constant C > 0 so that for any u ∈ BV (Ω) there exists
Tu ∈ BV (Rn) with Tu|Ω = u, ‖Tu‖BV (Rn) ≤ C‖u‖BV (Ω), and ‖D(Tu)‖(∂Ω) = 0.

In the spirit of Definition 1.1, we define the analogous concept for sets of finite perimeter.

Definition 1.2 (Strong extension property for sets of finite perimeter). A domain Ω ⊂ R
n is

said to have the strong extension property for sets of finite perimeter if there exists a constant

C > 0 so that for any set E ⊂ Ω of finite perimeter in Ω there exists a set Ẽ ⊂ R
n such that

(PE1) Ẽ ∩ Ω = E modulo measure zero sets,

(PE2) P (Ẽ,Rn) ≤ CP (E,Ω), and

(PE3) H
n−1(∂M Ẽ ∩ ∂Ω) = 0.

With the above definitions we can state our first main result.

Theorem 1.3. Let Ω ⊂ R
n be a bounded domain. Then the following are equivalent:

(1) Ω is a W 1,1-extension domain.
(2) Ω is a strong BV -extension domain.
(3) Ω has the strong extension property for sets of finite perimeter.

Our main motivation behind this theorem is to understand better the geometry of W 1,1-
extension domains. From Theorem 1.3 we see that for a bounded W 1,1-extension domain,
except for a purely (n−1)-unrectifiable set, the boundary consists of points where the domain
has density at most 1/2. See Section 4 for the proof of this. In the same section we give
an example showing that the above density bound is not sufficient to imply that a bounded
BV -extension domain is a W 1,1-extension domain, even in the plane. Another corollary of
Theorem 1.3 is that for a bounded W 1,1-extension domain, again up to a purely (n − 1)-
unrectifiable set, the boundary consists of points that are boundary points also for some
component of the interior of the complement of the domain. In Section 4 we provide also
an example showing that in R

3 this property does not characterize W 1,1-extension domains
among bounded BV -extension domains. However, our second main result states that in the
planar case this is true.

Theorem 1.4. Let Ω ⊂ R
2 be a bounded BV -extension domain. Then Ω is a W 1,1-extension

domain if and only if the set

∂Ω \
⋃

i∈I
Ωi

is purely 1-unrectifiable, where {Ωi}i∈I are the connected components of R2 \Ω.
Let us mention that Theorem 1.4 recovers partly the theorems in [16]. Namely, it imme-

diately follows that Jordan BV -extension domains are W 1,1-extension domains since the set
required in Theorem 1.4 to be purely unrectifiable, is indeed empty. The curve characteri-
zation (1.1) also follows quite easily from Theorem 1.4 using a small observation recorded in
[16]. Let us briefly sketch this. Since aW 1,1-extension domain is known to be a BV -extension
domain, its complement is quasiconvex. Then, a quasiconvex curve between two points in
the complement can be modified to intersect the boundaries of each Ωi at most twice (see
Lemma 5.3). Theorem 1.4 now says that the rest of the curve intersects ∂Ω in a H

1-measure
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zero set, giving condition (1.1). Conversely, (1.1) implies quasiconvexity, and hence that Ω is
a BV -extension domain. For a simply connected Ω, we can connect every pair of components
Ωi and Ωj with a curve satisfying (1.1). Since the set

∂Ω \
⋃

i∈I
Ωi.

is contained in countably many of such curves by [16, Lemma 4.6], we see that it is purely
1-unrectifiable.

Let us point out, however, that the extension operator that we construct in Theorem 1.4,
is not always linear. One of the main points of [16] was to construct a linear extension
operator. At the moment we do not see how our construction could be modified to give a
linear extension operator. Still, the general smoothing operator we use for proving Theorem
1.3 (and Theorem 1.4) immediately gives the following.

Corollary 1.5. Suppose Ω ⊂ R
n is a bounded strong BV -extension domains where the ex-

tension operator is linear. Then there exists a linear W 1,1-extension operator from W 1,1(Ω)
to W 1,1(Rn).

Although not strictly used in our proofs, we include the following result for future use:
Every BV -extension domain Ω ⊂ R

n satisfies the measure density condition, that is, there
exists a constant c > 0 so that for every x ∈ Ω and r ∈ (0, 1] we have |B(x, r)∩Ω| ≥ crn. One
may find this result in Section 2.2. The same conclusion for W 1,p -extension domains with
1 ≤ p <∞ is also true and was already shown in [10].

2. Preliminaries

When making estimates, we often write the constants as positive real numbers C which
may vary between appearances, even within a chain of inequalities. These constants normally
only depend on the dimension of the underlying space R

n unless otherwise stated.
For any point x ∈ R

n and radius r > 0 we denote the open ball by

B(x, r) = {y ∈ R
n : |x− y| < r}.

More generally, for a set A ⊂ R
n we define the open r-neighbourhood as

B(A, r) =
⋃

x∈A
B(x, r).

We denote by |E| the n-dimensional outer Lebesgue measure of a set E ⊂ R
n. For any

Lebesgue measurable subset E ⊂ R
n and any point x ∈ R

n we then define the upper density
of E at x as

D(E, x) = lim sup
rց0

|E ∩B(x, r)|
|B(x, r)| ,

and the lower density of E at x as

D(E, x) = lim inf
rց0

|E ∩B(x, r)|
|B(x, r)| .

If D(E, x) = D(E, x), we call the common value the density of E at x and denote it by
D(E, x). The essential interior of E is then defined as

E̊M = {x ∈ R
n : D(E, x) = 1},
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the essential closure of E as

E
M

= {x ∈ R
n : D(E, x) > 0},

and the essential boundary of E as

∂ME = {x ∈ R
n : D(E, x) > 0 and D(Rn \ E, x) > 0}.

As usual, Hs(A) will stand for the s-dimensional Hausdorff measure of a set A ⊂ R
n obtained

as the limit

H
s(A) = lim

δց0
H

s
δ(A),

where H
s
δ(A) is the s-dimensional Hausdorff δ-content of A defined as

H
s
δ(A) = inf

{ ∞∑

i=1

diam (Ui)
s : A ⊂

∞⋃

i=1

Ui, diam (Ui) ≤ δ

}
.

We say that a set H ⊂ R
n is m-rectifiable, for some m < n, if there exist countably many

Lipschitz maps fj : R
m → R

n so that Hm(H \⋃j fj(R
m)) = 0. A set H will be called purely

m-unrectifiable if for every Lipschitz map f : Rm → R
n we have

H
m(H ∩ f(Rm)) = 0.

Observe that by Rademacher’s theorem one can deduce that if f : Rm → R
n is Lipschitz,

then there are countably many sets Ei ⊂ R
m on which f is bi-Lipschitz and such that

H
m(f(Rm \⋃iEi)) = 0.
Moreover, it easily follows that if H ⊂ R

n is not m-purely unrectifiable, then there exists
a Lipschitz map f : Rm → R

n−m so that up to a rotation, the set

H ∩Graph(f)

has positive H
m-measure, where Graph(f) = {(x, f(x)) : x ∈ R

m}.
By a dyadic cube we refer to Q = [0, 2−k]n + j ⊂ R

n for some k ∈ Z and j ∈ 2−k
Z
n. We

denote the side-length of such dyadic cube Q by ℓ(Q) := 2−k.

2.1. BV -functions and sets of finite perimeter. Let us recall some basic results related
to BV -functions and sets of finite perimeter. For a more detailed account, we refer to the
books [2, 6, 8].

Differently to this paper, Mazy’a and Burago’ (see [4] and also [20, Section 9.3]) considered
the space

BVl(Ω) = {u ∈ L1
loc(Ω) : ‖Du‖(Ω) <∞}

equipped with the seminorm ‖Du‖(Ω). This way they defined BVl-extension domains to
be those Ω ⊂ R

n for which just the total variation of the extension is controlled, that is,
whenever ‖D(Tu)‖(Rn) ≤ C‖Du‖(Ω). As we already explained in the introduction, they
proved that being a BVl-extension domain was equivalent to the fact that any set E ⊂ Ω

of finite perimeter in Ω admits an extension Ẽ ⊂ R
n satisfying only (PE1) and (PE2) from

Definition 1.2. Note however, that thanks to [14, Lemma 2.1] BVl-extension domains are
equivalent to BV extension domains if Ω is bounded.

When working with BV functions we will make use of the well-known (1, 1)-Poincaré in-
equality that we now state (see for instance [2, Theorem 3.44] for the proof).
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Theorem 2.1. Let Ω ⊂ R
n be an open bounded set with Lipschitz boundary. Then there

exists a constant C > 0 depending only on n and Ω so that for every u ∈ BV (Ω) we have
∫

Ω
|u(y)− uΩ| dy ≤ C‖Du‖(Ω).

In particular, there exists a constant C > 0 only depending on n so that if Q,Q′ ⊂ R
n are

two dyadic cubes with 1
4ℓ(Q

′) ≤ ℓ(Q) ≤ 4ℓ(Q′) and Ω = int(Q ∪Q′) connected, then for every
u ∈ BV (Ω), ∫

Ω
|u(y)− uΩ| dy ≤ Cℓ(Q)‖Du‖(Ω). (2.1)

We are using here the notation of the mean value integral of a function u on the set Ω as

uΩ =
1

|Ω|

∫

Ω
u(y) dy.

Let us record as well the coarea formula for BV functions. See for example [6, Section 5.5].

Theorem 2.2. Given a function u ∈ BV (Ω), the superlevel sets ut = {x ∈ Ω : u(x) > t}
have finite perimeter in Ω for almost every t ∈ R and

‖Du‖(F ) =
∫ ∞

−∞
P (ut, F ) dt

for every Borel set F ⊂ Ω. Conversely, if u ∈ L1(Ω) and
∫∞
−∞ P (ut,Ω) dt < ∞ then u ∈

BV (Ω).

An important result due to Federer [8, Section 4..5.11] tells us that a set E has finite
perimeter in Ω if and only ifHn−1(∂ME∩Ω) <∞. Moreover, thanks to De Giorgi’s pioneering
work [7] we can understand the structure of the boundary of sets of finite perimeter even
better. Namely, if E has finite perimeter in Ω then for every subset A ⊂ Ω,

‖DχE‖(A) = P (E,A) = H
n−1(∂ME ∩A)

and if E has finite perimeter in R
n then

∂ME = F ∪
⋃

n∈N
Kn

where H
n−1(F ) = 0 and Kn are compact subsets of C1 hypersurfaces. Furthermore, for any

set E with finite perimeter we have

D(E, x) = D(E, x) ∈ {0, 1/2, 1}
for Hn−1-almost every x ∈ R

n. Moreover, Hn−1(∂ME \ {x : D(E, x) = 1/2}) = 0, and hence
for Hn−1-almost every x ∈ ∂ME we have

D(E, x) =
1

2
.

Let us finally recall some terminology and results from [1]. A Lebesgue measurable set
E ⊂ R

n with |E| > 0 is called decomposable if there exist two Lebesgue measurable sets
F,G ⊂ R

n so that |F |, |G| > 0, E = F ∪G, F ∩G = ∅, and
P (E,Rn) = P (F,Rn) + P (G,Rn).

A set is called indecomposable if it is not decomposable. For example, any connected open
set E ⊂ R

n with H
n−1(∂ME) <∞ is indecomposable.



STRONG BV -EXTENSION AND W 1,1-EXTENSION DOMAINS 7

For any set E ⊂ R
n of finite perimeter we can always find a unique countable family of

disjoint indecomposable subsets Ei ⊂ E so that |Ei| > 0, P (E,Rn) =
∑

i P (Ei,R
n) and,

moreover,

H
n−1

(
E̊M \

⋃

i

E̊M
i

)
= 0.

For a proof of this result we refer to [1, Theorem 1].
In the particular case of R2, thanks to [1, Corollary 1] one can find a decomposition of sets

of finite perimeter into indecomposable sets whose boundaries are rectifiable Jordan curves,
except for a set of H1-measure zero. We will state this useful result in the last Section 5, in
Theorem 5.1.

2.2. Measure density condition for BV -extension domains. Nowadays it is a well-
known fact that all W 1,p-extension domains for 1 ≤ p < ∞ satisfy the measure density
condition (see [10]). Although we do not need this in our proofs, we record here the fact that
the same property holds for BV -extension domains. Let us remark that a measure density
condition for planar BVl-extension domains was proven in [14, Lemma 2.10]. However, the
proof does not seem to extend to domains in R

n. The method of proof we employ here follows
the same lines as [10] and can be adapted for BVl-extension domains as well.

Proposition 2.3. Let Ω ⊂ R
n be a BV -extension or a W 1,1-extension domain, then there

exists a constant c > 0, depending only on n and on the operator norm, so that for every
x ∈ Ω and r ∈ (0, 1] we have

|B(x, r) ∩ Ω| ≥ crn.

Proof. We will only make the proof for BV -extension domains. For W 1,1-extension domains
one can use the results from [10], or the fact that W 1,1-extension domains are BV -extension
domains. A proof of this fact can be found in [14, Lemma 2.4]. The reader will notice that
the key point will be to apply the Sobolev embedding theorem, which is both valid for W 1,1

and BV functions.
Let us denote r0 = r. By induction, we define for every i ∈ N the radius ri ∈ (0, ri−1) by

the equality

|Ω ∩B(x, ri)| =
1

2
|Ω ∩B(x, ri−1)| = 2−i|Ω ∩B(x, r0)|.

Since x ∈ Ω, we have that ri ց 0 as i→ ∞.
For each i ∈ N, consider the function fi : Ω → R

fi(y) =





1, for y ∈ B(x, ri) ∩ Ω,
ri−1−|x−y|
ri−1−ri

, for y ∈ (B(x, ri−1) \B(x, ri)) ∩ Ω,

0, otherwise.

Note that these functions belong to the class W 1,1(Ω), in particular they are BV functions.
We can estimate their BV -norms by

‖fi‖BV (Ω) = ‖fi‖L1(Ω) + ‖Dfi‖(Ω) =
∫

Ω
|f |+

∫

Ω
|∇fi|

≤ |B(x, ri−1) ∩ Ω|+ |ri − ri−1|−1|(B(x, ri−1) \B(x, ri)) ∩ Ω)|
≤ C|ri − ri−1|−12−i|Ω ∩B(x, r0)|.
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Call 1∗ = n
n−1 and denote by T : BV (Ω) → BV (Rn) the extension operator. By the Sobolev

inequality for BV functions (see [6, Theorem 5.10]) we know that

‖Tfi‖L1∗ (Rn) ≤ C‖D(Tfi)‖(Rn),

where C > 0 depends only on the dimension n. Hence we have the following chain of
inequalities

‖fi‖L1∗ (Ω) ≤ ‖Tfi‖L1∗(Rn) ≤ C‖D(Tfi)‖(Rn) ≤ C‖T‖ ‖fi‖BV (Ω).

We also have ∫

Ω
|fi(y)|1

∗

dy ≥ |B(x, ri) ∩ Ω| = 2−i|B(x, r0) ∩ Ω|,

and therefore

2−i|B(x, r0) ∩ Ω| ≤ C‖T‖1∗
(
|ri − ri−1|−12−i|Ω ∩B(x, r0)|

)1∗
.

Consequently,

ri−1 − ri ≤ C‖T‖2i(1/1∗−1)|Ω ∩B(x, r0)|1−1/1∗

= C‖T‖2−i/n|Ω ∩B(x, r0)|1/n.
By summing up all these quantities we conclude that

r = r0 =

∞∑

i=1

(ri−1 − ri) ≤ C‖T‖
∞∑

i=1

2−i/n|Ω ∩B(x, r)|1/n =
C‖T‖
21/n − 1

|Ω ∩B(x, r)|1/n.

This gives the claimed inequality. �

3. Equivalence of W 1,1-extension and strong BV -extension domains

This section is devoted to the proof of Theorem 1.3. The idea in going from a strong
BV -extension to a W 1,1-extension is to first extend the W 1,1-function from the domain as
a BV -function to the whole space and then mollify it in the exterior of the domain. In the
mollification process it is important to check that we do not change the function too much
near the boundary.

3.1. Whitney smoothing operator. In this subsection we prove existence of a suitable
smoothing operator from BV to W 1,1. For similar constructions we recommend to the reader
to have a look at [3, 9, 18].

Theorem 3.1. Let A ⊂ B ⊂ R
n be open subsets. There exist a constant C depending only

on the dimension n and a linear operator

SB,A : BV (B) →
{
u ∈ BV (B) : u|A ∈W 1,1(A)

}

so that for any u ∈ BV (B) we have SB,Au|B\A = u,

‖SB,Au‖BV (B) ≤ C‖u‖BV (B), (3.1)

and
‖D(SB,Au− u)‖(∂A) = 0, (3.2)

where SB,Au− u is understood to be defined in the whole R
n via a zero-extension. Moreover,

the operator SB,A is also bounded when acting from the space BVl(A) into the homogeneous
Sobolev space L1,1(A).
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Recall that L1,1(A) = {u ∈ L1
loc(A) : ∇u ∈ L1(A)} stands for the homogeneous Sobolev

space endowed with the seminorm ‖u‖L1,1(A) = ‖∇u‖L1(A).
Let us briefly explain how the operator SB,A is constructed. We first take a Whitney

decomposition of the open set A and a partition of unity based on it. The operator on a
BV -function u is then defined as the sum of u restricted to the complement of A and the
average values of u in each Whitney cube of A times the associated partition function. This
way, we immediately have that the function SB,A is left unchanged in the complement of
A, and that in A it is smooth. The inequality (3.1) will follow in a standard way from the
Poincaré inequality for BV -functions, whereas for showing (3.2) we will show that the average
difference between u and SB,Au near H

n−1-almost every boundary point of A tends to zero
as we get closer to the point.

Let us now give the definition of the operator doing the smoothing part. Suppose A ⊂ R
n

is an open set, not equal to the entire space R
n. Let W = {Qi}∞i=1 be the standard Whitney

decomposition of A, by which we mean that it satisfies the following properties:

(W1) Each Qi is a dyadic cube inside A.
(W2) A =

⋃
iQi and for every i 6= j we have int(Qi) ∩ int(Qj) = ∅.

(W3) For every i we have ℓ(Qi) ≤ dist (Qi, ∂A) ≤ 4
√
nℓ(Qi),

(W4) If Qi ∩Qj 6= ∅, we have 1
4ℓ(Qi) ≤ ℓ(Qj) ≤ 4ℓ(Qi).

The reader can find a proof of the existence of such a dyadic decomposition of the set A in
[23, Chapter VI].

For a given set A and its Whitney decomposition W we take a partition of unity {ψi}∞i=1

so that for every i we have ψi ∈ C∞(Rn), spt(ψi) = {x ∈ R
n : ψi(x) 6= 0} ⊂ B(Qi,

1
8ℓ(Qi)),

ψi ≥ 0, |∇ψi| ≤ Cℓ(Qi)
−1 with a constant C depending only on n, and

∞∑

i=1

ψi = χA.

With the partition of unity we then define for any u ∈ BV (A) a function

SWu =

∞∑

i=1

uQi
ψi. (3.3)

Let us start by showing that SW maps to W 1,1(A) boundedly. Even though we could
obviously equivalently use the BV norm also on the target, we prefer to write it as the W 1,1-
norm in order to underline the spaces where the operator will be used.

Lemma 3.2. Let SW be the operator defined in (3.3). Then for any u ∈ BV (A) we have
SWu ∈ C∞(A) and ‖SWu‖W 1,1(A) ≤ C‖u‖BV (A) with a constant C depending only on n.

Proof. By (W2) and the fact that spt(ψi) ⊂ B(Qi,
1
8ℓ(Qi)) for every i, we know that spt(ψi)∩

spt(ψj) 6= ∅ implies that Qi ∩Qj 6= ∅. Therefore, any point in A has a neighbourhood where
SWu is defined as a sum of finitely many C∞-functions. Consequently, SWu ∈ C∞(A). For
the L1-norm of the function we can estimate

‖SWu‖L1(A) ≤
∞∑

i=1

‖uQi
ψi‖L1(A) =

∞∑

i=1

|uQi
|‖ψi‖L1(A) ≤

∞∑

i=1

|uQi
|2nℓ(Qi)

n = 2n‖u‖L1(A).
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For the estimate on the L1-norm of the gradient we start with an estimate via the (1, 1)-
Poincaré inequality (2.1)

‖∇(SWu)‖L1(Qi) ≤
∑

Qj∩Qi 6=∅
|uQi

− uQj
|‖∇ψj‖L1(A)

≤
∑

Qj∩Qi 6=∅
|uQi

− uQj
|Cℓ(Qj)

n−1

≤ C
∑

Qj∩Qi 6=∅
ℓ(Qj)

−1

∫

Qi∪Qj

|uQi
− u(y)|+ |u(y)− uQj

| dy

≤ C
∑

Qj∩Qi 6=∅
ℓ(Qj)

−1

(
2

∫

Qi∪Qj

|uQi∪Qj
− u(y)|+ 2

∫

Qi∪Qj

|uQi∪Qj
− uQj

| dy
)

≤ C
∑

Qj∩Qi 6=∅
(‖Du‖(Qi ∪Qj)),

which then gives, by summing over all i, and noticing that in the final double sum the sets
Qi ∪Qj have finite overlap with a constant depending only on n,

‖∇(SWu)‖L1(A) =

∞∑

i=1

‖∇(SWu)‖L1(Qi)

≤ C

∞∑

i=1

∑

Qj∩Qi 6=∅
(‖Du‖(Qi ∪Qj))

≤ C‖Du‖(A).

(3.4)

This concludes the proof of the lemma. �

The next lemma gives the crucial boundary behaviour that will imply (3.2).

Lemma 3.3. For the operator SW defined in (3.3) and for any u ∈ BV (A) we have

lim
rց0

1

|B(x, r)|

∫

B(x,r)∩A
|SWu(y)− u(y)| dy = 0 (3.5)

for H
n−1-almost every point x ∈ ∂A.

Proof. Suppose (3.5) fails on a set F ⊂ ∂A with H
n−1(F ) > 0. Without loss of generality,

we may assume F compact. By going to a subset of F if needed, we may further assume that
there exists a constant δ > 0 so that

lim sup
rց0

1

|B(x, r)|

∫

B(x,r)∩A
|SWu(y)− u(y)| dy > δ

for every x ∈ F .
Let ε > 0. By the 5r-covering lemma there exists a disjointed countable collection

{B(xi, ri)}i∈I so that xi ∈ F , ri < ε for all i,

|B(xi, ri)| ≤
1

δ

∫

B(xi,ri)∩A
|SWu(y)− u(y)| dy (3.6)
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and
F ⊂

⋃

i∈I
B(xi, 5ri).

Similarly as in the proof of Lemma 3.2, we first estimate in a Whitney cube Q ∈ W using the
(1,1)-Poincaré inequality (2.1)

∫

Q
|SWu(y)− u(y)| dy =

∫

Q

∣∣∣∣∣∣

∑

Qi∩Q 6=∅
(uQi

ψi(y)− u(y)ψi(y))

∣∣∣∣∣∣
dy

≤
∑

Qi∩Q 6=∅

∫

Q
|uQi

− u(y)| dy

≤
∑

Qi∩Q 6=∅

∫

Q∪Qi

|uQi
− u(y)| dy

≤ Cℓ(Q)
∑

Qi∩Q 6=∅
‖Du‖(Q ∪Qi).

(3.7)

By the property (W3) of the Whitney decomposition, we conclude that if Q ∈ W is such that
Q ∩B(xi, ri) 6= ∅, we have

ℓ(Q) ≤ dist (Q, ∂A) ≤ dist (Q,xi) < ri,

and hence
Q ⊂ B(xi, (

√
n+ 1)ri) ⊂ B(F, (

√
n+ 1)ε).

Similarly, for the same Q, if Qi ∩Q 6= ∅ for some Qi ∈ W, by (W4), we get

ℓ(Qi) ≤ 4ℓ(Q),

and so
Qi ⊂ B(xi, (5

√
n+ 1)ri) ⊂ B(F, (5

√
n+ 1)ε).

Now, using the definition of the Hausdorff content, the inequality (3.6), the estimate (3.7),
and the above consideration for the cubes Q, we get

H
n−1
5ǫ (F ) ≤ C

∑

i∈I
rn−1
i ≤ C

∑

i∈I

|B(xi, ri)|
ri

≤ C
∑

i∈I

1

δri

∫

B(xi,ri)∩A
|SWu(y)− u(y)| dy

≤ C
∑

Q∈W

∑

i∈I

1

δℓ(Q)

ℓ(Q)

ri

∫

Q
χB(xi,ri)(y)|SWu(y)− u(y)| dy

≤ C

δ




∑

Q∩B(F,(
√
n+1)ε)6=∅

1

ℓ(Q)

∫

Q
|SWu(y)− u(y)| dy




≤ C

δ




∑

Q∩B(F,(
√
n+1)ε)6=∅

∑

Qi∩Q 6=∅
‖Du‖(Q ∪Qi)




≤ C

δ
‖Du‖(B(F, (5

√
n+ 1)ǫ) ∩A) ց 0
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as εց 0. Thus

H
n−1(F ) = 0,

giving a contradiction and concluding the proof. �

With the previous two lemmas we can now prove the main theorem of the section.

Proof of Theorem 3.1. Let SW be the operator defined in (3.3) and suppose that u ∈ BV (B)
is given. We define

SB,Au = u|B\A + SWu|A.

Consider SB,Au− u ∈ L1(B) for which, by (3.5), we have

lim
rց0

1

|B(x, r)|

∫

B(x,r)∩A
|SB,Au(y)− u(y)| dy = 0 (3.8)

for Hn−1-almost every x ∈ ∂A. Observe that SB,Au− u = 0 on B \ A.
Let us introduce the superlevel sets Et = {y ∈ R

n : SB,Au(y)− u(y) > t} for every t ∈ R,
where SB,Au − u is defined in the whole R

n via a zero-extension. We want to show that

H
n−1(∂MEt ∩ ∂A) = 0 for almost every t ∈ R and the equality (3.2) will follow by a simple

application of the coarea formula. We proceed as follows.
In the case that t < 0, observe that for every y ∈ A \ Et we have |SB,Au(y) − u(y)| ≥ |t|,

then for Hn−1-almost all x ∈ ∂A, by (3.8),

D(A \ Et, x) = lim sup
rց0

|A \Et ∩B(x, r)|
|B(x, r)|

≤ lim sup
rց0

1

|t||B(x, r)|

∫

A∩B(x,r)
|SB,Au(y)− u(y)| dy = 0.

This, together with the fact that B \ A ⊂ Et, means that the set Et has density 1 at Hn−1-
almost all points x ∈ ∂A.

If we take t > 0, for every y ∈ Et we have |SB,Au(y)−u(y)| ≥ t, and then for Hn−1-almost
all x ∈ ∂A, again by (3.8),

D(Et, x) = lim sup
rց0

|Et ∩B(x, r)|
|B(x, r)|

≤ lim sup
rց0

1

t|B(x, r)|

∫

A∩B(x,r)
|SB,Au(y)− u(y)| dy = 0.

This means, using Et ⊂ A, that the set Et has density 0 at Hn−1-almost all points x ∈ ∂A.
From these previous observations we deduce that Hn−1(∂MEt ∩ ∂A) = 0 for all t 6= 0. We

therefore obtain (3.2), applying the coarea formula,

‖D(SB,Au− u)‖(∂A) =
∫ ∞

−∞
H

n−1(∂MEt ∩ ∂A) dt = 0.
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We now combine this with Lemma 3.2 to obtain (3.1) and hence also that SB,Au ∈ BV (B).
We get

‖D(SB,Au)‖(B) ≤ ‖Du‖(B) + ‖D(SB,Au)− u‖(B)

= ‖Du‖(B) + ‖D(SB,Au)− u‖(A)
≤ ‖Du‖(B) + ‖D(SWu|A)‖(A) + ‖Du‖(A)
≤ ‖Du‖(B) + C‖Du|A‖(A) + ‖Du‖(A)
≤ (C + 2)‖Du‖(B)

and conclude the proof. �

3.2. Proof of Theorem 1.3. In this section we will prove Theorem 1.3 with the help of
Theorem 3.1. Recall that we are claiming that for a bounded domain Ω ⊂ R

n the following
are equivalent:

(1) Ω is a W 1,1-extension domain.
(2) Ω is a strong BV -extension domain.
(3) Ω has the strong extension property for sets of finite perimeter.

We will show the equivalence by showing the implications

(1) =⇒ (3) =⇒ (2) =⇒ (1).

Proof of the implication (1) =⇒ (3). We start with the assumption that Ω is a boundedW 1,1-
extension domain. In particular, it is known that Ω is also a L1,1-extension domain (see [13]).
That is, there exists an extension operator T : L1,1(Ω) → L1,1(Rn) with ‖∇(Tu)‖L1(Rn) ≤
‖T‖‖∇u‖L1(Ω) for every u ∈ L1,1(Ω). Since Ω is bounded, after multiplying with a suitable

Lipschitz cutoff-function we may assume that Tu ∈ L1(Rn) and still keep the control on the
gradient norm.

We claim that Ω has the strong extension property for sets of finite perimeter. Thus, let

E ⊂ Ω be a set of finite perimeter in Ω. We need to find a set Ẽ ⊂ R
n so that (PE1)–(PE3)

of Definition 1.2 hold.
Towards this, let SΩ,Ω : BV (Ω) →W 1,1(Ω) be the operator given by Theorem 3.1. We now

define a function v ∈W 1,1(Rn) by
v = TSΩ,ΩχE .

By truncating the function if needed, we may assume that 0 ≤ v ≤ 1.
Applying the coarea formula (Theorem 2.2) for the function v,

∫ 1

0
P ({v > t},Rn) dt = ‖Dv‖(Rn) =

∫

Rn

|∇v(y)| dy <∞.

This gives, in particular, that there exists a set I ⊂ [0, 1] with H
1(I) ≥ 1

2 for which for every
t ∈ I we have

P ({v > t},Rn) ≤ 2‖Dv‖(Rn) = 2

∫

Rn

|∇v(y)| dy ≤ 2‖T‖ ‖∇SΩ,ΩχE‖L1(Ω)

≤ 2‖T‖C‖DχE‖(Ω) = 2C‖T‖P (E,Ω).
(3.9)

In the penultimate inequality we are using (3.4).
By the measure density (Proposition 2.3) we have |∂Ω| = 0. This together with the fact

that ∇v ∈ L1(Rn), gives
‖Dv‖(∂Ω) = 0,
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and by (3.2)

‖D(χE − vχΩ)‖(∂Ω) = ‖D(χE − SΩ,ΩχE)‖(∂Ω) = 0,

where χE −SΩ,ΩχE is understood to be defined in the whole R
n via a zero-extension. Hence,

again by the coarea formula
∫ 1

0
H

n−1(∂M (E ∪ ({v > t} \ Ω)) ∩ ∂Ω) dt = ‖D(χE + vχRn\Ω)‖(∂Ω)

≤ ‖Dv‖(∂Ω) + ‖D(χE − vχΩ)‖(∂Ω) = 0.

This gives that for almost every t ∈ [0, 1] we have

H
n−1(∂M (E ∪ ({v > t} \ Ω)) ∩ ∂Ω) = 0. (3.10)

Let us pick t ∈ I ⊂ [0, 1] so that both (3.9) and (3.10) hold, and define

Ẽ = E ∪ ({v > t} \ Ω).
Now, it is straightforward that condition (PE1) holds. The equation (3.10) gives (PE3),

and together with (3.9) it also implies

P (Ẽ,Rn) = H
n−1(∂M Ẽ)

≤ H
n−1((∂ME) ∩ Ω) +H

n−1((∂M Ẽ) ∩ ∂Ω) +H
n−1(∂M{v > t})

≤ P (E,Ω) + 2C‖T‖P (E,Ω)
proving (PE2). �

Proof of the implication (3) =⇒ (2). By assumption Ω has the strong extension property for
sets of finite perimeter, so there exists a constant C > 0 such that for any set E ⊂ Ω of finite

perimeter there exists a set Ẽ ⊂ R
n such that (PE1)–(PE3) are satisfied.

Take a function u ∈ BV (Ω) and let B ⊃ Ω be a large enough ball. Without loss of
generality, we may assume that u : Ω → [0, 1]. Let us write Et = {u ≥ t} = {y ∈ Ω : u(y) ≥ t}
for the superlevel sets for each t. Since u ∈ BV (Ω), by the coarea formula, P (Et,Ω) < ∞
for almost every t ∈ [0, 1]. For these t, we select Ẽt to be a strong perimeter extension of

Et. For convenience, for the remaining t we define Ẽt = Et. Notice that these are not strong
perimeter extensions of Et. This will not pose a problem for us, since we will not use these
values of t in the construction below.

Before going to the actual proof, let us note that if the strong perimeter extensions Ẽt

could be chosen so that (t, x) 7→ χẼt
(x) is measurable, by Fubini’s theorem we would obtain

‖DTu‖ ≤
∫ 1

0
P (Ẽt) dt

for the function Tu(x) = H
1{t ∈ [0, 1] : x ∈ Ẽt}. In order to circumvent the measurability

issue, we proceed by defining the extension Tu in a similar way, but as a limit of simple
functions um.

For every t ∈ [0, 1], let us denote by Ik(t) the (half-open) dyadic interval of length 2−k

containing t. For almost every t ∈ [0, 1] we then have

P (Et,Ω) ≤ lim sup
k→∞

2k
∫

Ik(t)
P (Es,Ω) ds. (3.11)
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For almost every t ∈ [0, 1] we also have

P (Ẽt, ∂Ω) = 0.

Since ∂Ω is a compact set, for almost every t we then have

lim
k→∞

P (Ẽt, B(∂Ω, 2−k)) = 0.

Let us write for each k,m ∈ N

Imk = {t ∈ [0, 1] : P (Ẽt, B(∂Ω, 2−k)) < 2−m and (3.11) holds}.
Notice that the sets Imk are not necessarily measurable. Nevertheless, since H

1 is a regular
outer measure, we have

H
1(Imk ) ր 1, as k → ∞

for every m ∈ N.
We define a sequence (km)∞m=1 ⊂ N inductively as follows. First take k1 ∈ N so that

H
1(I1k1) > 1− 2−1.

Suppose now that ki has been defined for all i < m. Then we take km ∈ N so that

H
1




m⋂

j=i

Ijkj


 > 1− 2−i (3.12)

for all i ≤ m. Notice that this requirement can be obtained since (3.12) is with a strict
inequality and again by outer regularity, for every i < m we have

H
1


Imk ∩

m−1⋂

j=i

Ijkj


→ H

1




m−1⋂

j=i

Ijkj




as k → ∞.
Now, for m ∈ N we also take lm ∈ N for which

H
1(Jm) > 1− 2−m, (3.13)

where

Jm =

{
t ∈ [0, 1] : P (Et,Ω) ≤ 2lm+1

∫

Ilm (t)
P (Es,Ω) ds

}

The index lm then gives us the scale at which the simple function um is constructed.
Let us now construct the function um for a given m ∈ N. For each j ∈ {1, . . . , 2lm} define

imj = min

{
i : [(j − 1)2−lm , j2−lm) ∩ Jm ∩

m⋂

h=i

Ihkh 6= ∅
}
.

Notice that always imj ≤ m+ 1 since [(j − 1)2−lm , j2−lm) ∩ Jm 6= ∅.
We then select

tmj ∈ [(j − 1)2−lm , j2−lm) ∩ Jm ∩
m⋂

h=imj

Ihkh .

Next, we define

um =

2lm∑

j=1

2−lmχẼtm
j

,
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which satisfies 0 ≤ um ≤ 1 and um ∈ BV (B).
For every i ∈ {1, . . . ,m}, let us denote

Km
i =

{
j ∈ {1, . . . , 2lm} : [(j − 1)2−lm , j2−lm) ∩ Jm ∩

m⋂

h=i

Ihkh = ∅
}

and

Bm
i =

⋃

j∈Km
i

[(j − 1)2−lm , j2−lm).

Since Jm is measurable, (3.13) gives H1 ([0, 1] \ Jm) < 2−m, and thus, by (3.12)

H
1

(
m⋂

h=i

Ihkh ∩ Jm
)

= H
1

(
m⋂

h=i

Ihkh

)
−H

1

(
m⋂

h=i

Ihkh \ Jm
)

≥ H
1

(
m⋂

h=i

Ihkh

)
−H

1 ([0, 1] \ Jm)

> 1− 2−i − 2−m ≥ 1− 2−i+1.

Hence, we have

H
1(Bm

i ) < 2−i+1. (3.14)

For the norm of Dum, by the fact that tmj ∈ Jm for every j, we get the estimate

‖Dum‖(Rn) ≤
2lm∑

j=1

2−lmP (Ẽtmj
,Rn) ≤ C

2lm∑

j=1

2−lmP (Etmj
,Ω)

≤ C

2lm∑

j=1

2

∫

[(j−1)2−lm ,j2−lm)
P (Es,Ω) = 2C‖Du‖(Ω).

Hence, there exists a subsequence of (um)∞m=1, which converges in L1(B) to a function v ∈
BV (B). For it, we have

‖Dv‖(B) ≤ lim sup
m→∞

‖Dum‖(Rn) ≤ 2C‖Du‖(Ω).

Moreover, clearly v = u on Ω.
In order to estimate ‖Dv‖(∂Ω) we observe that, for every i ∈ {1, . . . ,m}, we have, by

(3.14),

‖Dum‖(B(∂Ω, 2−ki)) ≤
2lm∑

j=1

2−lmP (Ẽtj , B(∂Ω, 2−ki))

≤
∑

j /∈Km
i

2−lmP (Ẽtj , B(∂Ω, 2−ki)) +
∑

j∈Km
i

2−lmP (Ẽtj ,R
n)

≤ 2−i + C2

∫

Bm
i

P (Es,Ω) ds

≤ 2−i + C2δ(2−i+1),

(3.15)
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where

δ(r) = sup

{∫

A
P (Es,Ω) ds : A ⊂ [0, 1],H1(A) = r

}
→ 0

as r → 0 by the absolute continuity of the integral. Since the upper bound in (3.15) goes to
zero as i→ ∞ independently of m, we have

‖Dv‖(∂Ω) = 0.

Let us assume that the function v is extended as zero outside B. Recall that we have

‖Dv‖(B) ≤ 2C‖Du‖(Ω) and ‖Dv‖(∂Ω) = 0.

In order to conclude the proof we control the BV -norm of the function v in the whole R
n as

follows.
Consider a Lipschitz function η which takes the value 1 on Ω and has support in B. Then

one can check that

‖D(ηv)‖(Rn) ≤ C‖Dv‖(B)

and using the Poincaré inequality that

‖ηv‖L1(Rn) = ‖ηv‖L1(B) ≤ C‖D(ηv)‖(B) ≤ C‖Dv‖(B).

Therefore we have ‖ηv‖BV (Rn) ≤ C‖Du‖BV (Ω), where the constant C depends on the constant
coming from (PE2), on |Ω| and on the constant coming from the Poincaré inequality. We
then can assure that T : BV (Ω) → BV (Rn) : u 7→ ηv is an extension operator.

Obviously we still have ‖D(ηv)‖(∂Ω) = ‖Dv‖(∂Ω) = 0. Hence Ω is indeed a strong BV -
extension domain. �

Proof of the implication (2) =⇒ (1). We start with a strong BV -extension operator

T : BV (Ω) → BV (Rn).

In particular, we know that

‖D(Tu)‖(∂Ω) = 0 (3.16)

for every u ∈ BV (Ω).
Let S = S

Rn,(Rn\Ω) be a Whitney smoothing operator given by Theorem 3.1. We assert that

the operator R : W 1,1(Ω) → W 1,1(Rn) defined by Ru(x) = (S ◦ T )(u)(x) is a W 1,1-extension
operator.

Observe that Ru = u on Ω and

‖Ru‖BV (Rn) ≤ C‖Tu‖BV (Rn) ≤ C‖T |‖ ‖u‖BV (Ω) = C‖T‖ ‖u‖W 1,1(Ω).

To conclude we must check that indeed Ru ∈W 1,1(Rn), so that in particular ‖Ru‖BV (Rn) =
‖Ru‖W 1,1(Rn). In order to get this let us show that the Radon measure ‖D(Ru)‖ consists
only of its absolutely continuous part, and not of its singular part. Since we already now that
Ru|Ω and Ru|

Rn\Ω are W 1,1 functions we merely have to prove that ‖D(Ru)‖(∂Ω) = 0. By

the special properties of our smoothing operator given by (3.2) and by our assumption (3.16)
we have that

‖D(Ru)‖(∂Ω) = ‖D(STu− Tu+ Tu)‖(∂Ω) ≤ ‖D(STu− Tu)‖(∂Ω) + ‖D(Tu)‖(∂Ω) = 0

and we are done. �
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4. Further properties of W 1,1-domains

In this section we prove some corollaries to Theorem 1.3.

Corollary 4.1. Let Ω ⊂ R
n be a bounded W 1,1-extension domain. Then the set of points

x ∈ ∂Ω with D(Ω, x) > 1
2 is purely (n− 1)-unrectifiable.

Proof. If the set

F =

{
x ∈ ∂Ω : D(Ω, x) >

1

2

}

is not purely (n− 1)-unrectifiable, there exists a Lipschitz map f : Rn−1 → R so that, after a
suitable rotation,

H
n−1(Graph(f) ∩ F ) > 0.

Notice that the set R
n \ Graph(f) consists of two connected components. Select one of

the components that has nonempty intersection with Ω (actually, both have) and call E its
restriction to Ω. Then

∂ME ∩Ω = Graph(f) ∩ Ω

and so in particular E has finite perimeter in Ω. Let Ẽ ⊂ R
n be any set of finite perimeter

with Ẽ ∩Ω = E. Since

D(E, x) =
1

2
at Hn−1-almost every point x ∈ ∂ME, and D(Ω, x) > 1

2 for every x ∈ F , we have

H
n−1(F ∩ ∂ME) = H

n−1(F ∩Graph(f)).

Using again the fact that

D(E, x) =
1

2
at Hn−1-almost every point x ∈ ∂ME, and D(Rn \ Ω, x) < 1

2 for every x ∈ F , we have

0 < D(E, x) ≤ D(Ẽ, x) ≤ D(Rn \ Ω, x) +D(E, x) < 1

for Hn−1-almost every point x ∈ F ∩ ∂ME. This means that there exists a set G ⊂ F ∩ ∂ME
with H

n−1(G) = 0 for which

(F ∩ ∂ME) \G ⊂ F ∩ ∂M Ẽ.
Consequently,

H
n−1(∂Ω ∩ ∂M Ẽ) ≥ H

n−1(F ∩ ∂M Ẽ) ≥ H
n−1(F ∩ ∂ME) = H

n−1(F ∩Graph(f)) > 0.

Hence Ω does not have the strong extension property for sets of finite perimeter ((PE3) fails),
and so by Theorem 1.3 it is not a W 1,1-extension domain. �

The next example shows that even in the plane the conclusion of Corollary 4.1 is not
sufficient to imply that a bounded BV -extension domain is a W 1,1-extension domain.

Example 4.2. Let us construct a planar BV -extension domain Ω so that the upper-density
of Ω at all except at countably many boundary-points is at most 1/2, but the domain is not
a W 1,1-extension domain. We set

Ω = (−1, 1)2 \
(
({0} × [−1/2, 1/2]) ∪

∞⋃

i=2

Ei

)
,
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Figure 1. An illustration of the BV -extension domain Ω ⊂ R
2 in Example

4.2 which is not a W 1,1-extension domain. Components of the complement
accumulate on the vertical line segment where the upper-density is less than
1
2 at almost every point.

where, for every i ≥ 2, we define

Ei =

2i−1⋃

k=0

(
[−2−i+1,−2−i − 2−i−10] ∪ [2−i + 2−i−10, 2−i+1]

× [−2−1 + k2−i,−2−1 + (k + 1)2−i − 2−i−10]

)
.

See Figure 1 for an illustration. Now, the upper-density of Ω is clearly at most 1/2 at all the
points of the boundary ∂Ω except for the corners of the connected components of Ei, and the
points (0,−1/2) and (0, 1/2), which together form only a countable set. (One could remove
balls instead of rectangles to get the upper-density bound for all boundary points.)

The domain Ω is a BV -extension domain because each removed square has a neighbourhood
inside Ω from which the BV -function can be extended to the square with a uniform constant.
These neighbourhoods can be taken pairwise disjoint. This will result in an extension operator

T : BV (Ω) → BV ((−1, 1)2 \ {0} × [−1/2, 1/2]).

The target set clearly admits an extension to BV (R2).
The domain Ω is not a W 1,1-extension domain, because the set {0} × [−1/2, 1/2] is not

purely 1-unrectifiable, and this is the set H in the following Corollary 4.3.

The next corollary to Theorem 1.3 shows that one direction in Theorem 1.4 holds also in
higher dimensions.

Corollary 4.3. Suppose that Ω ⊂ R
n is a bounded W 1,1-extension domain. Let Ωi, for i ∈ I,

be the connected components of Rn \Ω. Then the set

H = ∂Ω \
⋃

i∈I
Ωi

is purely (n− 1)-unrectifiable.
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Proof. Supposing Ω to be a W 1,1-extension domain, by Theorem 1.3 we know that it has the
strong perimeter extension property.

Now, towards a contradiction, suppose that f : Rn−1 → R is an L-Lipschitz map so that

H
n−1(Graph(f) ∩H) > 0,

after a suitable rotation. Let A be a component of Rn \Graph(f) such that the set

F = {x ∈ Graph(f) ∩H : D(Ω ∩A, x) > 0}
has positive H

n−1-measure. By the measure density of Ω (Proposition 2.3), at least one of
the components must satisfy this. Without loss of generality, we may assume that

A = {(y, f(x)) : y < f(x)}.

Take E = Ω∩A and let Ẽ be the strong perimeter extension of E. Now, since Hn−1(∂M Ẽ∩
∂Ω) = 0, the set

G = {x ∈ F : D(Ẽ, x) = 1}
has positive H

n−1-measure. Take x = (x1, . . . , xn) ∈ G. Since E ⊂ A, which was bounded by
a graph of an L-Lipschitz map, the set

Rx,L = {y = (y1, . . . , yn) ∈ R
n : yn − xn > L|(x1, . . . , xn−1)− (y1, . . . , yn−1)|}

does not intersect E. If there exists a small radius r > 0 for which

Rx,2L ∩B(x, r) ∩ Ω = ∅,

we conclude that there exists a connected component Ωi of R
n \Ω for which x ∈ ∂Ωi contra-

dicting the fact that x ∈ H. Hence, there exists a sequence of points xi ∈ Rx,2L∩Ω such that

|xi − x| → 0. Since f is L-Lipschitz, writing δ = 1
4(L+1) , we have

B
(
xi, δ|xi − x|

)
⊂ Rx,L ⊂ R

n \E.
By the measure density (Proposition 2.3), we have

|B(xi, δ|xi − x|) ∩ Ω| > c|B(xi, δ|xi − x|)|
for all xi. Thus,

|B(x, 2|xi − x|) ∩ Ẽ|
|B(x, 2|xi − x|)| ≤ 1− |B(xi, δ|xi − x|) ∩Ω|

|B(x, 2|xi − x|)| < 1− c

(
δ

2

)n

< 1

giving that

D(Ẽ, x) < 1,

which contradicts the fact that x ∈ G. �

Let us point out that if in addition we require Ω to be planar and simply connected in the
previous corollary, we would get the stronger fact that H1(∂Ω \⋃i Ωi) = 0.

In the next section we will show that in the planar case the conclusion of Corollary 4.3
is also a sufficient condition for a bounded BV -extension domain to be a W 1,1-extension
domain. The following example shows that this is not the case in dimension three.
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Example 4.4. Let us construct a boundedBV -extension domain Ω ⊂ R
3 which is not aW 1,1-

extension domain so that R
3 \ Ω consists of only one component Ω0 for which ∂Ω = ∂Ω0.

Consequently, in the statement of Corollary 4.3 we have H = ∅.
Let C ⊂ [0, 1]2 be a Cantor set with H

2(C) > 0 and let

Ω = (−1, 1)3 \
{
(x1, x2, x3) : |x3| ≤ dist ((x1, x2), C), (x1, x2) ∈ [0, 1]2

}
.

The fact that R3 \Ω consists of only one component Ω0 for which ∂Ω = ∂Ω0 is immediate
from the construction.

Also, with the same arguments as in the previous two corollaries, we see that

E = {(x1, x2, x3) ∈ Ω : x3 < 0}
does not have a strong perimeter extension.

In order to see that Ω is a BV -extension domain, take u ∈ BV (Ω). First notice that since
the parts

Ω1 = {(x1, x2, x3) ∈ Ω : x3 > 0} and Ω2 = {(x1, x2, x3) ∈ Ω : x3 < 0}
have Lipschitz boundaries, similarly to [6, Theorem 5.8] we can consider the zero extension
of both u|Ω1

and u|Ω2
to the whole R

3 and calling them ũ1 and ũ2 respectively, we have
ũ1, ũ2 ∈ BV (R3) with

‖Dũi‖(R3) = ‖Du‖(Ωi) +

∫

∂Ωi

|Tri(u)| dH2 (4.1)

for every i = 1, 2. Here

Tri : BV (Ωi) → L1
(
∂Ωi;H

2
)

for i = 1, 2 are bounded linear operators, called the traces, which are defined as

Tri(u)(x) = lim
rց0

1

|B(x, r) ∩Ωi|

∫

B(x,r)∩Ωi

u(y) dy

for H2-almost every x. Now it is easy to check, following (4.1),

‖Dũi‖(R3) ≤ ‖Du‖(Ωi) +

∫

∂Ωi

|Tri(u)| dH1

≤ ‖u‖BV (Ωi) + C‖u‖BV (Ωi) = (1 + C)‖u‖BV (Ω),

for i = 1, 2. To conclude, we just let our extension operator T : BV (Ω) → BV (R3) be
Tu = ũ1 + ũ2, which is the zero extension of u outside Ω.

In the case where Ω = R
n, the study of extension domains Ω is the same as the study of

closed removable sets. Notice that by the measure density (Proposition 2.3) the Lebesgue
measure of ∂Ω is zero for a Sobolev or BV -extension domain. We call a set F ⊂ R

n of Lebesgue
measure zero a removable set for BV , if BV (Rn \ F ) = BV (Rn) as sets and ‖Du‖(Rn) =
‖Du‖(Rn\F ) for every u ∈ BV (Rn). Similarly, we call F removable forW 1,1, ifW 1,1(Rn\F ) =
W 1,1(Rn). We obtain the following equivalence of removability.

Corollary 4.5. Let F ⊂ R
n be a closed set of Lebesgue measure zero. Then F is removable

for BV if and only if F is removable for W 1,1.
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Proof. Suppose F is removable for BV . Then F is purely (n − 1)-unrectifiable. Otherwise,
similarly as in the proof of Corollary 4.3, we can construct a set E of finite perimeter so that
H

n−1(∂ME ∩ F ) > 0. Hence, P (E,Rn \ F ) 6= P (E,Rn), contradicting the assumption that
F is removable for BV . Now, since F is removable for BV , for every radius R > 0, the set
B(0, R) \ F is a BV -extension domain. Since F is purely (n − 1)-unrectifiable, B(0, R) \ F
trivially has the strong perimeter extension property and is thus a W 1,1-extension domain by
Theorem 1.3. Consequently, F is removable for W 1,1.

Suppose then that F is removable for W 1,1. Let u ∈ BV (Rn \ F ). We only need to check
that the function u when seeing as a function defined on the whole Rn, satisfies ‖Du‖(F ) = 0.
With the Whitney smoothing operator SRn\F,Rn\F from Theorem 3.1 we can modify u to be

a W 1,1-function ũ = SRn\F,Rn\Fu on R
n \ F and moreover, by (3.2),

‖D(ũ− u)‖(F ) = 0,

where ũ can be defined as any value on F . Since F is removable for W 1,1, we have ũ ∈
W 1,1(Rn). Thus ‖Dũ‖(F ) = 0 because |F | = 0 and therefore

‖Du‖(F ) ≤ ‖D(u− ũ)‖(F ) + ‖Dũ‖(F ) = 0,

and we get that u ∈ BV (Rn) with ‖Du‖(Rn) = ‖Du‖(Rn \ F ). �

5. Characterization of planar W 1,1-extension domains

In this section we prove Theorem 1.4 using the higher dimensional result stated in Theorem
1.3. Since the necessity part of Theorem 1.4 holds in the higher-dimensional case by Corollary
4.3, we only need to prove the sufficiency. We first set some notations and definitions.

We say that Γ ⊂ R
2 is a Jordan curve if Γ = γ([a, b]) for some a, b ∈ R, a < b, and some

continuous map γ, injective on [a, b) and such that γ(a) = γ(b). Accordingly to the famous
Jordan curve theorem any Jordan curve Γ splits R2 \Γ in exactly two connected components,
a bounded one and an unbounded one that we call int(Γ) and ext(Γ) respectively. We will
often talk about rectifiable Jordan curves J , for which we mean that J is a Jordan curve and
it is 1-rectifiable. A set A whose boundary ∂A is a Jordan curve is called a Jordan domain.

For technical reasons we also add to the class of Jordan curves the formal ”Jordan” curves
J0 and J∞, whose interiors are R

2 and the empty set respectively and for which we set
H

1(J0) = H
1(J∞) = 0.

We say that a set E ∈ R
2 has a decomposition into other sets {Ei}i up to H

1-measure zero
sets if

H
1

((
E \

⋃

i

Ei

)
∪
(
⋃

i

Ei \ E
))

= 0

and H
1(Ei ∩Ej) = 0 for every i 6= j.

For the particular case of planar sets of finite perimeter we have the following decomposition
theorem from [1, Corollary 1].

Theorem 5.1. Let E ⊂ R
2 have finite perimeter. Then, there exists a unique decomposition

of ∂ME into rectifiable Jordan curves {C+
i , C

−
k : i, k ∈ N}, up to H

1-measure zero sets, such
that

(1) Given int(C+
i ), int(C+

k ), i 6= k, they are either disjoint or one is contained in the

other; given int(C−
i ), int(C−

k ), i 6= k, they are either disjoint or one is contained in

the other. Each int(C−
i ) is contained in one of the int(C+

k ).
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(2) P (E,R2) =
∑

i H
1(C+

i ) +
∑

k H
1(C−

k ).

(3) If int(C+
i ) ⊂ int(C+

j ), i 6= j, then there is some rectifiable Jordan curve C−
k such that

int(C+
i ) ⊂ int(C−

k ) ⊂ int(C+
j ). Similarly, if int(C−

i ) ⊂ int(C−
j ), i 6= j, then there is

some rectifiable Jordan curve C+
k such that int(C−

i ) ⊂ int(C+
k ) ⊂ int(C−

j ).

(4) Setting Lj = {i : int(C−
i ) ⊂ int(C+

j )} the sets Yj = int(C+
j ) \

⋃
i∈Lj

int(C−
i ) are

pairwise disjoint, indecomposable and E =
⋃

j Yj.

Since sets of finite perimeter are defined via the total variation of BV -functions, they are
understood modulo 2-dimensional measure zero sets. In particular, the last equality in (4) of
Theorem 5.1 is modulo measure zero sets.

In order to prove the sufficiency part of Theorem 1.4 we will proceed as follows: Starting
from a set E ⊂ Ω of finite perimeter we first find an extension E′ to R

2 using the fact that Ω
is a BV -extension domain. Then we decompose ∂ME′ using Theorem 5.1 and after proving
the quasiconvexity of each of the open connected components Ωi of R

2 \Ω, we will be able to
perturb the Jordan curves of the decomposition of ∂ME′ around each ∂Ωi so that we get a

final set Ẽ which will be a strong extension of E. An application of Theorem 1.3 will conclude
the proof.

We start by presenting a couple of lemmas showing the quasiconvexity of all the connected
components of R2 \ Ω.
Lemma 5.2. Suppose that Ω ⊂ R

2 is a bounded BV -extension domain. Then there exists a
constant C > 0 so that for any connected component Ωi of R

2 \Ω, any two points z, w ∈ ∂Ωi

can be connected by a curve β ⊂ Ωi with ℓ(β) ≤ C|z − w|.
Proof. One can essentially follow step by step the proof of [14, Theorem 1.1], once we have
taken into account some facts.

(1) For a given i, since Ω is a BV -extension domain, so is Ω′ = R
2 \Ωi. As an extension

operator we can take

T ′ : BV (Ω′) → BV (R2) : u 7→ T (u|Ω)|Ωi
+ u,

where T is the extension operator from BV (Ω) to BV (R2). Let us explain more in
detail why our resulting function T ′u is well-defined as a function in BV (R2). Observe
that the closures of the different components Ωi can only intersect between themselves
in just one point. That is,

#{∂Ωi ∩ ∂Ωj} ≤ 1 for every i 6= j. (5.1)

Otherwise we would be losing the connectedness of Ω or either Ωi and Ωj are the same

component. This means that ∂Ωi ∩
⋃

j 6=iΩj is a countable set. Once we are aware

of this simple fact it is clear that T ′(u) behaves well around ∂Ωi and it belongs to
BV (R2).

Observe that since Ω′ is a BV -extension domain there is a constant C ′ > 0 for
which the property (PE2) of extension of sets of finite perimeter holds. Note that
this constant C ′ only depends on the norm ‖T ′‖, which only depends on ‖T‖ and
which in turn only depends on the constant C > 0 of the same property (PE2) but
now applied to the BV -extension domain Ω.

(2) We can assume that Ω′ is bounded, and hence also a BVl-extension domain thanks to
[14, Lemma 2.1]. If Ω′ was not bounded then Ωi had to be bounded and we can take
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a large enough radius R > 0 so that

Ωi ⊂ B(0, R) and Ω ⊂ B(0, R) \Ωi.

It is clear that changing Ω′ by Ω′∩B(0, R) does not affect the BV -extension property.

The proof of [14, Theorem 1.1] is made under the assumptions that a set Ω′ is a bounded
simply connected BVl-extension domain, reaching as a conclusion that R2 \Ω′ is quasiconvex.

In the case Ωi was unbounded, Ω′ will be a bounded simply connected BVl-extension
domain and we apply the previous result directly to show the quasiconvexity of Ωi.

If Ωi was bounded, after the modification mentioned above, Ω′ will be a bounded BVl-
extension domain. To prove the quasiconvexity of Ωi in [14, Theorem 1.1] the simply con-
nectedness was just used at the following point: when we take two points z, w ∈ ∂Ωi and join
them with a line-segment Lz,w, the set Ω′ ∩ Lz,w consists on the disjoint union of countably
many line-segments Lzi,wi

, with zi, wi ∈ ∂Ωi. Now, under the assumption of simply connect-
edness of Ω′ one can assert that Ω′ \Lzi,wi

has two disjoint connected components. However,
in our case this is still true because otherwise Ωi would not be connected.

The previous facts yield that every set Ωi is quasiconvex. A careful reading of the proof
[14, Theorem 1.1] also shows that the constant of quasiconvexity of all these sets is uniformly
bounded by a constant C > 0, independent of i. Indeed, the quasiconvexity constant of any
set Ωi only depends on the constant of the extension property of sets of finite perimeter (PE2)
for the BV -extension domains Ω′ = R

2 \Ωi, which, as we already noted, depends only on the
constant for the BV -extension domain Ω independently of what i we are fixing. �

Notice that the previous Lemma 5.2 implies, in particular, that if Ω is a bounded BV -
extension domain, then all open connected components of R2 \ Ω are Jordan domains.

We record the following general lemma which might be of independent interest. A version
of it for quasiconvex sets was proven via conformal maps in [16]. Let us also point out that
with the sharp Painleve-length result for a connected set [19] one could quite easily prove a
version of the lemma with a multiplicative constant 2.

Lemma 5.3. Let Ω be a Jordan domain. For every x, y ∈ Ω, every ε > 0 and any rectifiable
curve γ ⊂ Ω joining x to y there exists a curve σ ⊂ Ω ∪ {x, y} joining x to y so that my g

ℓ(σ) ≤ ℓ(γ) + ε.

Proof. Without loss of generality, we may assume that γ : [0, ℓ(γ)] → R
2 minimizes the length

of curves joining x to y in Ω, γ(0) = x, γ(ℓ(γ)) = y, and that γ has unit speed.
If γ((0, ℓ(γ))) ∩ ∂Ω = ∅, we are done. Suppose this is not the case and define

s1 = min{t ∈ [0, ℓ(γ)] : γ(t) ∈ ∂Ω}
and

s2 = max{t ∈ [0, ℓ(γ)] : γ(t) ∈ ∂Ω}
If s1 = s2, by minimality the curve γ is the concatenation of line-segments [x, γ(s1)] and
[γ(s1), y]. In this case, for small r ∈ (0, ε/(2π)), the curve γ divides B(γ(s1), r) into two parts
so that one of them is a subset of Ω. Thus, we may replace part of γ by an arc of the circle
S(γ(s1), r), and we are done.

We are then left with the more substantial case where s1 < s2. Since ∂Ω is a Jordan loop,
the set ∂Ω \ γ({s1, s2}) consists of two connected components T1 and T2.
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We will show that γ can be slightly pushed away from ∂Ω in directions that change in a
locally Lipschitz way in (0, ℓ(γ)). Namely, we assert that there exist functions

ε : (0, ℓ(γ)) → (0, 1),

v : (0, ℓ(γ)) → S
1,

so that ε(·) and v(·) are locally Lipschitz continuous and satisfy γ(t) + hv(t) ∈ Ω for all
0 < h < ε(t) and t ∈ (0, ℓ(γ)).

In order to show this, let t ∈ (0, ℓ(γ)). If γ(t) ∈ Ω, then with εt =
1
2 dist (γ(t), ∂Ω) we have

γ(s) + hv ∈ Ω for all s ∈ (t− εt, t+ εt) ∩ (0, ℓ(γ)), v ∈ S
1 and 0 < h < εt.

Suppose then that t ∈ γ−1(∂Ω) ∩ (0, ℓ(γ)). Without loss of generality we may assume
that γ(t) ∈ T1. The concatenation of γ|[s1,s2] with T2 forms a closed loop α so that one

of the components Ω̃ of its complement is contained in Ω, and γ(t) ∈ ∂Ω̃. Now, let rt =
dist (γ(t), T2). Then, by minimality of γ, the set γ ∩B(γ(t), rt) is contained on the boundary

of a convex set Kt = B(γ(t), rt) \ Ω̃ with non-empty interior. Consequently, there exists
a constant εt > 0 so that for any t − εt < τ1 < τ2 < t + εt for which the outer normal
vectors w1 and w2 to Kt exist at γ(τ1) and γ(τ2) respectively, there is a Lipschitz map
[τ1, τ2] → S

1 : t 7→ vτ1,τ2(t) so that vτ1,τ2(τ1) = w1, vτ1,τ2(τ2) = w2, and γ(t) + hvτ1,τ2(t) ∈ Ω
for all 0 < h < εt and τ1 ≤ t ≤ τ2.

Write I ⊂ (0, ℓ(γ)) to be the points t where a normal direction to γ exists at γ(t). Now,
cover (0, ℓ(γ)) with the intervals (t − εt, t + εt) ∩ (0, ℓ(γ)) and then take a subcover {Ui =
(ti−εti , ti+εti)}i∈Z that is finite for compact subsets of (0, ℓ(γ)), and so that every t ∈ (0, ℓ(γ))
belongs to at most two intervals Ui. Assume the intervals Ui are in order, that is Ui only
intersects Ui−1 and Ui+1. By dividing into smaller intervals if needed, we may also assume
that if γ(Ui) ∩ ∂Ω 6= ∅ and γ(Ui+1) ∩ ∂Ω 6= ∅, then γ(Ui ∪ Ui+1) ∩ ∂Ω ⊂ Tj for j = 1 or
j = 2. This allows us to select the normal directions w ∈ S

1 in a way so that they agree
for the intervals Ui and Ui+1 at the points t ∈ I ∩ Ui ∩ Ui+1. Notice that for i for which
γ(Ui) ∩ ∂Ω = ∅ we have to make a choice between two opposite directions.

We will then have subset I ⊂ (0, ℓ(γ)) with H
1((0, ℓ(γ)) \ I) = 0, and an open covering

{Ui}i of (0, ℓ(γ)) of multiplicity at most two, where Ui are intervals, so that

• for every i ∈ Z there exists a constant εi > 0 so that for every τ1, τ2 ∈ I ∩Ui, τ1 < τ2,
there is a Lipschitz map [τ1, τ2] → S

1 : t 7→ vτ1,τ2(t) so that γ(t) + hvτ1,τ2(t) ∈ Ω for
all 0 < h < εi and τ1 ≤ t ≤ τ2,

• if vτ1,τ2 and vτ2,τ3 have been defined as above, vτ1,τ2(τ2) = vτ2,τ3(τ2).

For each i ∈ Z we will now fix a ti ∈ I ∩Ui ∩Ui+1, and define v(t) = vti,ti+1
(t) on [ti, ti+1].

A locally Lipschitz choice for ε can be given by defining

ε(t) =
ti+1 − t

ti+1 − ti
min(εi, εi+1) +

t− ti
ti+1 − ti

min(εi+1, εi+2)

when t ∈ [ti, ti+1].
Let i0 ∈ N be such that i0 >

2
s2−s1

≥ 2
ℓ(γ) . Then, for any i ≥ i0, the function v(·) is

Lipschitz in [1/i, ℓ(γ) − 1/i] and ηi := mint∈[1/i,ℓ(γ)−1/i] ε(t) > 0. Hence, if we define

δi(t) =

{
ηi

min{|ℓ(γ)−1/i−t|,|1/i−t|}
ℓ(γ)−2/i , if t ∈ [1/i, ℓ(γ) − 1/i],

0, otherwise
,
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we have |δ′i(t)| = ηi
ℓ(γ)−2/i for all t ∈ (1/i, ℓ(γ)−1/i)\{ℓ(γ)/2}, and also |δi(t)| ≤ ηi/2 ≤ ε(t)/2

for every t. Now if we let

Li =

∫ ℓ(γ)

0
|(δi(t)v(t))′| dt <∞,

defining

δ(t) =
∞∑

i=i0

2−i−1 min(ε, 1)

1 + Li
δi(t),

we get a function δ : [0, ℓ(γ)] → R such that δ(0) = δ(ℓ(γ)) = 0 and 0 < δ(t) < ε(t) for all
t ∈ (0, ℓ(γ)). Note that the function δ is continuous as a limit of an absolutely and uniformly
convergent series of continuous functions, and it is differentiable except on ℓ(γ)/2. Thus,
σ : [0, ℓ(γ)] → R

2 defined by

σ(t) = γ(t) + δ(t)v(t)

is a curve joining x and y, σ((0, ℓ(γ))) ⊂ Ω and

ℓ(σ) =

∫ ℓ(γ)

0
|σ′(t)| dt ≤

∫ ℓ(γ)

0
|γ′(t)| dt +

∫ ℓ(γ)

0
|(δ(t)v(t))′| dt

≤ ℓ(γ) +
∞∑

i=i0

2−i−1ε

1 + Li

∫ ℓ(γ)

0
|(δi(t)v(t)7)′| dt < ℓ(γ) + ε,

finishing the proof. �

The next lemma, together with Theorem 5.1, are the key tools for our proof of the sufficiency
part of Theorem 1.4, that we will show afterwards.

Lemma 5.4. Let Ω ⊂ R
2 be a bounded BV -extension domain and Ωi the open connected

components of R2 \ Ω. Suppose that the set H = ∂Ω \⋃i Ωi is purely 1-unrectifiable and let

E ⊂ R
2 be a Jordan domain with ∂E rectifiable. Then there exists a set Ẽ ⊂ R

2 of finite
perimeter so that

(i) E ∩ Ω = Ẽ ∩Ω,

(ii) H
1(∂M Ẽ) ≤ CH

1(∂ME), and

(iii) H
1(∂M Ẽ ∩ ∂Ω) = 0,

where the constant C is absolute.

Proof. Consider the at most countably many components {Ωi}i of R2 \Ω. For each i we want
to modify the set E in Ωi to get some Ẽ ⊂ R

2 with ∂Ẽ rectifiable so that

H
1(∂M Ẽ ∩ ∂Ωi) = 0 (5.2)

and

H
1(∂M Ẽ ∩Ωi) ≤ CH

1(∂ME ∩Ωi). (5.3)

Let us show how to conclude the proof of the lemma after assuming these facts. Since we are
not changing the set E inside Ω the property (i) is clear. To check (ii) let us first write

H
1(∂M Ẽ) = H

1(∂M Ẽ ∩ Ω) +H
1(∂M Ẽ ∩ ∂Ω) +H

1(∂M Ẽ ∩ (Rn \Ω)).
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We will estimate each of these terms separately. For the first one is clear that H1(∂M Ẽ∩Ω) =

H
1(∂ME ∩ Ω). For the second one we use the fact that ∂Ẽ is rectifiable, that ∂Ω \⋃i Ωi is

purely 1-unrectifiable and (5.2),

H
1(∂M Ẽ ∩ ∂Ω) = H

1

(
∂M Ẽ ∩

[
∂Ω \

⋃

i

Ωi

])
+H

1

(
∂M Ẽ ∩

[
∂Ω ∩

⋃

i

Ωi

])

= H
1

(
⋃

i

(∂M Ẽ ∩ ∂Ω ∩ Ωi)

)

≤
∑

i

H
1(∂M Ẽ ∩ ∂Ωi) = 0. (5.4)

For the third term we use (5.3) to get

H
1(∂M Ẽ ∩ (Rn \Ω)) ≤

∑

i

H
1(∂M Ẽ ∩ Ωi) ≤ C

∑

i

H
1(∂ME ∩ Ωi).

All these estimates together yield

H
1(∂M Ẽ) ≤ H

1(∂ME ∩Ω) + C
∑

i

H
1(∂ME ∩ Ωi).

Since {x ∈ ∂Ωi : x ∈ ∂Ωj for some j 6= i} is at most countable by (5.1), we conclude that

H
1(∂M Ẽ) ≤ CH

1(∂ME),

proving (ii). Finally (iii) has already been shown in (5.4).
We now move to prove how to modify E inside each set Ωi in order to get (5.2) and (5.3).
If H1(∂ME ∩ ∂Ωi) = 0, we may skip this i and move to the next. Let us thus assume

H
1(∂ME ∩ ∂Ωi) > 0. Let f : S1 → ∂E be a parameterisation of the boundary by a home-

omorphism. By the Lebesgue density theorem, for almost every t ∈ f−1(∂ME ∩ ∂Ωi) there
exists a rt > 0 so that for all 0 < r < rt

H
1 (f(B(t, r)) ∩ ∂Ωi) ≥

1

2
H

1(f(B(t, r))). (5.5)

By the Vitali covering lemma, we then find a disjointed collection {B(tj , rj)}j so that (5.5)
holds for each of the balls and

H
1


(∂ME ∩ ∂Ωi) \

⋃

j

f(B(tj, rj)


 = 0.

Now, we define Ii,j = B(tj, rj) ∩ S
1 for each j and obtain a collection {Ii,j}j of closed arcs in

S
1 whose interiors are pairwise disjoint,

H
1


(∂ME ∩ ∂Ωi) \

⋃

j

f(Ii,j)


 = 0

and

H
1 (f(Ii,j) ∩ ∂Ωi) ≥

1

2
H

1(f(Ii,j))

for every j.
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PSfrag replacements

Ω1

Ω

Ω2

Ω3

γ1,1

γ2,1 γ2,1

γ1,1,1

γ1,1,3

γ1,1,4

∂E

Figure 2. An illustration of the construction in Lemma 5.4. The boundary
∂E intersect the boundaries ∂Ω1 and ∂Ω2 in a set of positive H1-measure. The
modification of E inside Ω1 consists of the added set bounded by γ1,1 from
which three sets have been removed, bounded by γ1,1,1, γ1,1,3, and γ1,1,4, re-
spectively. The modification inside Ω2 consists of only one added part bounded
by γ2,1.

For the next argument we have i, j fixed. The set f(Ii,j)\∂Ωi consists of at most countably
many open curves {αi,j,k}k. For each k for which αi,j,k ∩ Ωi = ∅, we use Lemma 5.2 to

find a curve βi,j,k ⊂ Ωi such that ℓ(βi,j,k) ≤ C|zi,j,k − wi,j,k| where zi,j,k and wi,j,k are the
endpoints of αi,j,k. Now, for ε = |zi,j,k − wi,j,k|, Lemma 5.3 provides us with another curve
γi,j,k ⊂ Ωi ∪ {zi,j,k, wi,j,k} so that

ℓ(γi,j,k) ≤ ℓ(βi,j,k) + |zi,j,k − wi,j,k| ≤ (C + 1)|zi,j,k − wi,j,k|. (5.6)

The curves αi,j,k and γi,j,k enclose a bounded subset that we call Ei,j,k ⊂ R
2. Similarly, if we

let zi,j be the first, and wi,j the last point of f(Ii,j) ∩ ∂Ωi we again use Lemmas 5.2 and 5.3
to connect zi,j to wi,j with a curve γi,j ⊂ Ωi ∪ {zi,j, wi,j} so that

ℓ(γi,j) ≤ (C + 1)|zi,j − wi,j|. (5.7)

Let Fi,j be the bounded set enclosed by ∂Ωi (from zi,j to wi,j) and by γi,j . Now, we will
modify E by considering

Ẽi,j = E ∪
(
Fi,j \

⋃

k

Ei,j,k

)
.

See Figure 2 for an illustration of the modification.
Repeating this process for all i with H

1(∂ME ∩ ∂Ωi) > 0 and all j we can finally define

Ẽ =
⋃

i,j

Ẽi,j.
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Let us check that the properties (5.2) and (5.3) hold. Firstly, observing that we did not
modified ∂E outside the arcs f(Ii,j),

H
1(∂M Ẽ ∩ ∂Ωi) = H

1


(∂M Ẽ ∩ ∂Ωi) \

⋃

j

f(Ii,j)




+
∑

j

H
1(∂M Ẽ ∩ ∂Ωi ∩ f(Ii,j))

= H
1


(∂ME ∩ ∂Ωi) \

⋃

j

f(Ii,j)




+
∑

j

(
H

1(∂MFi,j ∩ ∂Ωi) +
∑

k

H
1(∂MEi,j,k ∩ ∂Ωi)

)

= 0,

which gives us (5.2). Secondly,

H
1(∂M Ẽ ∩ Ωi) ≤ H

1(∂ME ∩ Ωi) +
∑

j

(
H

1(γi,j) +
∑

k

H
1(γi,j,k)

)

≤ H
1(∂ME ∩ Ωi) +

∑

j

(
(C + 1)|zi,j − wi,j |+

∑

k

(C + 1)|zi,j,k − wi,j,k|
)

≤ H
1(∂ME ∩ Ωi) +

∑

j

2CH
1(f(Ii,j))

≤ H
1(∂ME ∩ Ωi) +

∑

j

2(C + 1)H1(f(Ii,j) ∩ ∂Ωi)

≤ CH
1(∂ME ∩Ωi)

proving (5.3). �

Proof of Theorem 1.4. One direction is proven in Corollary 4.3. Thus we only need to prove
the converse. Thus, assume that Ω ⊂ R

2 is a bounded BV -extension domain and that the
set H = ∂Ω \⋃iΩi is purely 1-unrectifiable, where Ωi are the open connected components of

R
2 \ Ω.
We will show that Ω has the strong extension property for sets of finite perimeter and

hence, by Theorem 1.3, Ω will be a W 1,1-extension domain. Using the fact that Ω is a
bounded BV -extension domain if we let E ⊂ Ω be a set of finite perimeter in Ω then there
exists an extension E′ to R

2 so that P (E′,R2) ≤ CP (E,Ω). This extension can be obtained
for instance by the Maz’ya and Burago result [20, Section 9.3].

Let now {C+
i , C

−
k : i, k ∈ N} be the rectifiable Jordan curves of Theorem 5.1 for the set E′.

By applying Lemma 5.4, each Jordan domain int(C+
i ) can be replaced by a set Ẽ+

i so that

Ẽ+
i ∩ Ω = int(C+

i ) ∩ Ω, H1(∂M Ẽ+
i ) ≤ CH

1(C+
i ), and H

1(∂M Ẽ+
i ∩ ∂Ω) = 0. Similarly, each

int(C−
k ) can be replaced by a set Ẽ−

k so that Ẽ−
k ∩Ω = int(C−

k )∩Ω, H1(∂M Ẽ−
k ) ≤ CH

1(C−
k ),

and H
1(∂M Ẽ−

k ∩ ∂Ω) = 0.
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Now,

E = E′ ∩ Ω =

(
⋃

i

int(C+
i ) \

⋃

k

int(C−
k )

)
∩ Ω =

(
⋃

i

Ẽ+
i \

⋃

k

Ẽ−
k

)
∩Ω,

holds modulo a measure zero set. Thus, the set

Ẽ =

(
⋃

i

Ẽ+
i \

⋃

k

Ẽ−
k

)

is an extension of E to R
2, and

P (Ẽ,R2) ≤
∑

i

H
1(∂M Ẽ+

i ) +
∑

k

H
1(∂M Ẽ−

k )

≤
∑

i

CH
1(C+

i ) +
∑

k

CH
1(C−

k )

= CP (E′,R2) ≤ CP (E,Ω).

Since,

H
1(∂M Ẽ ∩ ∂Ω) ≤

∑

i

H
1(∂M Ẽ+

i ∩ ∂Ω) +
∑

k

H
1(∂M Ẽ−

k ∩ ∂Ω) = 0,

the set Ẽ is the strong extension of E that we had to find. �
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