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I

Introduction

During the spring semesters of three consecutive years (2023-2025) I have been teaching at University
Complutense of Madrid a Master Course called Técnicas de Análisis Geométrico. Part of this course
considers advanced analysis tools and explores geometric and measure related properties of the Euclidean
space Rn. Fundamental results in the area are considered, like, for instance, the Whitney extension
theorem, Rademacher’s theorem, the Morse-Sard theorem, or Aleksandroff theorem among others. As
an effort of making all this content available and enyoable to undergraduate students, and trying to
provide all needed details in the proofs, I have developed the following notes. One big premise that I
tried to keep when making these notes was that they are as self-contained as possible and that no big
results could be used without being proved before. Moreover, the reader may find at the end of each
chapter a large number of exercises that try to explore some of the key facts and subtleties behind all this
theory.

It must be mentioned that there exist similar works considering this very same topic, or similar ones.
Indeed, Hajłasz, and Kinunen’s notes were extremely useful during the development of this course. Still,
I wanted to add my own flavor in some of the main results.

Lastly, but not least, I thank my students for important suggestions and comments that helped clari-
fying technical steps.
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Chapter 1

Extension theorems: McShane and
Whitney

Let X be a set and A ⊂ X a subset. The problem of extending functions f : A → R to F : X → R
preserving some kind of regularity of the function f has been widely studied in the mathematical history.

The most basic setting could be the case of X = T being a topological space, A ⊂ T any subset
and f : A → R a continuous function. Question: When is it possible to find a continuous function
F : T → R so that F |A = f .?

Theorem 1.1 (Tietze, 1925). Let T be a normal topological space (that is, every two disjoint closed sets
can be included within two disjoint open sets) and let A ⊂ T be closed subset. Then if f : A → R is
a continuous function, there exists F : T → R continuous as well with F |A = f . Moreover one can
choose F so that sup{F (x) : x ∈ T} = sup{f(a) : a ∈ A}.

Just to mention, originally Lebesgue and Brouwer proved the case T = Rn, then Tietze in 1925
proved the case when T = X is a metric space and thereafter Uryshon proved the case T is a topological
space the very same year 1925. The result is also called the Uryshon-Brouwer-Tietze lemma. The proof
of Theorem 1.1 requires another result due to Uryshon that states that a topological space is normal if
and only if for any two disjoint closed sets A1 and A2 there exists a continuous function taking the value
0 on A1 and the value 1 on A2.

Note as well that A ⊂ T must be a closed set, since otherwise there could be no continuous extension.
Think for instance about A = (0,+∞) and f : A → R defined as f(x) = 1/x.

For us, the interest relies on the extension problem for Lipschitz functions and for C1 functions. To
define Lipschitzianity or differentiability we need the notion of distance, so we must work at least with
metric spaces X rather than topological spaces T . In any case, the reader may have in mind whenever
he/she wishes that the metric space X we are dealing with is just Rn with the euclidean distance.

Definition 1.2. A set X is said to be a metric space if there exists a function d : X×X → [0,∞), called
distance1, so that

1. d(x, x) = 0.

2. d(x, y) > 0 for all x ̸= y. (Positivity)

3. d(x, y) = d(y, x) for all x, y ∈ X . (Symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X . (Triangle inequality).

If only (1), (3), 4) hold we say that d is a pseudometric and X a pseudometric space. A metric space X
can be indistinctly denoted by X = (X, d) = (X, dX).

1Some mathematicians allow distances to take infinity values d : X ×X → [0,∞]. This is just a matter of taste, but most
of the mathematics coming thereafter are basically the same.
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We want to give an answer to the following questions:

1. Let A ⊂ Rn be an arbitrary subset and an L-Lipschitz function f : A → R . Is there an L-Lipschitz
function F : Rn → R with F |A = f .

2. Given a closed set C ⊂ Rn and a function f : C → R. When can we find a function F : Rn → R
of class C1 so that F |C = f?

1.1 Extension of Lipschitz functions

Definition 1.3. Let (X, dX) and (Y, dY ) be metric spaces and L ≥ 0. A function f : X → Y is said to
be L-Lipschitz if

dY (f(x1), f(x2)) ≤ LdX(x1, x2), ∀x1, x2 ∈ X. (1.1.1)

The least constant L ≥ 0 satisfying (1.1.1) is denoted by Lip(f). Namely,

Lip(f) = sup

{
dY (f(x1), f(x2))

dX(x1, x2)
: x1, x2 ∈ X, x ̸= y

}
.

The set of Lipschitz functions f : X → R is denoted by Lip(X). The set of bounded Lipschitz functions
f : X → R is written Lip∞(X) and when endowed with the norm

∥f∥Lip∞(X) = Lip(f) + ∥f∥∞.

becomes a Banach space.

Theorem 1.4 (McShane, 1934). Let A ⊂ Rn be an arbitrary set and L ≥ 0. Then for every
L-Lipschitz function f : A → R there exists F : Rn → R with F |A = f and so that F is
L-Lipschitz.

Proof. Let x ∈ Rn and define the extension as

F (x) = inf
y∈A

{f(y) + Ld(x, y)} = inf
y∈A

{f(y) + L|x− y|}.

Let us check that F : Rn → R is well-defined, that is L-Lipschitz and that F |A = f .

1. F is well-defined: Let a ∈ A fixed. Then for every y ∈ A, x ∈ Rn we have that

f(y) + L|y − x| ≥ f(y) + L|y − a| − L|x− a| ≥ f(a)− L|x− a|.

We have proved that for any x ∈ Rn, the set {f(y) + L|x − y| : y ∈ Rn} ⊂ R is bounded from
below. Therefore by the supremum property of the real numbers there must exist an infimum of
such set, that is, there exists F (x) > −∞.

2. F |A = f : Let x, y ∈ A. Then f(x) ≤ f(y) + L|x− y|, so

f(x) ≤ inf
y∈A

{f(y) + L|x− y|} ≤ f(x) + L|x− x| = f(x).

We get that f(x) = F (x).

3. F is L-Lipschitz: Let y ∈ A. We define the function gy : Rn → R by

gy(x) = f(y) + L|y − x|.

We now easily verify that gy is L-Lipschitz because

|gy(x)− gy(z)| = L ||y − x| − |y − z|| ≤ L|x− z|, ∀x, z ∈ Rn.
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It follows that for every x, z ∈ Rn

{
gy(z) ≥ gy(x)− L|x− z|
gy(x) ≥ gy(z)− L|x− z|

.

The previous estimates, valid for every x, z ∈ Rn and y ∈ A yield

gy(z) ≥ gy(x)− L|x− z| ≥ inf
y′∈A

{gy′(x)− L|x− z|} = F (x)− L|x− z|.

Furthermore for every x, z ∈ Rn

inf
y∈A

{gy(z)} = F (z) ≥ F (x)− L|x− z| ⇒ F (x)− F (z) ≤ L|x− z|.

One can analogously prove that F (z)− F (x) ≤ L|x− z|, so we conclude that

|F (x)− F (z)| ≤ L|x− z|, ∀x, z ∈ Rn.

Some final comments:

• McShane theorem works the same way for extensions of Lipschitz functions f : A → R where
A ⊂ X is an arbitrary subset of a metric space X .

• McShane theorem provides an extension operator T : Lip(A) → Lip(Rn) that is in general not
linear. Even when a Lipschitz function f : A → R is bounded, the McShane Lipschitz extension
does not provide bounded Lipschitz extensions.

• For functions f : A ⊂ X → Rm where m > 1 we can apply McShane theorem componentwise
and we obtain a

√
mL-Lipschitz extension.

• There are examples of 1-Lipschitz functions f : A ⊂ X → R2 where A ⊂ X is a closed subset of
a metric space that do not admit 1-Lipschitz extensions to the whole R2.

Example 1.5. Take A = {(1,−1), (−1, 1), (1, 1)} ⊂ R2 and let f : A → R2 be defined as
f(1,−1) = (1, 0)

f(−1, 1) = (−1, 0)

f(1, 1) = (0,
√
3)

.

The reader may verify that f : (A, ∥ · ∥∞) → (R2, ∥ · ∥2) is 1-Lipschitz but there is not 1-Lipschitz
function F : (R2, ∥ · ∥∞) → (R2, ∥ · ∥2) with F |A = f .

• If one is interested in preserving the Lipschitz constant on the extensions one has the following
important result which we shall not prove here.

Theorem 1.6 (Kirszbraun 1934, Valentine 1945). Let H1, H2 be Hilbert spaces and A ⊂ H1 an
arbitrary set. Then for every L-Lipschitz function f : A → H2 there exists an L-Lipschitz function
F : H1 → H2 with F |A = f .
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1.2 Extension of C1 functions

Let C ⊂ Rn be a closed set and let f : C → R. We look for necessary and sufficient conditions for the
existence of a function F : Rn → R with F |C = f so that F ∈ Ck(Rn).

Theorem 1.7 (Whitney (case C1)). Let f : C → R and L : C → Rn continuous functions
with C ⊂ Rn a closed set. Then there exists F : Rn → R of class C1 with F |C = f and with
Df |C = L if and only if

lim
y→x

f(y)− f(x)− L(x) · (y − x)

|y − x|
= 0, uniformly on compact sets of C. (1.2.1)

Let us begin with some previous comments:

1. The following conditions are equivalent to (1.2.1), which can be written as well with the notation

lim
|x−y|→0

x,y∈K x̸=y

f(y)− f(x)− L(x) · (y − x)

|y − x|
= 0.

• For all compact sets K ⊂ C we have

lim
y→x

f(y)− f(x)− L(x) · (y − x)

|y − x|
= 0, uniformly on K.

• For all compact sets K ⊂ C and every ε > 0 there exists δ = δ(ε,K) > 0 so that if
0 < |x− y| < δ, x, y ∈ K then

f(y)− f(x)− L(x) · (y − x)

|y − x|
< ε.

• For every compact set K ⊂ C we have

lim
δ→0+

(
sup

{
f(y)− f(x)− L(x) · (y − x)

|y − x|
: 0 < |x− y| < δ, x, y ∈ K

})
= 0.

2. If C is formed by isolated points (1.2.1) gives no information.

3. If on (1.2.1) we do not ask for uniform convergence we would only get the existence of Taylor
polynomials of degree one on C, or what is the same, we would get an extension F that would
be differentiable everywhere on Rn, but not necessarily with a continuous derivative DF : Rn →
Rn. That is, F would not be a C1 extension. We give next a precise example highlighting this
possibility.

Example 1.8. Let z1 = 1/
√
3 and define a decreasing sequence (zn)n≥1 ⊂ (0,+∞) in such a way that

z3n + z3n+1

zn − zn+1
= 1 (1.2.2)

We have that lim
n→∞

zn = 0. Now let C = {zn}n≥1 ∪ {0}, which is a closed set of R. Let f : C → R
given by

f(x) =

{
0, x = 0

(−1)n+1z3n, x = zn, n ∈ N

And finally let L : C → R to be L(x) = 0 for every x ∈ C.
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We want to show that for every x ∈ C, even though we have

lim
y→x
y∈C

|f(y)− f(x)|
|y − x|

= 0 (1.2.3)

pointwise, there is not C1 function F : R → R so that F (x) = f(x), F ′(x) = 0 for every x ∈ C. The
point is that we do not have uniform converge on compact sets in the limit (1.2.3).

(i) We assure that (1.2.3) holds pointwise for every x ∈ C. If x = 0, it is clear that

lim
y→0

|f(y)− 0|
|y − 0|

= lim
n→∞

|(−1)n+1z3n|
zn

= 0.

In the case x ∈ C \ {0}, x would be a singleton on C and (1.2.3) holds trivially.

(ii) We now check that there is no C1 function F : R → R so that F (x) = f(x) and F ′(x) = 0 for
every x ∈ C. Arguing by contradiction, if such extension exists by the mean value theorem and
for every n ∈ N there would exist un ∈ (zn+1, zn) so that

F ′(un) =
f(zn)− f(zn+1)

zn − zn+1
=

(−1)n+1z3n − (−1)n+2z3n+1

zn − zn+1
=

{
1, if n odd
−1, if n even

.

Therefore lim
n→∞

F ′(un) ̸= 0 = F ′(0) = L(0), contradicting the continuity of F ′ at zero.

(iii) There is not uniform convergence on compact sets in the limit (1.2.3). Indeed C itself is a compact
set. Take δ > 0 and observe that there exists n0 ∈ N so that zn ≤ δ for every n ≥ n0 (because
lim
n→∞

zn = 0). Then

sup

{
|f(y)− f(x)|

|y − x|
: 0 < |y − x| < δ x, y ∈ C

}
≥ sup

{
|f(zn)− f(zn+1)|

|zn − zn+1|
: n ≥ n0

}
= 1

and hence

lim
δ→0+

(
sup

{
|f(y)− f(x)|

|y − x|
: 0 < |y − x| < δ x, y ∈ C

})
̸= 0.

(4) Consider now the case when C ⊂ Rn is not necessarily closed. Given f : C → R and L : C → Rn

a necessary condition for the existence of a continuous extension of f and L to C is that f and L
are uniformly continuous. Then we would still need the assumption (1.2.1) to apply the theorem.

(5) From (1.2.1) it is deduced that f is uniformly continuous on compact subsets of C. The reason is
that (1.2.1) implies that

lim
y→x

|f(y)− f(x)| = 0

uniformly on compact subsets of C. Moreover, being L : C → Rn continuous, we have that L is
uniformly continuous on compact subsets of C.

We next state the general version of the Whitney’s extension theorem for Ck regularity, k ≥ 1. Let
us recall what is the notion of multiindex.

Definition 1.9. A multiindex α is any vector α = (α1, . . . , αn) ∈ (N ∪ {0})n. We also define
|α| = α1 + α2 + · · ·+ αn (this is the order of α)
α! = (α1!) · (α2!) · · · (αn!)

For any x = (x1, . . . , xn) ∈ Rn define xα = xα1
1 · xα2

2 · · ·xαn
n

.
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Theorem 1.10 (Whitney (case Ck)). Given a closed set C ⊂ Rn and some k ≥ 1, a necessary and
sufficient condition for a function f : C → R together with a family of functions fα : C → R, where α
is a multiindex with |α| ≤ k, to admit an extension F : C → Rn (that is F |C = f ) of class Ck and so
that Dα|C = fα for every |α| ≤ k is that for each |α| ≤ k,

lim
y→x

fα(y)−
∑

|β|≤k−|α|
fα+β(x)

β!
(y − x)β

|y − x|k−|α| = 0, uniformly on compact sets of C. (1.2.4)

Observe that the conditions (1.2.4) imply in particular that f and all functions fα are continuous on
C.

Proof. We refer to [10, Theorem 5.4 and 5.14].

In these notes we only give the full proof of the C1 version of Whitney’s theorem. that is Theorem
1.7. Before we begin with the proof we need to introduce smooth partitions of unity that are used to build
up the extension. So we begin with a definition.

Definition 1.11. Given an open set U ⊂ Rn, a partition of unity on U is a family a functions {φj}∞j=1,
φj : U → [0, 1] so that

1. For every x ∈ U , {j ∈ N : φj(x) ̸= 0} is a finite set. (This means that the supports of the
functions φj form a point-finite covering of U ).

2.
∑∞

j=1 φj(x) = 1 for every x ∈ U .

Whenever the φj are continuous we refer to {φj}j≥1 as a continuous partition of unity, and whenever
the φj are of class Ck, for some k ≥ 1, we we say {φj}j≥1 is a Ck partition of unity.
Given an open covering {Uj}j≥1 ⊂ U of U , a given partition of unity {φj}j≥1 is said to be subordinated
to the covering {Uj}j≥1 if for every j ∈ N,

supp(φj) := {x ∈ Rn : φj(x) ̸= 0} ⊂ Uj .

We state in Lemma 1.13 a useful result about the existence of Whitney-type smooth partitions of
unity on open subsets of Rn. For that, a necessary tool is the next lemma.

Lemma 1.12 (Vitali’s covering lemma / 5r-covering lemma). Let F be a collection of open balls
(or closed) in Rn with sup{diam(B) : B ∈ F} < ∞. Then there exists a countable family G of
disjoint balls from F in such a way that⋃

B∈F
B ⊂

⋃
B∈G

5B,

where 5B denotes the ball with same center as B and radius five times bigger than that of B.

Proof. This is proven for instance in [6].

Notation: Given a closed set C ⊂ Rn and U = Rn \ C, for each x ∈ U we define

r(x) : = min{1,dist(x,C)} · 1

20
, where dist(x,C) = inf{|y − x| : y ∈ C}.
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Lemma 1.13 (Whitney type partition of unity). Let C ∈ Rn be a closed set and U = Rn \ C.
Then

1. There exists an open covering of U =
⋃∞

j=1B(xj , 5r(xj)) so that {B(xj , 5r(xj))} are
pairwise disjoint. (Denote from now on rj = r(xj)).

2. There exists a partition of unity {φj}j≥1 on U of class C∞ that is subordinated to the
covering {B(xj , 10rj)}∞j=1 so that

|Dφj(x)| ≤
C(n)

rj
, ∀x ∈ B(xj , 10rj). (1.2.5)

where C(n) denotes a positive constant only depending on n, the dimension of the spacea.

aWe warn the reader that the appearance of C(n) in some estimates may vary from line to line.

Proof. Take the following open cover of U ,

U =
⋃
x∈U

B(x, r(x)).

By Vitali’s covering Lemma 1.12 there exists {xj}j≥1 ⊂ U so that U =
⋃

j≥1B(xj , 5rj) and {B(xj , rj)}j≥1

are pairwise disjoint. For a given x ∈ U define the set

Ax := {j ∈ N : B(x, 10r(x)) ∩B(xj , 10rj) ̸= ∅}.

We have the following properties.

(a) For every j ∈ Ax we have 1/3 ≤ r(x)/rj ≤ 3. Indeed if j ∈ Ax,

|r(x)− rj | =
1

20
|min{1, dist(x,C)} −min{1, dist(xj , C)}

≤ 1

20
|x− xj | ≤

1

20
(10r(x) + 10rj) =

1

2
r(x) + rj .

Then r(x) ≤ 3rj and rj ≤ 3r(x).

(b) #(Ax) = card(Ax) ≤ C(n) = 129n for every x ∈ U . From the previous property, given some
j ∈ Ax,

|x− xj |+ rj ≤ 10(r(x) + rj) + rj = 10r(x) + 11rj ≤ 10r(x) + 33r(x) = 43r(x). (1.2.6)

Take x ∈ U . For every j ∈ Ax, since r(x) ≤ 3rj we get that

Ln

 ⋃
j∈Ax

B

(
xj ,

r(x)

3

) ≤ Ln

 ⋃
j∈Ax

B(xj , rj)

 ≤ Ln(B(x, 43r(x))) (1.2.7)

The last inequality follows from the fact that if j ∈ Ax and we take y ∈ B(xj , rj) then, using
(1.2.6), we have |y−x| ≤ |y−xj |+|xj−x| ≤ rj+|xj−x| ≤ 43r(x). Next, since {B(xj , rj)}∞j=1

are pairwise disjoint and r(x) ≤ 3rj for every j ∈ Ax, then {B(xj , r(x)/3)}j∈Ax are pairwise
disjoint too and from (1.2.7) we conclude that for every x ∈ U (call ωn = Ln(B(0, 1)))

card(Ax) · ωn ·
(
r(x)

3

)n

≤ ωn · (43r(x))n ⇒ card(Ax) ≤ 129n
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Let us begin to build our partition of unity. Start by taking a C∞ smooth function h : R → [0, 1]
so that h(t) = 1 for every |t| ≤ 1 and h(t) = 0 for every |t| ≥ 2. Let M = maxt∈R |h′(t)|. For every
j ∈ N define

hj(x) = h

(
|x− xj |
5rj

)
, x ∈ Rn.

We now enumerate some properties:

• hj ∈ C∞(U).

• hj = 1 on B(xj , 5rj) and hj = 0 on Rn \B(xj , 10rj).

• Given x ∈ U , hj(x) = 0 for every j /∈ Ax. In particular {supp(hj)}j≥1 is a locally finite covering
of U .

• We have the following growth control on the bumps hj . For every x ∈ B(xj , 10rj),

|∇hj(x)| =
∣∣∣∣h′( |x− xj |

5rj

)
1

5rj
| · |′(x− xj)

∣∣∣∣ ≤ M

5rj

∣∣∣∣(x− xj)

|x− xj |

∣∣∣∣ = M

5rj
.

However, even though we have all of these properties the family {hj}j≥1 does not yet form a partition
of unity. The reason is that in general, for a given x ∈ U we have

H(x) : =

∞∑
j=1

hj(x) ≥ 1.

To solve this situation we need to define our final partition of unity {φj}j≥1 as

φj(x) =
hj(x)

H(x)
.

It is easy to check now that {φj}j≥1 forms a partitions of unity subordinated to the covering {B(xj , 10rj)}j≥1

and so that

• φj ∈ C∞(U).

•
∑∞

j=1 hj(x) = 1 for every x ∈ U .

• φj = 1 on B(xj , 5rj) and φj = 0 on Rn \B(xj , 10rj).

• Given x ∈ U , φj(x) = 0 for every j /∈ Ax. In particular {supp(hj)}j≥1 is a locally finite covering
of U .

• Given x ∈ U we have

|∇H(x)| ≤
∑
j∈Ax

|h′j(x)| ≤
∑
j∈Ax

M

5rj
≤
∑
j∈Ax

3M

5r(x)
= card(Ax)

3M

5r(x)
=

C(n)

r(x)
.

Consequently for every x ∈ supp(φj) (in particular j ∈ Ax)

|∇φ′
j(x)| =

∣∣∣∣∇hj(x)

H(x)
− hj(x)∇H(x)

H2(x)

∣∣∣∣ ≤ |∇hj(x)|+ |∇H(x)| ≤ M

5rj
+

C(n)

r(x)
≤ C(n)

rj
.
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Proof of Whitney’s theorem 1.7. Let U = Rn \ C be the complement of C, which is an open set of Rn.
Let {φj}j≥1 the C∞ partition of unity of U subordinated to {B(xj , 10rj)}j≥1 given by Lemma 1.13.
For each j ∈ N let x̃j ∈ C such that dist(xj , C) = |xj − x̃j | (note that x̃j may not be unique).

We define the extension F : Rn → R as

F (x) =

{
f(x), if x ∈ C∑∞

j=1 φj(x)(f(x̃j) + L(x̃j) · (x− x̃j), if x ∈ U
(1.2.8)

Fits thing to note is that F ∈ C∞(U) because U is open and every x ∈ U has a neighbourhood Ux =
B(x, 10r(x)) whose points satisfy

F (y) =
∑
j∈Ax

φj(y)(f(x̃j) + L(x̃j) · (y − x̃j), y ∈ Ux.

This means that locally we have a finite sum of C∞(U) functions. Moreover we have that for every
x ∈ U ,

DF (x) =
∑
j∈Ax

∇φj(x)(f(x̃j) + L(x̃j) · (x− x̃j) + φj(x)L(x̃j).

We now divide the proof into two steps.

(Step 1) F is differentiable at every x ∈ C with ∇F (x) = L(x). (Together with the fact that
F ∈ C∞(U) we get that F is differentiable everywhere on Rn).

We need to check that for a given x ∈ C,

lim
y→x

F (y)− F (x)− L(x) · (y − x)

|y − x|
= 0.

Since (1.2.1) implies

lim
y→x
y∈C

F (y)− F (x)− L(x) · (y − x)

|y − x|
= lim

y→x
y∈C

f(y)− f(x)− L(x) · (y − x)

|y − x|
= 0

we only need to prove that

lim
y→x
y/∈C

F (y)− F (x)− L(x) · (y − x)

|y − x|
= 0. (1.2.9)

Let y /∈ C with |y − x| ≤ 1. We have

|F (y)− F (x)− L(x) · (y − x)| =

∣∣∣∣∣∣
∑
j∈Ay

φj(y) (f(x̃j) + L(x̃j) · (x− x̃j)− f(x)− L(x) · (y − x))

∣∣∣∣∣∣
≤
∑
j∈Ay

φj(y) (|f(x̃j)− f(x)− L(x) · (x̃j − x)|+ |(L(x)− L(x̃j) · (x̃j − y)|)

We note that for every j ∈ Ay, recalling that |xj − x̃j | = d(xj , C)

|x̃j − x| ≤ |x− xj |+ |xj − x̃j | ≤ 2|x− xj | ≤ 2(|x− y|+ |y − xj |)
≤ 2(|x− y|+ 10(r(y) + rj)) ≤ 2|x− y|+ 20r(y) + 20rj ≤ 2|x− y|+ 80r(y)

≤ 2|x− y|+ 4|x− y| ≤ 6|x− y| (1.2.10)

and

|x̃j − y| ≤ |x̃j − x|+ |x− y| ≤ 7|x− y|. (1.2.11)
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By joining everything we get that

|F (y)− F (x)− L(x) · (y − x)|
|y − x|

≤
∑
j∈Ay

φj(y)
|f(x̃j)− f(x)− L(x) · (x̃j − x)|

(1/6)|x̃j − x|

+
∑
j∈Ay

φj(y)
|L(x)− L(x̃j)| · |x̃j − y|

(1/7)|x̃j − y|
.

Therefore for any ε > 0 by the continuity of L and by (1.2.1), there exists δ ∈ (0, 1] so that if 0 <
|z − x| < δ with z ∈ C then

|f(z)− f(x)− L(x) · (z − x)|
|z − x1

<
ε

13
and |L(x)− L(z)| < ε

13
.

Now if we take 0 < |y − x| ≤ δ
7 with y /∈ C we have that for every j ∈ Ay, |x̃j − x| ≤ 6|x − y| < δ

and hence

|F (y)− F (x)− L(x) · (y − x)|
|y − x|

≤
∑
j∈Ay

φj(y)
(
6
ε

13

)
+
∑
j∈Ay

φj(y)
(
7
ε

13

)
= ε

∑
j∈Ay

φj(y) = ε.

We have proved (1.2.9).

(Step 2) ∇F (x) is continuous at every x ∈ C. For that we need to take x ∈ C and check that
lim
y→x

∇F (y) = L(x). Observe that this finishes the proof because ∇F was already continuous on U .

Note that by the continuity of L on C we have

lim
y→x
y∈C

|∇F (y)− L(x)| = lim
y→x
y∈C

|L(y)− L(x)| = 0

so we only need to prove

lim
y→x
y/∈C

|∇F (y)− L(x)| = 0 (1.2.12)

Let y /∈ C with |y − x| ≤ 1/2 and let ỹ ∈ C a point so that d(y, C) = |y − ỹ|. We write

|∇F (y)− L(x)| ≤ |∇F (y)− L(ỹ)|+ |L(ỹ)− L(x)|.

Since we have that |ỹ − x| ≤ |ỹ − y|+ |y − x| ≤ 2|y − x| it is clear that by the continuity of L on C

lim
y→x
y/∈C

|L(ỹ)− L(x)| = 0.

We focus our attention on the term |∇F (y)− L(ỹ)|. By using that for every y ∈ U ,
∑

j≥1∇φj(y) = 0
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we have

|∇F (y)− L(ỹ)| =

∣∣∣∣∣∣
∑
j∈Ay

∇φj(y) (f(x̃j) + L(x̃j) · (y − x̃j)) + φj(y)(L(x̃j)− L(ỹ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈Ay

∇φj(y) (f(x̃j)− f(ỹ) + L(x̃j) · (ỹ − x̃j) + (L(ỹ)− L(x̃j) · (ỹ − y))

+
∑
j∈Ay

φj(y)(L(x̃j)− L(ỹ))

∣∣∣∣∣∣
≤
∑
j∈Ay

|∇φj(y)| · |f(ỹ)− f(x̃j)− L(x̃j) · (ỹ − x̃j)|

+
∑
j∈Ay

|∇φj(y)| · |L(ỹ)− L(x̃j | · |ỹ − y)|+
∑
j∈Ay

φj(y)|L(x̃j)− L(ỹ)|

≤
∑
j∈Ay

C(n)

rj
|f(ỹ)− f(x̃j)− L(x̃j) · (ỹ − x̃j)|

+
∑
j∈Ay

C(n)

rj
· |L(ỹ)− L(x̃j | · |ỹ − y)|+

∑
j∈Ay

φj(y)|L(x̃j)− L(ỹ)|

To estimate these three summands observe that, and using that j ∈ Ay

|ỹ − x̃j | ≤ |ỹ − y|+ |y − xj |+ |xj − x̃j | = 20r(y) + |y − xj |+ 20rj

≤ 20r(y) + 10r(y) + 10rj + 20rj ≤

{
120rj

120r(y) = 6|y − ỹ|
.

Moreover one has |ỹ − y| = 20r(y) ≤ 60rj . All of this information allows us to write

|∇F (y)− L(ỹ)| ≤
∑
j∈Ay

C(n)
|f(ỹ)− f(x̃j)− L(x̃j) · (ỹ − x̃j)|

ỹ − x̃j

+
∑
j∈Ay

C(n) · |L(ỹ)− L(x̃j |+
∑
j∈Ay

φj(y)|L(x̃j)− L(ỹ)|

By using that (1.2.1) holds uniformly on compact sets of C and also since L is uniformly continuous on
compact sets of C we have that for any given ε > 0 and given the compact set Kx = B(x, 1/2) ∩ C
there is δ ∈ (0, 1/2) so that if 0 < |a− b| < δ with a, b ∈ Kx ∩ C, then

f(a)− f(b)− L(b) · (a− b)|
|a− b|

< ε

|L(a)− L(b)| < ε
.

So if we let 0 < |y − x| < δ/6 with y /∈ C, then for every j ∈ Ay we have |x̃j − ỹ| < 6|y − ỹ| ≤
6|y − x| < δ and hence

|∇F (y)− L(ỹ)| ≤
∑
j∈Ay

C(n)(2ε) +
∑
j∈Ay

φj(y)ε = card(Ay)C(n)2ε+ ε ≤ C(n)ε.

We have now proved (1.2.12).
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Exercises

1. Prove that the space of real-valued bounded Lipschitz functions Lip∞(X), where X is a metric
space, must be a Banach space.

2. Consider the set A = {(1,−1), (−1, 1), (1, 1)} ⊂ R2 and define f : (A, ∥ · ∥∞) → (R2, ∥ · ∥2) by
f(1,−1) = (1, 0)

f(−1, 1) = (−1, 0)

f(1, 1) = (0,
√
3)

.

Prove that f is 1−Lipschitz but there does not exist a function F : (R2, ∥ · ∥∞) → (R2, ∥ · ∥2) so
that F |A = f and being 1−Lipschitz.

3. In this space R2 is endowed with the norm ∥(x, y)∥1 = |x|+ |y|. Consider the function f(x, y) =
|x| − |y|, defined only on S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

(a) Prove that f : S1 → R is 1-Lipschitz.

(b) Prove that any extension F : B(0, 1) → R, which is 1-Lipschitz satisfies F (0, 0) ≤ 0 and
that F (x, 0) = |x| for all x ∈ [−1, 1].

(c) Conclude that any extension F : B(0, 1) → R, that is 1-Lipschitz cannot be differentible at
(0, 0).

4. Prove that McShane theorem could have been proved by defining the extension as

G(x) = sup
y∈A

{f(y)− L|x− y|}, x ∈ Rn.

Moreover, prove that G is the ”smallest” Lipschitz possible extension of f (that is, for any other
L-Lipschitz extension h : Rn → R we have G(x) ≤ h(x) for all x ∈ Rn).

Analogously, prove that the extension F (x) = infy∈A{f(y) + L|x − y|} defines the ”biggest”
L-Lipschitz extension of f .

5. Let F ⊂ Rn be a closed set and define its distance to a point x ∈ Rn as

d(x, F ) = inf{|x− y| : y ∈ F}.

(a) Prove that x → d(x, F ) defines a 1-Lipschitz function.

(b) Prove that there exists y ∈ F so that d(x, F ) = |x− y|, or what is the same

d(x, F ) = min{|x− y| : y ∈ F}.

(c) Given two closed sets F1, F2 ⊂ Rn we define their distance as d(F1, F2) = inf{|x − y| :
x ∈ F1, y ∈ F2}. Provide an example of two closed sets F1, F2 ⊂ Rn so that d(F1, F2) = 0
but F1 ∩ F2 = ∅.

6. Let A ⊂ Rn be an arbitrary set. We say that f : A → R is Hölder continuous with constants
C ≥ 0 y α ∈ (0, 1) if |f(x)− f(y)| ≤ C|x− y|α for all x, y ∈ A.

Prove that a ”slight modification” of McShane’s proof allows to extend Hölder continuous func-
tions f : A → R to the whole Rn (having the extension the same Hölder constants), being A an
arbitray set.

7. Let f : Rn → R be a continuous function and let ε : Rn → (0,∞) be a positive continuous
function. By using the technique of partitions of unity give an explicit example of a function
F : Rn → R so that F ∈ C∞(Rn) and |F (x)− f(x)| ≤ ε(x) for all x ∈ Rn.
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8. Let C ⊂ Rn be a closed set. Given a L−Lipschitz function f : C → R, use the Whitney partitions
of unity from the proof of Whitney’s extension theorem to show that

F (x) =

{
f(x), x ∈ C∑

j≥1 φj(x)f(x̃j), x /∈ C

defines a cL-Lipschitz extension of f with c > 0 a constant. (Here we use the same notation as in
the proof of the Whiteny’s extension theorem for φj and x̃j).

9. By a dyadic cube we understand a set of the form Q = [0, 2−k]n + j ⊂ Rn for some k ∈ Z
and j ∈ 2−kZn. Given an open set U ⊂ Rn we say that the family of cubes W = {Qi}i∈N is a
Whitney decomposition of U if the following properties hold.

(W1) Each Qi is a dyadic cube inside U .

(W2) U =
⋃

iQi and for all i ̸= j we have int(Qi) ∩ int(Qj) = ∅.

(W3) For every i we have
√
nℓ(Qi) ≤ dist(Qi, ∂U) ≤ 4

√
nℓ(Qi).

(The existence of such decompositions appears in [17]).

Prove that

(a) If Qi ∩Qj ̸= ∅, then 1
4ℓ(Qi) ≤ ℓ(Qj) ≤ 4ℓ(Qi).

(b) For every i ∈ N
card{j ∈ N : Qj ∩Qi ̸= ∅} ≤ C(n).

Find, if possible, the best constant C(n) for which the above inequality holds.

10. Prove that if f : Rn → R is a C1 function, then for every compact set K ⊂ Rn,

lim
y→x, y∈K

f(y)− f(x)−Df(x) · (y − x)

|y − x|
= 0 uniformly on K.

This means that given a compact set K ⊂ Rn y ε > 0 there exists δ > 0 so that if 0 < |x− y| < δ
with x, y ∈ K then

f(y)− f(x)−Df(x) · (y − x)

|y − x|
< ε.
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Chapter 2

Rademacher and Stepanov theorem

In this chapter we will give the proof of the classical Rademacher theorem about differentiability almost
everywhere of Lipschitz functions. Thereafter we will present one generalization: the Stepanov theorem.
In Chapter 3 we even show another generalization of the Rademacher theorem for Sobolev functions
W 1,p(Rn), p > n.

2.1 Classical result

We aim to prove the next result.

Theorem 2.1 (Rademacher, 1919). Let U ⊂ Rn be an open set. If f : U → R is Lipschitz then f
is differentiable Ln-almost everywhere on U .

Remark 2.2. Observe that for locally Lipschitz functions the result still holds because one can always
cover the set U by a countable number of balls where the function will be Lipschitz, then apply Theorem
2.1, and conclude by using that a countable number of negligible sets is negligible.

We first give the proof of the case n = 1 and then we consider n ≥ 2. For the case n = 1 we need to
introduce absolutely continuous functions.

Definition 2.3. A function f : [a, b] ⊂ R → R is absolutely continuous function if for every ε > 0 there
exists δ > 0 so that if (x1, x1 + h1), (x2, x2 + h2) . . . , (xk, xk + hk) are disjoint subintervals of [a, b]
such that

∑k
i=1 hi < δ then

∑k
i=1 |f(xi + hi)− f(xi)| < ε.

Theorem 2.4. If f : [a, b] → R is absolutely continuous, then f is differentiable at L1-almost
every point x ∈ [a, b] with f ′ ∈ L1([a, b]) and so that

f(x) = f(a) +

∫ x

a
f ′(t) dt for every x ∈ [a, b].

Indeed f is absolutely continuous if and only if there is some g ∈ L1([a, b]) so that

f(x) = f(a) +

∫ x

a
g(t) dt for every x ∈ [a, b].

Proof. A very instructive proof can be found in Rudin’s book [15, Chapter 7].

In general almost everywhere differentiability does not imply absolutely continuity. For instance
Cantor staircase function is continuous and almost everywhere differentiable but it is not absolutely
continuous.
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Corollary 2.5. If f : [a, b] ⊂ R → R is Lipschitz then f is differentiable L1-almost everywhere.

Proof. Just observe that Lipschitz functions are absolutely continuous and apply Theorem 2.4.

Note that there are absolutely continuous functions, like f(x) =
√
x, x ∈ [0, 1] that are absolutely

continuous but not Lipschitz. Before we give the proof of Rademacher’s theorem for higher dimensions
n ≥ 2 we need the following lemma.

Lemma 2.6. Let f ∈ L1
loc(U) with U ⊂ Rn open so that∫

U
f(x)φ(x) dx = 0 for every φ ∈ C∞

0 (U)

where C∞
0 = {φ ∈ C∞(U) : supp(f) = {x ∈ U : f(x) ̸= 0} ⊂ U is compact}. Then f(x) =

0 for Ln-almost every x ∈ U .

Proof. We argue by contradiction. Assume that Ln({x ∈ U : f(x) ̸= 0}) > 0. Without loss of
generality we can assume that Ln({x ∈ U : f(x) > 0}) > 0 (otherwise take −f ).

By the interior regularity of the Lebesgue measure Ln there exists ε > 0 and a compact set K ⊂ U
so that {

Ln(K) > 0

K ⊂ {x ∈ U : f(x) ≥ ε}
.

Note that, whenever U ̸= Rn, and due to the compactness of K we have D : = dist(K, ∂U) > 0. In the
case U = Rn let D = 1. We define the open sets

Gi : =

{
x ∈ U : dist(x,K) <

D

2i

}
, i ∈ N.

We have {Gi}i≥1 ⊂ U forming a decreasing sequence of open sets

K ⊂ Gi+1 ⊂ Gi ⊂ Gi ⊂ · · · ⊂ G1 ⊂ U,

where Gi is a compact set (in particular Ln(Gi) < ∞ for every i ∈ N). Let us take functions φi ∈
C∞
0 (Gi) with 0 ≤ φi(x) ≤ 1 for all x ∈ Gi and φi = 1 on K. Then for every i ∈ N,

0 =

∫
U
f(x)φi(x) dx =

∫
K
f(x)φi(x) dx+

∫
U\K

f(x)φi(x) dx

=

∫
K
f(x) dx+

∫
Gi\K

f(x)φi(x) dx

≥ εLn(K)−
∫
Gi\K

|f(x)| dx.

Now, since L1(G1) < ∞ and
⋂

i≥1Gi \K = ∅ we get

lim
i→∞

Ln (Gi \K) = Ln

⋂
i≥1

Gi \K

 = 0.

This fact together with the absolute continuity of the integral1 (and using that we have |f | ∈ L1(G1))
implies that

lim
i→∞

∫
Gi\K

|f(x)| dx = 0

1For a (Lebesgue) measurable set F ⊂ Rn let f : F → [0,∞) be such that f ∈ L1(F ). Then for every ε > 0 there exists
δ > 0 so that if A ⊂ F is measurable with Ln(A) < δ then

∫
A
f(x) dx < ε.
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and hence
0 ≥ εLn(K) + lim

i→∞

∫
Gi\K

|f(x)| dx = εLn(K) > 0.

This is a contradiction, so the lemma is proved.

Let us now prove the main result of this chapter.

Proof of Rademacher theorem (Theorem 2.1). For each v ∈ Sn−1 = {v ∈ Rn : |v| = 1} and x ∈ U we
define, whenever exists

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
=

d

dt
|t=0f(x+ tv).

Our first objective is to prove that once v ∈ Sn−1 is fixed, then Dvf(x) exists for Ln-almost every
x ∈ U . Fix v ∈ Sn−1 and let

Av = {x ∈ U : Dvf(x) does not exist}.

We have the following properties:

• Av is measurable. To prove this consider
Dvf(x) = lim supt→0

f(x+ tv)− f(x)

t
= limk→∞

(
sup0<|t|<1/k

t rational

f(x+ tv)− f(x)

t

)
Dvf(x) = lim inft→0

f(x+ tv)− f(x)

t
= limk→∞

(
inf0<|t|<1/k

t rational

f(x+ tv)− f(x)

t

) .

We may check that, since supremum over a countable family of measurable functions is mea-
surable, and the pointwise limit of a sequence of measurable functions is measurable, then both
Dvf,Dvf : U → [−∞,+∞] are measurable functions. Finally note that

Av = {x ∈ U : Dvf(x) > Dvf(x)} = (Dvf −Dvf)
−1((0,+∞])

which is hence measurable.

• For every line L parallel to the vector v we have that H1(Av∩L) = 0. Indeed any such line can be
written as L = Lx = {x+ tv : t ∈ R} for some x ∈ Rn. Then we define the function fx : R → R
as fx(t) = f(x + tv). Since f is Lipschitz we have that fx is Lipschitz and hence absolutely
continuous2. We then apply Corollary 2.5 and it is clear that fx is differentiable at H1-almost
every t ∈ R. This means that Dvf(x+ tv) exists for H1-almost every t ∈ R. Call N ⊂ R the null
set such that Dvf(x+ tv) exists for all t ∈ R \N .
Define the function h : R → Rn given by h(t) = x+ tv. We have that h(R) = Lx and

Dvf(y) exists for all y ∈ h(R \N).

Since h is bijective, h(R \ N) = h(R) \ h(N) = Lx \ h(N). Also, using the fact that h is
Lipschitz and the properties of the Hausdorff measure, we have that H1(N) = 0 implies that
H1(h(N)) = 0. Therefore we conclude that

Dvf(y) exists for all y ∈ Lx \ h(N),

so Dvf exists at H1-almost every point of Lx. That is H1(Av ∩ Lx) = 0, and we are done.

2Depending on the shape of U , the function fx does not need to be defined on an interval or on R, but it is for sure defined
on at most a countable union of open intervals. So we can proceed analogously to reach the conclusion that Dvf(y) exists at
H1 almost every y ∈ Lx ∩ U .
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We now apply Fubini’s theorem to conclude that Ln(Av) = 0. Namely, for a given v ∈ Sn−1 call Wv its
normal hyperplane. We have Rn = Wv ⊕ span{v} and we know that Ln = Hn−1|Wv ×H1|span{v}. For
x ∈ Wv, the intersection of Av with the line Lx passing through x with direction v produces a chapter in
Av that we call

Bx = Av ∩ Lx

Since Av ⊂ Rn is measurable we have by Fubini’s theorem

Ln(Av) =

∫
Wv

H1(Bx) dHn−1(x)

so, using that H1(Bx) = 0 for every x ∈ Wv we get Ln(Av) = 0.

In particular for every i = 1, . . . , n and for the canonical vectors vi = (0, . . . , 0, 1i), 0, . . . , 0), there
exists the directional derivatives at almost every x ∈ U ,

∇f(x) : =

(
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
= (De1f(x), . . . Denf(x)) .

We next prove the following facts:

(i) For every v ∈ Sn−1 there exists a null set Nv ⊂ Rn so that ∇f(x) · v = Dvf(x) for every
x ∈ Rn \Nv.

(ii) f is differentiable at almost every x ∈ U .

(i): Let v ∈ Sn−1 be fixed. Let also φ ∈ C∞
0 (U). Then take t0 > 0 be sufficiently small so that

whenever φ(x) ̸= 0 then x+ tv ∈ U for all 0 ≤ |t| < 2t0. In this way f(x+ tv)φ(x) is well defined for
every x ∈ U and every 0 ≤ |t| < 2t0. We can write∫

U

f(x+ tv)− f(x)

t
φ(x) dx =

∫
U

f(x+ tv)

t
φ(x) dx+

∫
U
−f(x)

t
φ(x) dx

Making a change of variables x+ tv → y in the first term of the sum we get∫
U

f(x+ tv)− f(x)

t
φ(x) dx =

∫
U

f(y)

t
φ(y − tv) dy +

∫
U
−f(x)

t
φ(x) dx

= −
∫
U
f(x)

φ(x)− φ(x− tv)

t
dx (2.1.1)

In order to take limits t → 0, we will apply the Dominated Convergence Theorem, which requires to
check the integrability of the above functions. Indeed this is true because for every 0 < t < t0

•
∣∣∣∣f(x+ tv)− f(x)

t
φ(x)

∣∣∣∣ ≤ L|φ(x)|, where the last term is integrable because it is continuous

with compact support in U .

•
∣∣∣∣f(x)φ(x− tv)− φ(x)

t

∣∣∣∣ ≤ C|f(x)|, where the last term is integrable on (supp(φ)+t0B(0, 1)) ⊂

U because it is a Lipschitz function (in particular continuous) on a compact set3.

As previously announced, we apply now the Dominated Convergence Theorem in both sides of (2.1.1)
and we get

lim
t→0

∫
U

f(x+ tv)− f(x)

t
φ(x) dx =

∫
U
Dvf(x)φ(x) dx = −

∫
U
f(x)Dvφ(x) dx.

3Given any two sets A,B ⊂ Rn we write its sum as A+B = {a+ b : a ∈ A, b ∈ B}.
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And this holds for every |v| = 1. By choosing v = ei for every i = 1, . . . , n we have∫
U

∂f

∂xi
(x)φ(x) dx = −

∫
U
f(x)

∂φ

∂xi
(x) dx. (2.1.2)

Therefore for every v ∈ Sn−1, and every φ ∈ C∞
0 (U),∫

U
Dvf(x)φ(x) dx = −

∫
U
f(x)Dvφ(x) dx = −

∫
U
f(x)∇φ(x) · v dx = −

n∑
i=1

∫
U
f(x)

∂φ

∂xi
(x)vi dx

=
n∑

i=1

∫
U

∂f

∂xi
(x)φ(x)vi dx =

∫
U
(∇f(x) · v)φ(x) dx

Applying Lemma 2.6 we conclude that Dvf(x) = ∇f(x) · v for almost every x ∈ U and we are done.

(ii): Let us finally check that f is differentiable at almost every x ∈ U to conclude the proof.

Take {vk}∞k=1 ⊂ Sn−1 a dense subset and for every k ∈ N let

Ak = {x ∈ U : ∇f(x) exists, Dvkf(x) exists and Dvkf(x) = ∇f(x) · vk}

It is clear that by the subadditivity of the Lebesgue measure for each k ∈ N we have Ln(U \Ak) = 0 and
then Ln (U \

⋂∞
k=1Ak) = 0. Denote A =

⋂∞
k=1Ak. Now our goal is to check that f is differentiable at

every point x ∈ A. Observe that if x ∈ A then

Dvkf(x) = ∇f(x) · vk, for every k ∈ N. (2.1.3)

Warning: Even if for a point x ∈ U there exists Dvf(x) for all directions v ∈ Sn−1 with Dvf(x) =
∇f(x) · v, we do not necessarily have the differentiability of f at x. Indeed there are examples of
Gateaux differentiable functions at a point x (i.e. there exists all directional derivatives at x) whose
Gateaux derivative is moreover linear and continuous, but nontheless f is not differentiable at x.

Continuing with the proof, for a given x ∈ A, v ∈ Sn−1 and t > 0 define

Q(x, v, t) =
f(x+ tv)− f(x)

t
−∇f(x) · v.

We assert that it is enough to prove that for every x ∈ A and for every ε > 0 there exists δ > 0 so that
|Q(x, v, t)| < ε for all 0 < t < δ and all v ∈ Sn−1. Indeed, if this is the case, we readily obtain the
differentiability of f at every x ∈ A: For a given x ∈ A and ε > 0 take δ > 0 as mentioned above. Then
for every 0 < |y− x| < δ we can write y = x+ tyvy for some 0 < ty < δ and some vy ∈ Sn−1, and we
obtain that∣∣∣∣f(y)− f(x)−∇f(x) · (y − x)

|y − x|

∣∣∣∣ = ∣∣∣∣f(x+ tv)− f(x)−∇f(x) · (tyvy)
|tyvy|

∣∣∣∣
=

∣∣∣∣f(x+ tv)− f(x)

ty
−∇f(x) · vy

∣∣∣∣ = |Q(x, vy, ty)| < ε,

which yields to

lim
y→x

f(y)− f(x)−∇f(x) · (y − x)

|y − x|
= 0.

So, to finish the proof let us fix x ∈ A and ε > 0 and let us try to find δ > 0 so that |Q(x, v, t)| < ε
for all 0 < t < δ and all v ∈ Sn−1. We need to quote some properties:
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(a) For every x ∈ A and i = 1, . . . , n using that f is L-Lipschitz we have∣∣∣∣ ∂f∂xi (x)
∣∣∣∣ = ∣∣∣∣limt→0

f(x+ tei)− f(x)

t

∣∣∣∣ ≤ L.

(b) For every v, w ∈ Sn−1, t > 0 and x ∈ A, by using (a) and again the L-Lipschitzianity of f ,

|Q(x, v, t)−Q(x,w, t)| ≤ (
√
n+ 1)L|v − w|.

(c) Given ε > 0, since {vk}k≥1 ⊂ Sn−1 is dense, we can choose p ∈ N sufficiently large so that for
any v ∈ Sn−1 there exists j ∈ {1, . . . , p} so that

|v − vj | ≤
ε

2(
√
n+ 1)L

.

(d) For any x ∈ A we have that for all k ∈ N,

lim
t→0+

Q(x, vk, t) = Dvkf(x)−∇f(x) · vk = 0.

Let us finish the argument. Take x ∈ A and ε > 0. Choose now p ∈ N as in (c) and observe that by (d)
we have

lim
t→0+

Q(x, vk, t) = 0 for all k = 1, . . . , p.

By definition of limit there exists δ > 0 so that if 0 < t < δ we have

|Q(x, vk, t)| <
ε

2
for all k = 1, . . . , p. (2.1.4)

Hence, given any 0 < t < δ and v ∈ Sn−1, by choosing j ∈ {1, . . . , p} as in (c), and by using (b) and
(2.1.4)

|Q(x, v, t)| ≤ |Q(x, vj , t)|+ |Q(x, vj , t)−Q(x, v, t)| ≤ ε

2
+ (

√
n+ 1)L|v − vj | ≤

ε

2
+

ε

2
= ε.

2.2 Stepanov theorem

The main goal of this section is to prove the following generalization of Rademacher’s theorem due to
Stepanov.

Theorem 2.7 (Stepanov, 1923). Let U ⊂ Rn be open. Then a given measurable function f :
U → R is differentiable Ln-almost everywhere if and only if for almost every x ∈ U ,

lim sup
y→x

|f(y)− f(x)|
|y − x|

< +∞.

It is clear that all L-Lipschtiz functions satisfy that

lim sup
y→x

|f(y)− f(x)|
|y − x|

≤ L < +∞

for all x ∈ U . So Stepanov’s theorem is indeed a generalization of Rademacher’s theorem.

Before getting into the proof we need to recall some previous notions and important results. The first
one is the famous Lebesgue differentiation theorem.
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Theorem 2.8 (Lebesgue differentiation). If f ∈ L1
loc(Rn) then

lim
r→0

1

Ln(B(x, r))

∫
B(x, r)f(y) dy = f(x) for almost every x ∈ Rn.

And if f ∈ Lp
loc(R

n) for some 1 ≤ p ≤ ∞ then

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

|f(y)− f(x)|p dy = 0 for almost every x ∈ Rn. (2.2.1)

We say that x ∈ Rn is a Lebesgue Lp point of f whenever (2.2.1) holds.

Definition 2.9. Let E ⊂ Rn be a measurable set and x ∈ Rn. We say that E has density 1 at x (or that
x is of density 1 on E) if

lim
r→0

Ln(B(x, r) ∩ E)

Ln(B(x, r))
= 1.

And we say that E has density 0 at x (or that x is of density 0 on E) if

lim
r→0

Ln(B(x, r) ∩ E)

Ln(B(x, r))
= 0.

Example 2.10. The set E = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, −x2 ≤ y ≤ x2} satisfies that 0 = (0, 0) is of
density 0 on E. Indeed

lim
r→0

Ln(B(0, r) ∩ E)

πr2
≤ lim

r→0

r3/3

πr2
= 0.

Lemma 2.11. Let E ⊂ Rn be a measurable set. Then

1. Almost every point x ∈ E is of density 1 on E.

2. Almost every point x ∈ Rn \ E is of density 0 on E.

Proof. Let f = χE be the characteristic function of the set E, that is

χE(x) =

{
1, if x ∈ E

0, if x /∈ E
.

We have that χE is a measurable function and χE ∈ L1
loc(Rn). By using the Lebesgue differentiation

theorem (Theorem 2.8) we get that for almost every x ∈ Rn,

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

χE(y) dy = χE(x).

In particular

1. For almost every x ∈ E, since χE(x) = 1,

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

χE(y) dy = lim
r→0

Ln(B(x, r) ∩ E)

Ln(B(x, r))
= 1.

2. For almost every x ∈ Rn \ E, since χE(x) = 0,

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

χE(y) dy = lim
r→0

Ln(B(x, r) ∩ E)

Ln(B(x, r))
= 0.
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Proof of Stepanov theorem (Theorem 2.7). We need to prove two implications:
⇒): This one is easy. If f is differentiable at almost every point x ∈ U , then for almost every x ∈ U

there exists ∇f(x) ∈ Rn so that

lim
y→x

|f(y)− f(x)−∇f(x) · (y − x)|
|y − x|

= 0.

Therefore

lim sup
y→x

|f(y)− f(x)|
|y − x|

= lim sup
y→x

|f(y)− f(x)−∇f(x) · (y − x) +∇f(x) · (y − x)|
|y − x|

≤ lim sup
y→x

|f(y)− f(x)−∇f(x) · (y − x)|
|y − x|

+ lim sup
y→x

|∇f(x) · (y − x)|
|y − x|

= 0 + lim sup
y→x

|∇f(x) · (y − x)|
|y − x|

≤ lim sup
y→x

|∇f(x)| = |∇f(x)| < +∞.

⇐): Let

A =

{
x ∈ U : lim sup

y→x

|f(y)− f(x)|
|y − x|

< +∞
}
.

We have by assumptions that Ln(U \ A) = 0 so our goal is to prove that f is differentiable at almost
every x ∈ A. We split A as follows. For every k ∈ N define

Ek =

{
x ∈ A : |f(x)| ≤ k,

|f(x)− f(y)|
|x− y|

≤ k if |y − x| < 1

k

}
Let us check that A =

⋃
k∈NEk. Take x ∈ A. Then

lim sup
y→x

|f(y)− f(x)|
|y − x|

= k1 < ∞.

Then there exists k2 > 0 so that whenever 0 < |y − x| < 1
k2

then |f(y)−f(x)|
|y−x| ≤ k1 + 1. Lastly let

k3 = |f(x)|. By letting k be the closest upper integer to max{k1 + 1, k2, k3} we have x ∈ Ek.
It is enough to prove that f is differentiable at almost every point x ∈ Ek for every k ∈ N. Let us

then fix k ∈ N.
Observe that f |Ek

is Lipschitz because:

• If x, y ∈ Ek with |x− y| < 1
k then |f(y)− f(x)| < k|x− y|.

• If x, y ∈ Ek with |x− y| ≥ 1
k then |f(x)− f(y)| ≤ 2k ≤ 2k2|x− y|.

We now apply the McShane extension theorem (Theorem 1.4) to the Lipschitz function f : Ek → R and
find Fk : Rn → R Lipschitz with F |Ek

= f . By Rademacher theorem (Theorem 2.1) we have that Fk is
differentiable Ln almost everywhere on Rn.

For the rest of the prove we want to prove that f is differentiable at every differentiable point of
Fk that belongs to Ek and that moreover is a point of density 1 on Ek. Note that since the set Ek is
measurable (we leave this fact as an exercise for the reader), Ln-almost every x ∈ Ek is of density 1 in
Ek. Therefore, let us call

Ak = {x ∈ Ek : x is of density 1 on Ek} ∩ {x ∈ Ek : Fk is differentiable at x}.

and let us verify that f is differentiable at every x ∈ Ak with ∇f(x) = ∇F (x). With this, the proof will
be complete.
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Take x ∈ Ak. On the one hand

lim
y→x
y∈Ek

|f(y)− f(x)−∇Fk(x) · (y − x)|
|y − x|

= lim
y→x
y∈Ek

|Fk(y)− Fk(x)−∇Fk(x) · (y − x)|
|y − x|

= 0

by the differentiability of Fk at x. Consequently one only needs to prove that

lim
y→x
y/∈Ek

|f(y)− f(x)−∇Fk(x) · (y − x)|
|y − x|

= 0.

To deal with that limit it is crucial to use the next key fact, that allow us to change points y /∈ Ek for
points ỹ ∈ Ek that converge to x faster than y converges to x. This will be possible to do since x has
density 1 on Ek and intuitively this means that ”most” of the surrounding of x are points of Ek.

Key fact: For every y /∈ Ek there exists ỹ ∈ Ek so that lim
y→x

|y − ỹ|
|y − x|

= 0.

Proof of the Key Fact: For every r > 0 define

h(r) =

(
1− Ln(B(x, 4r) ∩ Ek)

Ln(B(x, 4r))

)1/n

4r

• If there exists r0 > 0 so that h(r0) = 0 then Ln(B(x, 4r0) ∩ Ek) = Ln(B(x, 4r0)). Then if
y ∈ B(x, 4r0) we take ỹ ∈ B(y, |y − x|2) ∩ Ek ̸= ∅. And if y /∈ B(x, 4r0) we take any ỹ ∈ Ek.
In this way,

lim
y→x

|y − ỹ|
|y − x|

≤ lim
y→x

|y − x|2

|y − x|
= 0.

• If h(r) > 0 for every r > 0 then one can check that by the density 1 of x on Ek

lim
r→0

h(r)

r
= 0, (2.2.2)

and moreover

Ln(B(0, h(r))) = Ln(B(x, 4r))− Ln(B(x, 4r) ∩ Ek) = Ln(B(x, 4r) \ Ek). (2.2.3)

Hence for every y /∈ Ek, if we call r = |y − x|, and assuming that r > 0 is sufficiently small for
h(r) < r to hold (this is possible due to (2.2.2)) we have

B(y, 2h(r)) ∩ Ek ̸= ∅.

Otherwise, since h(r) < r, then B(y, 2h(r)) ⊂ B(x, 4r) and therefore

Ln(B(x, 4r) \ Ek) ≥ Ln(B(y, 2h(r))) > Ln(B(0, h(r)).

which contradicts (2.2.3). This means that for every given y /∈ Ek, whenever r > 0 is small
enough so that h(r) < r we have B(y, 2h(r)) ∩ Ek ̸= ∅ and we may take ỹ ∈ B(y, 2h(r)) ∩ Ek.
If r > 0 is big we take any ỹ ∈ Ek. We conclude the proof of the Key fact by writing

lim
y→x

|y − ỹ|
|y − x|

≤ lim
y→x

2h(|y − x|)
|y − x|

= 0.

We can now finish the proof of Stepanov’s theorem. Take x ∈ Ak, y /∈ Ek and choose ỹ ∈ Ek as in
the Key fact. We have

|f(y)− f(x)−∇Fk(x) · (y − x)|
|y − x|

=
|f(y)− Fk(x)−∇Fk(x) · (y − x)|

|y − x|

≤ |f(y)− Fk(x)−∇Fk(x) · (ỹ − x)|
|y − x|

+
|∇Fk(x) · (ỹ − y)|

|y − x|

≤ |f(y)− f(ỹ)|
|y − x|

+
|f(ỹ)− Fk(x)−∇Fk(x) · (ỹ − x)|

|y − x|
+ |∇Fk(x)|

|ỹ − y|
|y − x|

.
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We analyse each of these three summands separately. For the first one, by the definition of Ek we know
that for every ỹ ∈ Ek with |y − ỹ| < 1/k we have |f(y)− f(ỹ)| ≤ k|y − ỹ|, so the Key fact gives

lim
y→x

|f(y)− f(ỹ)|
|y − x|

≤ k lim
y→x

|y − ỹ|
|y − x|

= 0.

For the second term note that f(ỹ) = Fk(ỹ) so we can write

|f(ỹ)− Fk(x)−∇Fk(x) · (ỹ − x)|
|y − x|

=
|Fk(ỹ)− Fk(x)−∇Fk(x) · (ỹ − x)|

|ỹ − x|
|ỹ − x|
|y − x|

.

Since y → x implies ỹ → x, by the differentiability of Fk at x and since

lim sup
y→x

|ỹ − x|
|y − x|

≤ lim sup
y→x

|ỹ − y|
|y − x|

+ 1 = 1

(again using the Key fact), yields to

lim
y→x

|f(ỹ)− Fk(x)−∇Fk(x) · (ỹ − x)|
|y − x|

= 0.

Lastly, for the third term, by a direct application of the Key fact we get

lim
y→x

|∇Fk(x)|
|ỹ − y|
|y − x|

= 0.

The proof of Stepanov’s theorem is finished.

Last comment: For a point x of density 1 in a measurable set E ⊂ Rn we know that we can define
for every y /∈ E some ỹ so that

lim
y→x

|y − ỹ|
|y − x|

= 0. (2.2.4)

It is interesting to note that for a given α > 1, and some fixed x ∈ Rn, one can build examples of
measurable sets E ⊂ Rn so that x has density 1 on E but with the property that for some sequence
yn → x we have that

lim
n→∞

dist(yn, E)

|yn − x|α
̸= 0.

In other words, the convergence in (2.2.4) can not be improved to have a bigger exponent α > 1 in
the denominator.

For an specific example think simply about the real line, where we remove small intervals

In = (yn − yαn , yn + yαn)

with (yn)n≥1 ⊂ (0,+∞) converging to zero and with 1 < α′ < α. We do this in such a way that 0 will
have density one on E := R \

⋃
n≥1 In but so that

lim
n→∞

dist(yn, E)

|yn − 0|α
= lim

n→∞

yα
′

n

yαn
= +∞
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Exercises

1. Prove the following statements:

(a) If f : [a, b] → R is absolutely continuous then f is continuous.

(b) f(x) =
√
x, x ∈ [0, 1] is absolutely continuous but not Lipschitz.

(c) Given an example of a Hölder continuous function of exponent α for all α ∈ (0, 1) but not
Lipschitz.

2. Prove the existence of functions f : R2 → R with f(0, 0) = 0, so that are Lispchitz on the unit
ball, Gateaux differentiable (in every direction) at (0, 0), but are not diffeentiable at (0, 0). Recall
that f is said to be Gateaux differentiable at a point x0 ∈ R2 if for every unit vector v ∈ Sn−1 all
directional derivatives exist

Dvf(x0) = lim
t→0

f(x+ tv)− f(x)

t
.

3. Given two open sets U, V ⊂ Rn with U ⊂ U ⊂ V , define explicitly a function h : Rn → [0, 1] of
class C∞ with h = 0 on Rn \ V and h = 1 nn U .

4. (Absolutely continuity of the integral) Let F ⊂ Rn be a (Lebesgue) measurable set. Let also
f : F → [0,∞) a (Lebesgue) measurable set so that f ∈ L1(F ). Prove that for all ε > 0 there
exists δ > 0 so that if A ⊂ F is measurable with Ln(A) < δ then

∫
A f(x) dx < ε.

5. Prove that there exist functions f : R → R that are differentiable almost everywhere for which
there do not exist weak derivatives. That is, there does not exist any integrable function g ∈
L1
loc(R) so that ∫

R
g(x)φ(x) dx =

∫
R
f(x)φ′(x) dx ∀φ ∈ C∞

0 (R).

Do there exist such kind of examples for continuous functions? Do there exist such kind of exam-
ples for Lipschitz functions?

6. Let f : Rn → R. Prove that

• If f is measurable and k ∈ N,the set

Ek = {x ∈ Rn : |f(x)| ≤ k, |f(y)− f(x)| ≤ k|y − x| ∀|y − x| < 1/k}

is measurable.

• If f is differentiable almost everywhere then f is measurable. Moreover, prove that the
differential ∇f (extended by 0 where it does not exist) is a measurable function too.

7. Let f : R → R be a function so that for all x ∈ R,

lim sup
y→x

|f(y)− f(x)|
|y − x|

< +∞

Prove that f is a continuous function (in particular measurable) and that if L(N) = 0 then
L(f(N)) = 0.

8. Let Ω be a domain of Rn so that there exists c > 0 so that for all r ∈ (0, 1] and all x ∈ Ω,

Ln(Ω ∩B(x, r)) ≥ cLn(B(x, r)).

(Domains with this property are called Alhfors n-regular or domains with the measure density
condition). Prove that Ln(∂Ω) = 0. (Hint: Use the Lebesgue differentiation theorem).
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Chapter 3

Rademacher theorem for Sobolev
functions

Let Ω ⊂ Rn be an open set and let Ln denote the Lebesgue measure. The goal of this chapter is to prove
the next result.

Theorem 3.1. Let f ∈ W 1,p(Rn) for some n < p < ∞. Then there exists a representative of
f that is Hölder continuous with exponent α(p) = 1 − n

p which moreover is differentiable at Ln

almost every point x ∈ Rn.

Before going into the details of the proof we need to make a quick introduction to Sobolev spaces
and some of their properties. Finally, we aim to state the important Morrey’s inequality which will be
the essential tool for the proof of Theorem 3.1.

3.1 Introduction to Sobolev spaces

Sobolev spaces are subspaces of Lp spaces where there exists weak derivatives up to some order belong-
ing as well to Lp. These spaces arise naturally in the theory of Partial Differential Equations. Namely, it
is the correct setting to consider solutions of boundary value problems of differential equations, because
strong tools from Functional Analysis may be used. Another idea behind Sobolev spaces is that they
provide a space of functions where there is an equilibrium between smooth and rough functions.

Recall that for us C∞
0 (Ω) denotes the space of test functions given by

{φ ∈ C∞(Ω) : supp(φ) := {x ∈ Ω : ϕ(x) ̸= 0} ⊂ Ω is compact}.

Weak derivatives arise naturally after the following observation: For every f ∈ C1(Ω) if we take
φ ∈ C∞

c (Ω), by integration by parts we get∫
Ω
f
∂φ

∂xi
dx = −

∫
Ω

∂f

∂xi
φdx (3.1.1)

for each i = 1, . . . , n (the integral over ∂Ω does not appear since φ has compact support on Ω). More
generally if k ∈ N, f ∈ Ck(Rn), α = (α1, . . . , αn) is a multiindex of order |α| = α1 + · · · + αn = k,
then if Dα := ∂|α|

∂x
α1
1 ···∂xαn

n
, ∫

Ω
fDαφdx = (−1)|α|

∫
Ω
Dαfφ dx. (3.1.2)

We obtain this by applying (3.1.1) k = |α| times. Regarding these expressions, in (3.1.2), we note that
left-hand side term is well defined whenever f ∈ L1

loc(Ω). The expression at the right-hand side yields
to the definition of weak derivative of functions in L1

loc(Ω).
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Definition 3.2. Let f, g ∈ L1
loc(Ω) and α a multiindex. We say that g is the αth−weak partial derivative

of f , written Dαf = g, if ∫
Ω
fDαφdx = (−1)|α|

∫
Ω
gφ dx, ∀φ ∈ C∞

c (Ω).

If the αth−weak partial derivative of f exists then, by Lemma 2.6, it is unique up to a measure zero
set. And in the case that f ∈ C1(Ω) the derivative in the usual sense coincides with the derivative up to
a measure zero set.

Definition 3.3. Let 1 ≤ p ≤ ∞ and k ∈ N. We define the Sobolev space W k,p(Ω) = W k,p(Ω;R) to
be the set if functions f : Ω → R in L1

loc(Ω) such that for every multiindex α with |α| ≤ k, Dαf exists
in the weak sense and belongs to Lp(Ω). The space W k,p

loc (Ω) consists of those functions that belong to
W k,p(V ) for every V ⊂ Ω open with V ⊂ Ω compact.

Notation: We write W 0,p(Ω) = Lp(Ω). And for the special case p = 2 we usually write Hk(Ω) =
W k,2(Ω), k ∈ N ∪ {0}. The letter H comes from Hilbert, because these spaces, with an appropriate
norm, are Hilbert.

As in Lp we identify functions in W k,p(Ω) that are equal almost everywhere. We endow these spaces
with the norms1

∥f∥Wk,p(Ω) :=

 ∑
0≤|α|≤k

∫
Ω
|Dαf |p dx

1/p

, 1 ≤ p < ∞

∥f∥Wk,∞(Ω) :=
∑

0≤|α|≤k

ess sup
Ω

|Dαf |.

where the essential supremum is defined as ess sup
Ω

f := inf {λ ∈ R : Ln({x : f(x) > λ}) = 0} .

We highlight the following important result.

Theorem 3.4. For each k ≥ 0, 1 ≤ p ≤ ∞, the Sobolev space W k,p(Ω) =
(
W k,p(Ω), ∥ · ∥Wk,p(Ω)

)
is

Banach. Moreover W k,p(Ω) is reflexive for 1 < p < ∞ and separable for 1 ≤ p < ∞. Additionally
W k,2(Ω) = Hk(Ω) is a Hilbert space.

Proof. One may find a proof in classical books like [5].

Now we move to the question whether these functions admit approximations by smooth ones, and if
so, in which sense. We need to talk about convolution and mollifiers.

Definition 3.5. Let δ : Rn → R be the next C∞ function

δ(x) :=


Ce

1
|x|2−1 si |x| < 1

0 si |x| ≥ 1

where C > is chosen so that
∫
Rn δ(x) dx = 1. We define now for every ε > 0 the mollifier

δε(x) =
1

εn
δ
(x
ε

)
.

Note that δε is of class C∞ satisfying
∫
Rn

δε(x) = 1 and supp(δε) = B(0, ε).

1The given norm for W k,p(Ω) with 1 ≤ p < ∞ is equivalent to ∥f∥Wk,p(Ω) :=
∑

0≤|α|≤k ∥D
αf∥Lp(Ω).
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Definition 3.6. If f ∈ L1
loc(Ω) we define f ε := δε ∗ f : Ωε : = {x ∈ Ω : dist (x, ∂Ω) > ε} as

f ε(x) =

∫
Ω
δε(x− y)f(y) dy =

∫
B(0,ε)

δε(y)f(x− y) dy =

∫
B(0,1)

δ(y)f(x− εz) dz.

Mollifiers are very useful to prove the next result, about approximating Sobolev functions by smooth
ones in different ways.

Theorem 3.7. Let f ∈ L1
loc(Ω). Then the following is satisfied:

1. For each ε > 0, f ε ∈ C∞(Ωε).

2. If f ∈ C(Ω) then f ε → f uniformly on compact subsets of Ω.

3. If f ∈ Lp
loc(Ω) for some 1 ≤ p < ∞ then f ε → f in Lp

loc(Ω), and moreover f ε(x) → f(x)
for every Lebesgue point x of f .

4. If f ∈ W k,p
loc (Ω) for some 1 ≤ p < ∞ and k ≥ 1 then f ε → f in W k,p

loc (Ω).

5. If f ∈ W k,p(Rn) then f ε → f in W k,p(Rn). In this case f ε ∈ C∞
0 (Rn).

Proof. (1) Fix x ∈ Ωε, 1 ≤ i ≤ n and h sufficiently small so that x + hei ∈ Ωε (ei denotes i-th vector
of the canonical basis of Rn). Then

f ε(x+ hei)− f ε

h
=

∫
Ω

[
δε(x+ hei − y)− δε(x− y)

h

]
f(y) dy =

=
1

εn

∫
Ω

δ
(
x+hei−y

ε

)
− δ

(x−y
ε

)
h

 f(y) dy

=
1

εn

∫
V

δ
(
x+hei−y

ε

)
− δ

(x−y
ε

)
h

 f(y) dy (3.1.3)

form some open set V ⊂⊂ Ω with V ⊂ Ω compact. Being able to restrict the integral to certain V is
due to the fact of how the supports of the functions δ are acting in the integral. Now by the regularity
properties of δ,

lim
h→0

1

h

[
δ

(
x− y

ε
+

hei
ε

)
− δ

(
x− y

ε

)]
=

1

ε

∂δ

∂xi

(
x− y

ε

)
= εn

∂δε
∂xi

(x− y)

uniformly on y ∈ V .
Moreover, aiming to use the Dominated Convergence Theorem we observe that the absolute value of the
integrand is bounded.

1

h

∣∣∣∣δ(x+ hei − y

ε

)
− δ

(
x− y

ε

)∣∣∣∣ |f(y)| ≤ 1

h
|Dδ(ξ)|

∣∣∣∣x+ hei − y

ε
− x− y

ε

∣∣∣∣ |f(y)| ≤
≤ 1

h
∥Dδ∥L∞

∣∣∣∣heiε
∣∣∣∣ |f(y)| ≤ 1

ε
∥Dδ∥L∞ |f(y)| ∈ L1(V )

where ξ is some point in the segment joining x−y
ε and x+hei−y

ε . We can use the Dominated Convergence
Theorem in (3.1.3) to conclude that

∂fε

∂xi
(x) = lim

h→0

f ε(x+ hei)− f ε(x)

h
=

∫
Ω

∂δε
∂xi

(x− y)f(y) dy.
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A similar argument proves that all partial derivatives of f ε exist and are continuous everywhere on Ωε.

(2) Let V ⊂ W ⊂ Ω be open sets with V ⊂ W and W ⊂ Ω compact sets. For each y ∈ V ,

f ε(x) =
1

εn

∫
B(x,ε)

δ

(
x− y

ε

)
f(y) dy =

∫
B(0,1)

δ(z)f(x− εz) dz.

Since
∫
B(0,1)

δ(z) dz = 1, we have

|f ε(x)− f(x)| ≤
∫
B(0,1)

δ(z)|f(x− εz)− f(x)| dz.

Moreover f is uniformly continuous on W (f ∈ C(Ω)) and because ε > 0 is sufficiently small, f(x −
εz) ∈ W (x ∈ V , z ∈ B(0, 1)) we get that f ε → f uniformly on V .

(3) Take open sets V ⊂ W ⊂ Ω with V ⊂ W and W ⊂ Ω being compact. We assert that for ε > 0
sufficiently small

∥f ε∥Lp(V ) ≤ ∥f∥Lp(W ). (3.1.4)

Firstly if 1 < p < ∞ and x ∈ V we have

|f ε(x)| =

∣∣∣∣∣
∫
B(0,1)

δ(z)f(x− εz) dz

∣∣∣∣∣ ≤
∫
B(0,1)

δ(z)|f(x− εz)| dz =

=

∫
B(0,1)

δ(z)
1− 1

p δ(z)
1
p |f(x− εz)| dz ≤

(∫
B(0,1)

δ(z) dz

)1− 1
p
(∫

B(0,1)
δ(z)|f(x− εz)|p dz

)1/p

.

Now taking 1 ≤ p < ∞ we have∫
V
|f ε(x)|p dx ≤

∫
V

(∫
B(0,1)

δ(z)|f(x− εz)|p dz

)
dx =

=

∫
B(0,1)

δ(z)

(∫
V
|f(x− εz)|p dx

)
dz ≤

∫
B(0,1)

δ(z)

(∫
W

|f(y)|p dy
)

dz =

∫
W

|f(y)|p dy

for ε > 0 sufficiently small. We get hence (3.1.4).
Let now δ > 0. Since f ∈ Lp(W ) we can choose g ∈ C(W ) so that ∥f − g∥Lp(W ) < δ (for the density
of continuous functions on the spaces Lp, 1 ≤ p < ∞ we refer to [15, Page 69]). We can write the
following.

∥f ε − f∥Lp(V ) ≤ ∥f ε − gε∥Lp(V ) + ∥gε − g∥Lp(V ) + ∥g − f∥Lp(V ) ≤
≤ ∥f − g∥Lp(W ) + ∥gε − g∥Lp(V ) + ∥g − f∥Lp(V ) ≤
≤ 2δ + ∥gε − g∥Lp(V ).

Thanks to the fact that g ∈ C(W ), by (2), we have that gε → g uniformly on V ⊂⊂ W and then
gε → g in Lp(V ). Therefore lim supε→0 ∥f ε − f∥Lp(V ) ≤ 2δ and being δ > 0 arbitrary we conclude
that f ε → f en Lp

loc(Ω).

Let us see now that limε→0 f
ε(x) = f(x) for every Lebesgue point x of f . Hence, let x ∈ Rn be a

Lebesgue point of f . Recalling that
∫
B(x,ε) δε(x− y) dy = 1 we have

|f ε(x)− f(x)| =

∣∣∣∣∣
∫
B(x,ε)

δε(x− y)(f(y)− f(x)) dy

∣∣∣∣∣ ≤
∫
B(x,ε)

δε(x− y)|f(y)− x(x)| dy

=
1

εn

∫
B(x,ε)

δ((x− y)/ε)|f(y)− f(x)| dy ≤ ∥δ∥L∞(Rn)
1

εn

∫
B(x,ε)

|f(y)− f(x)| dy

= ∥δ∥L∞(Rn)ωn
1

Ln(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)| dy
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Taking limits ε → 0 and using that X is a Lebesgue point concludes the argument.

(4) Let us check first that

(Dαf)ε = δε ∗Dαf in Ωε if 0 ≤ |α| ≤ k. (3.1.5)

Indeed, if we take x ∈ Ωε, using that δε(x− y) ∈ C∞
c (Ω) for every y ∈ Ω and integrating by parts

(Dαf)ε (x) = Dα

∫
Ω
δε(x− y)f(y) dy =

∫
Ω
Dα

x δε(x− y)f(y) dy =

= (−1)|α|
∫
Ω
Dα

y δε(x− y)f(y) dy = (−1)|α|(−1)|α|
∫
Ω
δε(x− y)Dαf(y) dy =

= (δε ∗Dαf) (x).

Take now V ⊂ Ω open with V ⊂ Ω compact. Since Dαf ∈ Lp(V ) (note that f ∈ Lp
loc(Ω)) then, by

using (3),

(Dαf)ε = δε ∗Dαf −−−→
ε→0

Dαf en Lp(V )

for all 0 ≤ |α| ≤ k. Subsequently

∥f ε − f∥p
Wk,p(V )

=
∑

0≤|α|≤k

∥Dαf ε −Dαf∥pLp(V ) −−−→ε→0
0.

(5) This is left as an exercise for the reader. The proof uses similar techniques as those in (4).

A stronger result about smooth approximations in W k,p(Ω) and not only in W k,p
loc (Ω) for an arbitrary

open set Ω ⊂ Rn is the next one, due to Meyers and Serrin.

Theorem 3.8 (Meyers-Serrin,). Let f ∈ W k,p(Ω) for some 1 ≤ p < ∞. Then there exists a
sequence {fi}∞i=1 ⊂ W k,p(Ω) ∩ C∞(Ω) so that

fi −−−→
i→∞

f en W k,p(Ω).

Proof. We follow [6, Page 125] and [5, Page 251].
We define {

Ωk =
{
x ∈ Ω : dist(x, ∂Ω) > 1

k

}
∩B(0, k), k = 1, 2, . . .

Ω0 = ∅

and we write Vk = Ωk+1 \Ωk−1, k = 1, 2 . . . , whose closure is compact in Ω. Fix ε > 0 and let {ξk}∞k=1

a smooth partition of unity subordinated to the open covering {Vk}∞k=1, that is,
ξk ∈ C∞

c (Vk), k = 1, 2 . . .
0 ≤ ξk ≤ 1, k = 1, 2, . . .∑∞

k=1 ξk = 1 in Ω

For each k = 1, 2 . . . we have fξk ∈ W k,p(Ω). Indeed, one can check this fact directly by definition,
first for the case of multiindexes of order |α| = 1 and then applying induction (see [5, Page 261]).
Moreover sop(fξk) ⊂ Vk, so using the previous result about convergence in W k,p

loc (Ω) (Theorem 3.7)
there exists εk > 0 so that {

sop(δεk ∗ (fξk)) ⊂ Vk

∥δεk ∗ (fξk)− fξk∥Wk,p(Ω) ≤ ε
2k

Define fε =
∑∞

k=1 δεk ∗ (fξk) and we have
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• fε ∈ C∞(Ω) because for every point x ∈ Ω there is only a finite number of terms in the infinite
sum that are not zero.

• Since f =
∑∞

k=1 fξk, we have

∥fε − f∥Wk,p(Ω) = ∥
∞∑
k=1

(δεk ∗ (fξk)− fξk)∥Wk,p(Ω) ≤
∞∑
k=1

ε

2k
= ε.

We get the result from here. This is, we have proved that W k,p(Ω)∩C∞(Ω) is dense in W k,p(Ω).

3.2 Sobolev embeddings. Morrey’s inequality

We move now to talk about what are know as Sobolev embeddings. We distinguish different cases:

1. Case 1 ≤ p < n: We have the Gagliardo-Niremberg-Sobolev inequality, which says that for every
f ∈ W 1,p(Rn) we have

∥f∥Lp∗(Rn) ≤ C(n, p)∥Df∥Lp(Rn)

where p∗ =
np

n− p
. Indeed, one was that W 1,p(Rn) ⊂ Lp∗(Rn) continuously.

2. Case p = n: We only mention that W 1,n(Rn) ⊂ Lp
loc(R

n) for every 1 ≤ p < ∞ and that there
exists functions that belong to W 1,n but not to L∞. For counterexamples we refer to the Exercise
Sheet, to Example 6.38 of [3] or to [11, Pages 123-125].

3. Case p < n < ∞: We have the Morrey’s inequality, that we state next in Theorem 3.9 , and to
which we dedicate more time. But as a consequence one obtain the following embedding to be
true.

W 1,p(Rn) ⊂ C0,1−n/p(Rn) ∩ L∞(Rn).

Theorem 3.9 (Morrey inequality). Let Ω ⊂ Rn be open and n < p < ∞. Let also B(x, r) ⊂ Ω
be any open ball. Then for Ln-almost every y, z ∈ B(x, r) there exists a constant C > 0, only
depending on n and p, so that

|f(y)− f(z)| ≤ Cr
1−n

p

(∫
B(x,r)

|Df(w)|p dw

) 1
p

∀f ∈ W 1,p(Ω). (3.2.1)

For the proof we follow [6, 12]. We need first a simple preliminary lemma.

Lemma 3.10. Let f : Rn → R with f ∈ C1(B(x, r)). For each 1 ≤ p < ∞ there exists
C(n, p) > 0 so that∫

B(x,r)
|f(y)− f(z)|p dy ≤ Crn+p−1

∫
B(x,r)

|Df(y)|p|y − z|1−n dy

for all B(x, r) ⊂ Rn and z ∈ B(x, r).

Proof. If we take y, z ∈ B(x, r), using that f ∈ C1(B(x, r)) we have

f(y)−f(z) =

∫ 1

0

d

dt
f(z+t(y−z)) dt =

∫ 1

0
Df(z+t(y−z))·(y−z) dt =

∫ 1

0
Df(z+t(y−z)) dt·(y−z).
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Then

|f(y)− f(z)|p ≤ |y − z|p
∫ 1

0
|Df(z + t(y − z))|p dt

and for every s > 0,∫
B(x,r)∩∂B(z,s)

|f(y)− f(z)|p dHn−1(y) ≤
∫
B(x,r)∩∂B(z,s)

|y − z|p
(∫ 1

0
|Df(z + t(y − z))|p dt

)
dHn−1(y) =

= sp
∫
B(x,r)∩∂B(z,s)

(∫ 1

0
|Df(z + t(y − z))|p dt

)
dHn−1(y).

Making the change of variables w = z+ t(y− z) (|w− z| = ts), we have dHn−1(y) = 1
tn−1dHn−1(w)

and hence∫
B(x,r)∩∂B(z,s)

|f(y)− f(z)|p dHn−1(y) ≤ sp
∫ 1

0

1

tn−1

(∫
B(x,r)∩∂B(z,ts)

|Df(w)|p dHn−1(w)

)
dt

= sn+p−1

∫ 1

0

(∫
B(x,r)∩∂B(z,ts)

|Df(w)|p|w − z|1−n dHn−1(w)

)
dt.

By changing to polar coordinates (see Evans-Gariepy [6], pp. 118) it follows that∫
B(x,r)∩∂B(z,s)

|f(y)− f(z)|p dHn−1(y) = sn+p−2

∫
B(x,r)∩B(z,s)

|Df(w)|p|w − z|1−n dw.

And once again, by changing to polar coordinates, and using the fact that s > 0 was arbitrary we get that∫
B(x,r)

|f(y)− f(z)|p dy ≤ C(n, p)rn+p−1

∫
B(x,r)

|Df(w)|p|w − z|1−n dw.

Proof of Morrey’s inequality (Theorem 3.9). Suppose first that f ∈ C1(Ω). At the end of the proof, with
an approximation argument we will generalize to the case W 1,p(Ω).
Let y, z ∈ B(x, r). Since f ∈ C1(Ω), by applying Lemma 3.10 for the case p = 1 we have

|f(y)− f(z)| = −
∫
B(x,r)

|f(y)− f(z)| dw ≤ −
∫
B(x,r)

|f(y)− f(w)|+ |f(w)− f(z)| dw ≤

≤ Crn

Ln(B(x, r))

∫
B(x,r)

|Df(w)|
(
|y − w|1−n + |w − z|1−n

)
dw.

Recall that Ln(B(x, r)) = V ol(B(x, r)) = πn/2rn

Γ(n
2
+1) = C(n, p)rn, where Γ is the well-known gamma

function. Then,

|f(y)− f(z)| ≤ C

∫
B(x,r)

|Df(w)|
(
|y − w|1−n + |w − z|1−n

)
dw ≤

≤︸︷︷︸
Hölder

C

(∫
B(x,r)

(
|y − w|1−n + |w − z|1−n

) p
p−1 dw

) p−1
p
(∫

B(x,r)
|Df(w)|p dw

) 1
p

Observe now that since y, z ∈ B(x, r), |y − w| ≤ 2r, |z − w| ≤ 2r, we have∫
B(x,r)

(
|y − w|1−n + |z − w|1−n

) p
p−1 dw ≤

∫
B(x,r)

(
(2r)1−n + (2r)1−n

) p
p−1 dw =

=
(
2(2r)1−n

) p
p−1

∫
B(x,r)

dw = 2
(2−n) p

p−1 r
(1−n) p

p−1Ln(B(x, r)) =

= C(n, p)r
n−(n−1) p

p−1 ,
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Going back to our previous expression we can write

|f(y)− f(z)| ≤ Cr

(
n−(n−1) p

p−1

)
p−1
p

(∫
B(x,r)

|Df(w)|p dw

) 1
p

= Cr
1−n

p

(∫
B(x,r)

|Df(w)|p dw

) 1
p

,

finishing the proof for the case f ∈ C1(Ω).

Consider now the case when f ∈ W 1,p(Ω). By Theorem 3.8 we can approximate it (p < ∞) by
functions of class C1 converging in the norm of W 1,p. That is, there exists {fi}∞i=1 ⊂ C1(Ω) so that
fi −−−→

i→∞
f in W 1,p(Ω). These functions fi do satisfy Morrey’s inequality, as we already proved.

|fi(y)− fi(x)| ≤ Cr
1−n

p

(∫
B(x,r)

|Dfi(w)|p dw

) 1
p

= Cr
1−n

p ∥Dfi∥Lp(B(x,r))

Moreover, recalling the expression of the functions fi y applying the basic properties of convolution
together with (3.1.5) we have

Dfi = D (δεi ∗ f) = δεi ∗Df donde εi → 0

and
∥Dfi∥Lp(B(x,r)) ≤ ∥δεi∥L1(Rn)∥Df∥Lp(B(x,r)) = ∥Df∥Lp(B(x,r)).

Therefore
|fi(y)− fi(x)| ≤ Cr

1−n
p ∥Df∥Lp(B(x,r)).

On the other hand {fi} is an equicontinuous family of functions, so we can apply Ascoli-Arzelà Theorem
to find the existence of a subsequence

{
fij
}

that converges uniformly to some f̃ . Uniform convergence
implies convergence in Lp

loc and by the uniqueness of limits in Lp
loc we conclude that f = f̃ almost

everywhere.
We then get the validity of the result for the space W 1,p(Ω).

Let us state some consequences:

1. The next is a slight modification of Theorem 3.9.

Corollary 3.11. Let Ω ⊂ Rn be open, n < p < ∞ and some R > 0. Then for every ball
B(x, r) ⊂ B(0, R) we have that for Ln-almost every y, z ∈ B(x, r) there exists a constant
C > 0, only depending on n and p, so that

|f(y)− f(z)| ≤ C|y − z|1−
n
p ∥Df∥Lp(B(x,r) ∀f ∈ W 1,p(B(0, R)). (3.2.2)

Proof. Take a countable dense set {xm}m≥1 over B(0, R). And for every m ∈ N let rm,k := {q ∈
Q : B(xm, rm,k) ⊂ B(0, R)}. By using Theorem 3.9 each ball B(xm, rm,k) has an associated
null set Nm,k so that for all y, z ∈ B(xm, rm,k) \ Nm,k we have (3.2.1) holding. By letting
N =

⋃
m,k Nm,k we have Ln(N) = 0 and for every x, y /∈ N so that y, z ∈ B(xm, rm,k) for

some k,m ∈ N we have

|f(y)− f(z)| ≤ C(n, p)(rm,k)
1−n/p∥Df∥Lp(B(x,rm,k)).

Take now an arbitrary B(x, r) ⊂ B(0, R) and take y, z ∈ B(x, r) \ N . Choose x̃ ∈ B(0, R) in
such a way that B(x̃, |y−z|) ⊂ B(x, r) and y, z ∈ B(x̃, |y−z|). Next define a sequence of points
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(xm)m≥1 and a sequence of radii (rm,k(m))m≥1 so that xm → x̃ and rm,k(m) → |y − z| and so
that y, z ∈ B(xm, rm,k(m)). Thefore we have

|f(y)− f(z)| ≤ C(n, p)(rm,k(m))
1−n/p∥Df∥Lp(B(xm,rm,k(m)))

and by taking limits m → ∞ we conclude that

|f(y)− f(z)| ≤ C(n, p)|y − z|1−n/p∥Df∥Lp(B(x̃,|y−z|) ≤ C(n, p)|y − z|1−n/p∥Df∥Lp(B(x,r)

2. If we have f ∈ W 1,p(Rn) then for every j ∈ N we have f ∈ W 1,p(B(0, j)). Call Nj ⊂ Rn

the negligible exceptional sets where (3.2.2) does not hold. In particular N =
⋃

j≥1Nj satisfies
Ln(N) = 0. We can say that for all x, y ∈ Rn \N we have

|f(y)− f(z)| ≤ C|y − z|1−
n
p ∥Df∥Lp(Rn), (3.2.3)

because x, y ∈ B(0, j) for some j ∈ N big enough. This means that f is Hölder continuous of
exponent α = 1− n/p on Rn \N . Since f is Hölder continuous on a dense subset of Rn it has a
unique extension to a Hölder continuous function with same exponent defined everywhere on Rn.
This extension is a Hölder continuous representative of exponent 1 − n/p of the function f , and
satisfies (3.2.3). We have then that, calling f that Hölder representative as well,

∥f∥C0,1−n/p(Rn) ≤ C(n, p)∥f∥W 1,p(Rn).

Moreover we have that also have that f ∈ L∞(Rn) with ∥f∥L∞(Rn) ≤ C(n, p)∥f∥W 1,p(Rn).
Indeed, for every x ∈ Rn \N we have by (3.2.3) and H"older inequality

|f(x)| =

∣∣∣∣∣ 1

Ln(B(x, 1))

∫
B(x,1)

f(x) dy

∣∣∣∣∣
≤ 1

Ln(B(x, 1))

(∫
B(x,1)

|f(x)− f(y)| dy +
∫
B(x,1)

|f(y)| dy

)

≤ C(n, p)
1

Ln(B(x, 1))

∫
B(x,1)

|x− y|1−n/p∥Df∥Lp(Rn) dy + C(n, p)∥f∥Lp(Rn)

≤ C(n, p)∥f∥W 1,p(Rn).

We then conclude that

W 1,p(Rn) ⊂ C0,1−n/p(Rn) ∩ L∞(Rn) continuously.

3.3 Proofs of Rademacher theorem for Sobolev functions

With the help of Morrey’s inequality we can now pass to prove the main theorem of this chapter which
is the Rademacher theorem for W 1,p functions where n < p < ∞. Let us recall its statement.

Theorem 3.1. Let f ∈ W 1,p(Rn) for some n < p < ∞. Then there exists a representative of
f that is Hölder continuous with exponent α(p) = 1 − n

p which moreover is differentiable at Ln

almost every point x ∈ Rn.
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Proof. By the last comments (1) and (2) we can assume without loss of generality that f is Hölder
continuous with exponent α = 1− n/p and bounded. Let us consider the weak derivative of f ,

Df(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
∈ Lp(Rn Rn).

By the Lebesgue differentiation theorem (see Theorem 2.8) we have that

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

|Df(z)−Df(x)|p dz = 0 for almost every x ∈ Rn. (3.3.1)

We will show that f is differentiable at every Lebesgue point of Df (that is, exactly at the points where
(3.3.1) holds), and the differential will be exactly Df(x). Observe that Df(x) ∈ Rn is well defined in
such case because we have

Df(x) = lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

Df(y) dy.

Fix x ∈ Rn to be one of those points. Let also g : Rn → R be defined by

g(y) : = f(y)− f(x)−Df(x) · (y − x), y ∈ Rn.

Observe that f ∈ W 1,p(B(0, R)) for every R > 0 (however, f /∈ Lp(Rn)). Fix R = |x|+ 2 and let y ∈
B(x, 1) and r = |x− y|. By using the Morrey’s inequality (3.2.2) with the function g ∈ W 1,p(B(0, R))
and since x, y ∈ B(x, 2r) ⊂ B(0, R),

|g(y)− g(x)| = |g(y)| ≤ C(n, p)|x− y|1−n/p∥Dg∥Lp(B(x,2r))

= C(n, p)|x− y|

(
1

Ln(B(x, 2r)

∫
B(x,2r)

|Df(z)−Df(x)|p dz

)1/p

.

Therefore if y ∈ B(x, 1) we have

|f(y)− f(x)−Df(x) · (y − x)|
|y − x|

≤ C(n, p)

(
1

Ln(B(x, 2r)

∫
B(x,2r)

|Df(z)−Df(x)|p dz

)1/p

.

By letting y → x, and hence r → 0, and using (3.3.1) we conclude that at every Lebesgue point x of Df

lim
y→x

|f(y)− f(x)−Df(x) · (y − x)|
|y − x|

= 0.

Corollary 3.11. 1. Let f ∈ W 1,p
loc (R

n) with n < p < ∞. Then f has a representative that is
differentiable Ln-almost everywhere.

2. Let f ∈ W 1,∞
loc (Rn). Then f has a representative which is differentiable Ln-almost every-

where.

Proof. 1. We have f ∈ W 1,p(B(0, j)) for every j ∈ N. Let φj ∈ C∞
0 (Rn) with φj = 1 on B(0, j).

Then it is an easy exercise to verify that f · φj ∈ W 1,p(Rn). Now apply Theorem 3.1 to get
that f · φj is differentiable Ln-almost everywhere. Therefore, since f = f · φj on B(0, j), f is
differentiable Ln-almost everywhere on B(0, j). By covering Rn =

⋃
j≥1B(0, j) and doing the

same argument for every j ∈ N, and by the subadditivity of the Lebesgue measure, we conclude
that f is differentiable Ln-almost everywhere on Rn.
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2. It is enough to observe that W 1,∞
loc (Rn) ⊂ W 1,p

loc (R
n) for every 1 ≤ p < ∞ and apply item (1).

We have just seen that Rademacher theorem for W 1,∞ functions relies heavily on the case W 1,p,
n < p < ∞, where we did the hard work. But an interesting consequence of having the Rademacher
theorem for W 1,∞ functions is that it gives an alternative proof of the classical Rademacher theorem for
Lipschitz functions (Theorem 2.1) once we prove that locally Lipschitz functions are functions belonging
to W 1,∞

loc .

Theorem 3.12. Every locally Lipschitz function f : Rn → R satisfies that f ∈ W 1,∞
loc (Rn).

Moreover, the same is true if we replace Rn with an open set Ω ⊂ Rn.

Remark 3.13. The converse is also true, in the sense that every f ∈ W 1,∞
loc (Rn) has a locally Lipschitz

representative. Moreover one can prove that Lip(Rn) ∩ L∞(Rn) = W 1,∞(Rn). It is important to stress
out that the previous fact is not necessarily true for other domains Ω ⊂ Rn. Indeed, for a bounded
domain Ω ⊂ Rn we have Lip(Ω) ∩ L∞(Ω) = W 1,∞(Ω) if and only if Ω is quasiconvex2 (This was
proven by Hajłasz„ Koskela and Tuominen in 2008).

Proof. We mainly follow the proof given in [6]. The case Ω ⊂ Rn open is left for the reader.
Let f : Rn → R be locally Lipschitz. That is, for every open set V ⊂ Rn with V compact we have

that f |V is Lipschitz. Let us take then an open subset V with V compact and the theorem will be proved
if we check that f ∈ W 1,∞(V ).

Firstly, using that f is continuous and V compact we have

∥f∥L∞(V ) = sup
x∈V

|f(x)| ≤ sup
x∈V

|f(x)| < ∞.

Secondly we aim to show that f has weak partial derivatives

∂f

∂x1
, . . . ,

∂f

∂xn

and each of them belong to the space L∞. For that take t > 0 and fix i = 1, . . . , n. Define now

gti : =
f(x+ tei)− f(x)

t
, x ∈ V.

We have
sup

0<t<1
∥gti∥L∞(V ) ≤ Lip(f |W ) < ∞,

where W = V + B(0, 1) and Lip(f |W ) is the least Lipschitz constant of f on W (note that W is
compact).

Take next a decreasing sequence (tj)j≥1 ⊂ (0, 1) with lim
j→∞

tj = 0. We have that

(g
tj
i )j≥1 ⊂ L∞(V )

is a uniformly bounded sequence. Therefore since every closed ball of L∞(V ) is weak* sequentially
compact, there exists a subsequence (g

tj
i )j≥1, which we denote the same way, that weak* converges to

some function gi ∈ L∞(V ). Let us explain briefly why every closed ball of L∞(V ) is weak* sequentially
compact.

• By the Banach-Alaouglu theorem we have that the every closed ball of L∞(V ) is compact in the
weak* topology, just because it is the dual of a Banach space.

2A domain Ω ⊂ Rn is said to be quasiconvex if and only if there exists a constant C = 1 so that for every x, y ∈ Ω there
exists a rectifiable curve γ joining x with y such that ℓ(γ) ≤ C|x− y|.
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• Since L1(V ) is separable we have that the unit ball of the dual endowed with the weak* topology
is metrizable. Indeed for a Banach space X , we have (BX∗ , w∗) is metrizable as a topological
space if and only if X is separable.

• In a metric space a set A is compact if and only if it is sequentially compact.

The first two facts can be found in [8], precisely in Proposition 3.103 and 3.101 for the second fact
and in Theorem 3.37 for a proof of Banach-Alouglu theorem.

To sum up we have that for every i = 1, . . . , n the sequence (g
tj
i )j≥1 is weak* convergent to gi. In

particular for every φ ∈ C∞
0 (V ) ⊂ L1(V ) we have that

lim
j→∞

∫
V
g
tj
i (x)φ(x) dx =

∫
V
gi(x)φ(x) dx. (3.3.2)

On the other hand∫
V
g
tj
i (x)φ(x) dx =

∫
V

f(x+ tjei)− f(x)

tj
φ(x) dx = −

∫
V
f(x)

φ(x)− φ(x− tjei)

tj
dx

so taking j → ∞ and using the Dominated Convergence Theorem together with (3.3.2) we get∫
V
gi(x)φ(x) dx = −

∫
V
f(x)

∂φ

∂xi
(x) dx.

And the later equality holds for every i = 1, . . . , n and for every φ ∈ C∞
0 (V ). It follows that the

functions gi ∈ L∞(V ) are the weak partial derivatives of f on V . So we are done.

Before finishing this chapter let us give a final version of Rademacher theorem for Sobolev functions.
This one is treating the simplest case of Sobolev functions f : R → R in one dimension. In this setting
we have the next result.

Theorem 3.14. Let f ∈ W 1,1
loc (R). Then f has an absolutely continuous representative in every

interval [a, b] ⊂ R that is differentiable L-almost everywhere.

Proof. Once we prove that f is equal almost everywhere to an absolutely continuous function, by ap-
plying Theorem 2.4 we get that it is differentiable almost everywhere. Precisely we will prove that the
precise representative of f , defined as

f∗(x) : =

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

f(y) dy if the limit exists

0 otherwise

is absolutely continuous on every [a, b] ⊂ R. Note that if x0 ∈ (a, b) is a Lebesgue point of f , then
f(x0) = f∗(x0).

Fix an interval [a, b] ⊂ R and a Lebesgue point x0 ∈ (a, b) of f . Then for every 0 < ε ≤ 1 let
f ε = δε ∗ f , where δε is the standard mollifier. By the smoothness of f ε and the fundamental theorem of
calculus we have

f ε(y) = f ε(x) +

∫ y

x
(f ε)′(t) dt, ∀[x, y] ⊂ R. (3.3.3)

Moreover for every ε, δ ∈ (0, 1) and x ∈ [a, b],

|f ε(x)− f δ(x)| =
∣∣∣∣f ε(x0) +

∫ x

x0

(f ε)′(t) dt− f δ(x0)−
∫ x

x0

(f δ)′(t) dt

∣∣∣∣
≤
∫ x

x0

|(f ε)′(t)− (f δ)′(t)| dt+ |f ε(x0)− f δ(x0)|

Observe now the following:
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• Since x0 ∈ [a, b] is a Lebesgue point of f , by Theorem 3.7 (3) we have that

lim
ε→0

f ε(x0) = f∗(x0).

• By Theorem 3.7 (4), since f ∈ W 1,1
loc (R) we know that f ε → f in W 1,1([a, b]). In particular,

(f ε)′ → Df in L1([a, b])

From this we get that if (εn)n≥1 is a decreasing sequence of positive numbers so that εn → 0, then
(f εn)n≥1 defines a Cauchy sequence in the space of continuous function with the supremum norm in
[a, b]. Indeed, given η > 0, by the above facts, there exists r0 > 0 small enough so that for every
0 < ε, δ < r0 we have that

|f ε(x0)− f(x0)| < η

and∫ x

x0

|(f ε)′(t)− (f δ)′(t)| dt ≤
∫ b

a
|(f ε)′(t)−Df(t)| dt+

∫ b

a
|Df(t)− (f δ)′(t)| dt < η, ∀x ∈ [a, b].

So for every x ∈ [a, b] and for every 0 < ε, δ < r0,

|f ε(x)− f δ(x)| < η.

This proves that (f εn)n≥1 ⊂ (C([a, b]), ∥ · ∥∞) is a Cauchy sequence. In other words, by completeness,
the sequence (f εn)n≥1 is uniformly convergent to a continuous function g : [a, b] → R. In particular
f εn(x) → g(x) everywhere. On the other hand it is also true that f ε(x) → f(x) for almost every
x ∈ [a, b] (again by Theorem 3.7), so we must have g = f = f∗ almost everywhere.

Furthermore, by letting εn → 0 in (3.3.3) we can write

g(y) = g(x) +

∫ y

x
D(f∗)(t) dt ∀[x, y] ⊂ [a, b].

Here we are using the pointwise convergence of f ε to g, the L1-convergence of (f ε)′ to Df on compact
intervals, and the fact that Df = Df∗ almost everywhere.

Finally, observe that the continuity of g and the fact that f = g almost everywhere gives that for
every x ∈ [a, b],

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

f(y) dy = lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

g(y) dy = g(x),

therefore f∗ = g everywhere. In particular

f∗(x) = f∗(x0) +

∫ x

x0

D(f∗)(t) dt.

By applying Theorem 2.4 we conclude that f∗ is absolutely continuous and we are done.
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Exercises

1. Prove the following:

(a) For n < p ≤ ∞, si f ∈ W 1,p(Rn) the following limit exists for all x ∈ Rn.

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

f(y) dy.

(b) If for a function f : Rn → R there exists α > 1 and C ≥ 0 so that

|f(x)− f(y)| ≤ C|x− y|α, ∀x, y ∈ Rn

then f is a constant function.

2. Prove that the space of Hölder continuous functions with exponent α ∈ (0, 1) and bounded, en-
dowed with the norm

∥f∥ = ∥f∥L∞(Rn) + sup
x ̸=y

|f(x)− f(y)|
|x− y|α

forms a Banach space.

3. Prove that the function f : R2 → R given by

f(x) =

log

(
log

(
1 +

1

|x|

))
, x ̸= 0

0, x = 0

belongs to W 1,2(B(0, 1)), but f /∈ L∞(B(0, 1)).

4. Let η > 0. Prove that f : R2 → R defined by f(x) = |x|−η satisfies f /∈ W 1,p(B(0, 1)) when

p ≥ 2 and that whenever p < 2, if η <
2

p
− 1 then f ∈ W 1,p(B(0, 1)).

5. Given a function f ∈ W 1,p(Rn) and φ ∈ C∞
0 (Rn) prove that fφ ∈ W 1,p(Rn) by estimating its

Sobolev norm.

6. Prove that the f : [0, 1/2] → R defined by

f(x) =


1

log x
, x ∈ (0, 1/2]

0, x = 0

is not Hölder continuous for any exponent α ∈ (0, 1], though it is absolutely continuous. Moreover,
give an example of Hölder continuous function which is not absolutely continuous.

7. Prove that the domain Ω ⊂ R2 given by

Ω = B(0, 1) \ {(x, y) ∈ R2 : 0 ≤ x ≤ 1, |y| ≤ x2}.

is not quasiconvex. Latter, give an example of a function f : Ω → R which satisfies f ∈ W 1,∞(Ω)
but so that f is not Lipschitz on Ω.

8. Prove that if a function f : Rn → R, n ≥ 2, is locally integrable (f ∈ L1
loc(Rn)), then

Hn−1

({
x ∈ Rn : lim sup

r→0

1

rn−1

∫
B(x,r)

|f(y)| dy > 0

})
= 0
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Chapter 4

Hausdorff measures

This chapter is intended to be a brief introduction to Hausdorff measures. We basically follow [6].

Definition 4.1. Let A ⊂ Rn be a set, 0 ≤ s < ∞ and 0 < δ ≤ ∞. We define the s-dimensional
δ-Hausdorff content of A as

Hs
δ(A) = inf


∞∑
j=1

diam(Cj)
s : A ⊂

⋃
j≥1

Cj , diam(Cj) ≤ δ


We define the s-dimensional Hausdorff measure of A as

Hs(A) = lim
δ→0+

Hs
δ = sup

δ>0
Hs

δ(A)

(observe that the mapping δ → Hs
δ(A) is decreasing).

There are other definitions of Hausdorff measures. For instance one could sum
∑∞

j=1 α(s)(diam(Cj)/2)
s

instead of
∑∞

j=1 diam(Cj)
s, where α(s) =

πs/2

Γ(s/2 + 1)
and Γ(t) =

∫∞
0 e−xxt−1 dx is the Gamma func-

tion. The reason is to have Hn = Ln on Rn as will be shown in Theorem ??.

Theorem 4.2. For every 0 ≤ s < ∞ we have that Hs is a Borel regular measure (exterior) on Rn. (If
s < n it is not a Radon measure)

Proof. We start by showing that Hs
δ is an exterior measure for every δ > 0. First, it is clear that

Hs
δ(∅) = 0 (we understand diam(∅) = 0. Second, we take {Ak}k≥1 ⊂ Rn and we want to show that

Hs
δ

⋃
k≥1

Ak

 ≤
∞∑
k=1

Hs
δ(Ak) (4.0.1)

Indeed, for every k ∈ N we take a covering Ak ⊂
⋃

j≥1Cj,k so that diam(Cj,k) ≤ δ. Then

∞⋃
j,k=1

Cj,k ⊃
⋃
k≥1

Ak

and therefore

Hs
δ

⋃
k≥1

Ak

 ≤
∞∑
k=1

∞∑
j=1

diam(Cj,k)
s.

By taking infimums over all possible coverings {Cj , k}j≥1 of Ak we easily conclude (4.0.1).
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The second step of the proof is to show that Hs is also an exterior measure. Again Hs(∅) = 0 is
clear. For the subadditivity we take {Ak}k≥1 ⊂ Rn. For every δ > 0, since Hs

δ is a measure we have

Hs
δ

⋃
k≥1

Ak

 ≤
∞∑
k=1

Hs
δ(Ak) ≤

∞∑
k=1

sup
δ′>0

Hs
δ′(Ak) =

∞∑
k=1

Hs(Ak).

Now, by taking limits δ → 0+ we conclude that Hs
(⋃

k≥1Ak

)
≤
∑∞

k=1Hs(Ak).

The next step of the proof is to show that Hs is Borel. For that we will use Caratheodory criterion
(see [6, Theorem 1.9]) asserting that a measure µ is Borel on Rn is for every two sets A,B ⊂ Rn with
dist(A,B) > 0 we have µ(A∪B) = µ(A)+µ(B). Indeed, for A,B subsets of Rn with dist(A,B) > 0
let 0 < δ < dist(A,B)/4 and let A ∪ B

⋃
k≥1Ck be covering such that diam(Ck) ≤ δ. Define the

families of indexes

A = {j ∈ N : Cj ∩A ̸= ∅} ; B = {j ∈ N : Cj ∩B ̸= ∅}.

It is clear that A ⊂
⋃

j∈ACj , B ⊂
⋃

j∈B Cj and that Ci ∩ Cj = ∅ whenever i ∈ A, j ∈ B. Hence

∞∑
j=1

diam(Cj)
s ≥

∑
j∈A

diam(Cj)
s +

∑
j∈B

diam(Cj)
s ≥ Hs

δ(A) +Hs
δ(B).

By taking the infimum over all possible coverings A ∪B ⊂
⋃

k≥1Ck with diam(Ck) ≤ δ we have

Hs
δ(A ∪B) ≥ Hs

δ(A) +Hs
δ(B).

Letting δ → 0∗ we get Hs(A∪B) ≥ Hs(A)+Hs(B) and by the subadditivity of Hs we get Hs(A∪B) ≤
Hs(A) +Hs(B), so we are done.

The final step of the proof is to show that Hs is Borel regular, that is for every A ⊂ Rn we must
find a Borel set B ⊃ A with Hs(A) = Hs(B). We will use that for every set C ⊂ Rn we have
diam(C) = diam(C), which in particular allow us to write

Hs
δ(A) = inf


∞∑
j=1

diam(Cj)
s : A ⊂

⋃
j≥1

Cj , diam(Cj) ≤ δ, Cj closed


Take A ⊂ Rn with Hs(A) < ∞ (otherwise we can let B = Rn). Then Hs

δ(A) > 0 for every δ > 0.
For each k ∈ N we will choose a family {Cj,k}j≥1 of closed sets with diam(Cj,k) ≤ 1/k, with A ⊂⋃

j≥1Cj,k and such that
∞∑
j=1

diam(Cj,k)
s ≤ Hs

1/k(A) +
1

k
.

Define Ak =
⋃

j≥1Cj,k and B =
⋂

k≥1Ak. As Cj,k are closed sets it is clear that Ak are Borel sets for
every k and hence B is a Borel set too. Moreover we have B ⊂ Ak for every k ∈ N so

Hs
1/k(B) ≤ Hs

1/k(Ak) ≤
∞∑
j=1

diam(Cj,k)
s ≤ Hs

1/k(A) +
1

k
.

Let k → ∞ to get Hs(B) ≤ Hs(A), and since A ⊂ B we also get Hs(A) ≤ Hs(B). The proof is
finished.

We shall now state more basic, but important, properties of Hausdroff measures.

Proposition 4.3. Let A ⊂ Rn.
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1. H0 is the counting meausure. That is, H0(A) =

{
#A if A finite
∞ if A infinite

.

2. Hs = 0 on Rn for every s > n.

3. If Hs
δ(A) = 0 for some δ ∈ (0,∞], then Hs(A) = 0.

4. Let 0 ≤ s < t < ∞. Then

Hs(A) < ∞ ⇒ Ht(A) = 0 ; Ht(A) > 0 ⇒ Hs(A) = ∞.

5. If f : Rn → Rm is Lipschitz, then Hs(f(A)) ≤ (Lip(f))sHs(A). In particular dimH(f(A)) ≤
dimH(A).

Proof. The proof of these facts is not difficult. We refer to [6, Chapter 2] for details.

Definition 4.4. Let A ⊂ Rn. We define the Hausdorff dimension of A as dimH(A) = inf{s ∈ [0,∞) :
Hs(A) = 0}. Note that we also have dimH(A) = sup{t ∈ [0,∞) : Ht(A) > 0} = sup{t ∈ [0,∞) :
Ht(A) = ∞}.

Observe that we always have dimH(A) ≤ n for all A ⊂ Rn and that if we call s = dimH(A) then
Ht(A) = 0 for all t > s, Ht(A) = ∞ for all t < s and Hs(A) could take any value between 0 and +∞
(both values included). We state next the following interesting result that appears in Falconer’s book [7]:
For every n ∈ N, every s ∈ [0, n] and every t ∈ [0,∞] there exists a set At,s ⊂ Rn with dimH(A) = s
and Hs(At,s) = t.

We finish this chapter by explaining that indeed Hn ∼ Ln on Rn. This means that there exists a
constant C > 0 (depending on n) so that

C−1Ln(A) ≤ Hn(A) ≤ CLn(A) ∀A ⊂ Rn.

Recall that the Lebesgue measure is defined as

Ln(A) = inf


∞∑
j=1

vol(Qi)
n : Qi cubes, A ⊂

⋃
j≥1

Qj


Theorem 4.5. On Rn we have Hn ∼ Ln.
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Exercises

1. Let
A = {(x, x sin(1/x)) : x ∈ (0, 1)} ⊂ R2

Prove that H1(A) = ∞, but H2(A) = 0.

2. Prove that for 0 ≤ s < n then Hs is not a Radon measure in Rn.

3. Let f : Rn → Rm be L−Lipschitz, A ⊂ Rn and 0 ≤ s < ∞. Prove that Hs(f(A)) ≤ LsHs(A).

4. Prove that the ternary Cantor set is a perfect set, that is, all its points are accumulation points.
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Chapter 5

Morse-Sard theorem

Whitney in 1934 gave his very important extension theorem. We already saw in detail the case C1 in the
first chapter of these notes. Relying on this result, in 1935 Whitney built a function f : R2 → R of class
C1 so that L(f(Cf )) > 0, where Cf = {x ∈ R2 : Df(x) = 0} denotes the set of critical points of f .
Namely, the function f is nonconstant on a nonrectifiable curve Γ ⊂ R2 where Df(x) = 0 for all x ∈ Γ.
Precisely f(Γ) = [0, 1].

Why such a ”weird” example is possible?

Observe that if we deal with a rectifiable curve γ : [0, 1] → R2, by taking a Lipschitz parametrization
that we name the same way and calling Γ = {γ(t) : t ∈ [0, 1]}, we have that any C1 function f :
R2 → R so that Df(x) = 0 for all x ∈ Γ must be constant on Γ. This follows from the fact that
(f ◦γ) : [0, 1] → R is a Lipschitz function, hence differentiable almost everywhere and the Fundamental
Theorem of Calculus holds, that is,

f(γ(x)) = f(γ(0)) +

∫ x

0
(f ◦ γ)′(t) dt = f(γ(0)) +

∫ x

0
Df(γ(t)) · γ′(t) dt

= f(γ(0)) +

∫ x

0
0 · γ′(t) dt = f(γ(0)) ∀x ∈ (0, 1].

In the years 1939 and 1942, Morse and Sard respectively gave a first explanation of what was going
on with this example.

Theorem 5.1 (Morse-Sard, 1942). Let f : Rn → Rm be a function of class Ck,
where k ≥ max{n − m + 1, 1}, then Ln(f(Cf )) = 0., where Cf = {x ∈ Rn :
rank(Df(x)) is not maximum} denotes the set of critical points. (The set f(Cf ) is known as
the critical values of f .)

We aim to give a complete proof of this result. However, we prefer to start by explaining the possible
refinements and generalizations of it, as well to some applications to other branches of mathematics.

5.1 Introduction and comments

First thing to mention is that the Morse-Sard theorem is optimal in the scale of spaces Cj . We have
already explained Whitney’s example, where a function f : R2 → R is given of class C1 so that
L(f(Cf )) > 0. Due to its importance let us give some details of how this example is constructed.

Example 5.2. [See the original paper of Whitney from 1935 for the full construction].
We want to define a nonrectifiable curve (that is a closed set C ⊂ R2) and a function f : C → R so

that
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1. f(C) has positive measure. In particular we will get f(C) = [0, 1].

2. lim
y→x

|f(y)− f(x)− 0|
|y − x|

= 0 uniformly. In particular f is uniformly continuous in C.

Using (ii) and thinking of the ”derivative” of f on C to be equal to the linear map L = 0, by applying
the Whitney’s extension theorem 1.7 there exists a function F : R2 → R of class C1 such that F |C = f
and Df |C = L = 0. Hence C ⊂ CF and therefore

L(F (CF )) ≥ L(F (C))
(i)
= L([0, 1]) = 1.

The problem now is how to build such a function f : C → R and such ”fractal set C. Here, Whitney
came up with the next idea. He defined C =

⋃
n≥1 Pn where every Pn is the union of 4n · 5 segments

defined as in the picture...(DETAILS).
Next, f is defined first on the set

⋃
n≥1 Pn and then extended continuously to its boundary. We let

f : Pn → [0, 1] to be

f(x) =

n∑
k=1

j(k)

4k
, j(k) ∈ {0, 1, 2, 3}.

After Whitney’s example, many mathematicians have tried to give easier examples showing this type
of pathological behaviour on a function. For instance, Gringbeg presented in 1985 (see [?]) the following
example.

Example 5.3. .

Observe that for any function f : Rn → Rm for which the More-Sard theorem applies Lm-almost
every point y ∈ Rm satisfies that f−1(y) consist of regular values (those are points x ∈ Rn where Df(x)
has maximum rank). There exist many generalizations of the Morse-Sard theorem to other classes of
functions. Let us enumerate some of these generalizations:

• [Bates, 1993]: If f ∈ Ck−1,1(Rn;Rm) with k ≥ max{n−m+ 1, 1} then Lm(f(Cf )) = 0.
Note that for any α ∈ (0, 1) there exist functions f : Rn → Rm of class Ck−1,α with k ≥ max{n−

m+ 1, 1} but Lm(f(C(f)) > 0.

• [De Pascale, 2001]: If f ∈ W k,p(Rn;Rm) with p > n and k ≥ max{n − m + 1, 1} then
Lm(f(Cf )) = 0.

We need to precise how one should understand the set of critical points of a Soblev function. In
general in these context one defines the set of critical points as

Cf = {x ∈ Rn : Df(x) exists and Df(x) has not maximum rank}.

Still one may wonder what happens with the set of points where f is not differentiable. Is the set of
non-differentiability points sent to a Lm-null set? Because if that is the case one can still assure that
for Lm-almost every point y ∈ Rm, f−1(y) consist of regular values. In the conditions of De Pascale
theorem this is the case. Thanks to the Morrey inequality, if p > n,

W k,p(Rn;Rm) ⊂ Ck−1,1−n/p(Rn;Rm).

In the case k ≥ 2 we have Df(x) is well defined everywhere. In the case k = 1 we have that functions
in W 1,p(Rn;Rm) have what is called the Lusin N -property, that is if Ln(N) = 0 then Hn(f(N)) = 0.
Since for the case k = 1 we have m ≥ n we get that Lm(f(N)) = 0.

•[Bourgain, Korobkov, Kristensen, 2014]: If f ∈ Wn,1(Rn;R) then f is differentiable at H1-
almost every point and L(f(Cf )) = 0 where Cf = {x ∈ Rn : Df(x) exists and Df(x) = 0}.

Again in this case it is known that functions in f ∈ Wn,1(Rn;R) have the Lusin N property with
respect to the H1 measure. That is if H1(N) = 0 then H(f(N)) = 0.
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5.2 Proofs of the Morse-Sard theorem

We now give the proof of the Morse-Sard theorem by distinguishing three cases

n = m ; n < m ; n > m.

We start with the case n = m, which follows as a corollary from the next more general result (recall that
C1 functions are locally Lipschitz).

Theorem 5.4. Let f : Rn → Rn be locally Lipschitz. Then Ln(f(Cf )) = 0 where Cf = {x ∈
Rn : Df(x) exists and rank(D(f(x)) ≤ n− 1}.

Remark 5.5. A locally Lipschitz function f : Rn → Rn is differentiable Ln-almost everywhere by
Rademacher theorem. Then if

G = {x ∈ Rn : Df(x) does not exist}

we have Ln(G) = 0. Moreover the local Lipschitzianity of f also implies that Ln(f(G)) = 0. This is
usually referred as the Lusin N -property, and it is easily valid for locally Lipschitz functions by dividing
G into countable many pieces Gi where f is Li−Lipschitz and using that Ln(f(Gi)) ≤ Ln

i Ln(Gi) = 0.

Proof. Let Rn =
⋃∞

j=1Qj , where Qj are open cubes of sidelenght 1. We have that f |5Qj is Lipschitz
for every j ∈ N. We will prove that for every j ∈ N we have

Ln(f(Cf ∩Qj)) = 0

and this will enough to conclude the proof by the subadditivity of the Lebesgue measure Ln.
Let us fix j ∈ N and let us take x ∈ Cf ∩ Qj . By the differentiability of f at x, for a given ε > 0

there exists rx > 0 so that{
B(x, rx) ⊂ Qj

|f(y)− f(x)−Df(x)(y − x)| < εrx, ∀y ∈ B(x, 5rx)
.

Call k = rank(Df(x)) ≤ n− 1 the rank of the matrix Df(x) and denote by

Wx = f(x) +Df(x)(Rn)

the k-dimensional affine subspace passing through f(x) and generated by the subspace Df(x)(Rn). By
the previous properties we have

dist(f(y),Wx) < εrx, ∀y ∈ B(x, 5rx). (5.2.1)

By using (5.2.1) and assuming that f |5Qj is L−Lipschitz we have that

f(B(x, 5rx)) ⊂ B(f(x), 5Lrx) ∩ {z ∈ Rn : dist(z,Wx) < εrx}. (5.2.2)

Fact: For some given radii 0 < r < R, the k-dimensional ball B(0, R) ⊂ Rk can be covered by
C(k)(R/r)k balls of radius r, where C(k) is a constant only depending on the dimension k. (We leave
the proof of this fact as an exercise for the reader).

Using the previous fact, the k-dimensional ball B(f(x), 5Lrx)∩Wx can be covered by C(k)
(
5Lrx
εrx

)k
balls of radius εrx > 0. Take C(n) = max{C(1), . . . , C(n− 1). Since k ∈ {1, . . . , n− 1} and ε < L,
hence 5L/ε > 1 we can assure that

B(f(x), 5Lrx) ∩Wx can be covered by C(n)

(
5L

ε

)n−1

balls of radius εrx.
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If we double the radii of those balls and we see them with the same centres but now living in Rn instead
of living on a k-dimensional subspace, we can conclude that

B(f(x), 5Lrx) ∩ {z ∈ Rn : dist(z,Wx) < εrx}

can be covered by C(n)

(
5L

ε

)n−1

balls of radius 2εrx. And the same covering works for the set

f(B(x, 5rx)) by (5.2.2). We get that

Hn
∞(f(B(x, 5rx)) ≤ C(n)

(
5L

ε

)n−1

ωn2
nεnrnx = C(n)εrnx . (5.2.3)

We now write Cf ∩ Qj =
⋃

x∈Cf∩Qj
B(x, rx) and by using Vitali’s covering lemma (Theorem 1.12)

there exists a subfamily {B(xj , rj)}j≥1 of disjoint balls so that

Cf ∩Qj ⊂
⋃
j≥1

B(xj , 5rj).

We can write by using (5.2.3) and that
⋃

j≥1B(xj , rj) ⊂ Qj is a disjoint union,

Hn
∞(f(Cf ∩Qj)) ≤

∞∑
j=1

Hn
∞(f(B(xj , 5rj))) ≤

∞∑
j=1

C(n)εrnj = C(n)ε
∞∑
j=1

ωnr
n
j

= C(n)ε
∞∑
j=1

Ln(B(xj , rj)) = C(n)εLn

⋃
j≥1

B(xj , rj)


≤ C(n)εLn(Qj) = C(n)ε.

Since ε ∈ (0, L) was arbitrary we have that Hn
∞(f(Cf ∩ Qj)) = 0. In particular this implies that

Hn(f(Cf ∩ Qj)) = 0 and since Hn = Ln on Rn we conclude that Ln(f(Cf ∩ Qj)) = 0. We are
done.

The case n < m is much easier.

Theorem 5.6. If f : Rn → Rm is locally Lipschitz with n < m then Lm(f(A)) = 0
for every set A ⊂ Rn. In particular, Lm(f(Cf )) = 0 where Cf = {x ∈ Rn :
Df(x) exists and rank(Df(x)) ≤ n− 1}.

Proof. Let A ⊂ Rn. We cover A by balls A ⊂
⋃

j≥1Bj and we let Lj ≥ 0 be the Lipschitz constant of
f in Bj . We have that for every j ∈ N and 0 ≤ s < ∞,

Hs(f(A ∩Bj)) ≤ (Lj)
sHs(A ∩Bj).

Then if d = dimH(A) ≤ n we have that Hs(A) = 0 for every s > d. Recall that dimH(A) = inf{s ≥
0 : Hs(A) = 0}. Hence for every s > d,

Hs(f(A)) ≤
∞∑
j=1

Hs(f(A ∩Bj)) ≤
∞∑
j=1

(Lj)
sHs(A ∩Bj) = 0.

Then dimH(f(A)) ≤ d = dimH(A) ≤ n. We conclude that Hm(f(A)) = 0 and since Hm = Lm on
Rm, Lm(f(A)) = 0.
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The case n > m is more involved. For the proof an essential tool is the following result, which is
known in the literature as critically Morse lemma.

Lemma 5.7 (Critically Morse lemma). Let k ∈ N, A ⊂ Rn. Then we can write A =
⋃∞

j=0Aj

so that A0 is countable, each Aj with j ≥ 1 is bounded and without isolated points, and if
g : Rn → R is a function of class Ck such that A ⊂ Cg = {x ∈ Rn : ∇g(x) = 0} then for every
j ≥ 1 and every x ∈ Aj ,

lim
y→x
y∈Aj

|g(y)− g(x)|
|y − x|k

= 0. (5.2.4)

Proof. For this proof we refer to [14].

Now we prove the next result that only deals with image of the set of critical points where the
differential has rank zero. As a corollary one gets the classical Morse theorem from 1939 for real-valued
functions f : Rn → R of class Cn.

Theorem 5.8. Let f : Rn → Rm with n > m of class Ck where k = n − m + 1 ≥ 2. Let
A = {x ∈ Rn : Df(x) = 0} = {x ∈ Rn : rank(D(f(x)) = 0}. Then Lm(f(A)) = 0.

Proof. By the critically Morse Lemma 5.7 we decompose the set A as A =
⋃∞

j=0Aj with Aj having the
aforementioned properties. It is enough to check that

Lm(f(Aj)) = 0 for everyj ≥ 0.

First, as A0 is countable, f(A0) is countable and then Lm(f(A0)) = 0. Fix now j ≥ 1. By the
boundedness of Aj there exists R > 0 so that Aj ⊂ B(0, R) for some R > 0. Take ε > 0 arbitrary. By
(5.2.4), for each x ∈ Aj and since every component fi, i = 1, . . . ,m, is of class Ck(Rn;R) we have

lim
y→x
y∈Aj

|fi(y)− fi(x)|
|y − x|k

= 0.

Then

lim
y→x
y∈Aj

|f(y)− f(x)|
|y − x|k

= 0.

Hence, for the given ε > 0 there exists 0 < rx < 1 so that

|f(y)− f(x)| ≤ ε|y − x|k, ∀y ∈ B(x, rx) ∩Aj .

If we now take y, z ∈ B(x, rx) ∩Aj and use the triangle inequality

|f(y)− f(z)| ≤ ε|y − x|k + ε|y − z|k ≤ 2ε(rx)
k.

This yields that diam(f(Aj ∩ B(x, rx))) ≤ 2ε(rx)
k. And by covering the set by just one single cube

with sidelenght the diameter of the set itself we get

Hm
∞(f(Aj ∩B(x, rx))) ≤ 2mεm(rx)

km (5.2.5)

Since we can write Aj ⊂
⋃

x∈Aj
B(x, rx) by Vitali’s Lemma 1.12 there is a subfamily {B(xi, ri)}i∈N

so that Aj ⊂
⋃

i∈NB(xi, ri) and moreover the balls {B(xi, ri/5) are pairwise disjoint. Hence by using
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(5.2.5), that (n−m+ 1)m ≥ n and noting that
⋃

i≥1B(xi, ri/5) ⊂ B(0, R+ 1/5),

Hm
∞(f(Aj)) ≤

∞∑
i=1

Hm
∞(f(B(xi, ri)) ≤

∞∑
i=1

2mεm(ri)
km ≤ 2mεm

∞∑
i=1

(ri)
n = C(n)εm

∞∑
i=1

ωn

(ri
5

)n
= C(n,m)εm

∞∑
i=1

Ln (B(xi, ri/5)) = C(n,m)εmLn

⋃
i≥1

B(xi, ri/5)


≤ C(n,m)εmLn(B(0, R+ 1/5)) = C(n,m,R)εm.

Since ε > 0 was arbitrary we get that Hm
∞(f(Aj)) = 0. Then Hm(f(Aj)) = 0 and since Hm = Lm on

Rm we conclude that Lm(f(Aj)) = 0 and the proof is complete.

Finally it remains to proof the general case, where we deal with the total set of critical of points. We
follow the classical approach of Sard in 1942, which heavily relies on Theorem 5.8.

Theorem 5.9. Let f : Rn → Rm with n > m of class Ck where k = n−m+1 ≥ 2. Then the for
the sets Cj = {x ∈ Rn : , rank(Df(x)) = j}, j = 0, 1 . . . ,m − 1 satisfy that Lm(f(Cj)) = 0.
In particular since Cf =

⋃m−1
j=0 Cj we get that Lm(f(Cf )) = 0.

Proof. The fact that Lm(f(C0)) = 0 follows directly from Theorem 5.8. For the rest of the cases we
will perform a kind of reduction in order to use Theorem 5.8 again.

Let us fix j = 1, . . . ,m − 1. We leave as an exercise to check that Cj is a measurable set (indeed
an intersectipn between a closed and open set). Fix x0 ∈ Cj and we will prove the existence of some
r0 > 0 so that Lm(f(B(x0, r0) ∩ Cj))) = 0. This will enough by using the separability of Rn and the
countable subadditivity of the Lebesgue measure Lm.

Since x0 ∈ Cj we have that rank(Df(x0)) = j ∈ {1, . . . ,m − 1}, so there is a minor of order j
which is non null. Reordering the variables and components of f if necessary we can write

f(x) = (f1(x1, . . . , xn), . . . fm(x1, . . . , xn))

such that

det

(
∂(f1, . . . , fj)

∂(x1, . . . , xj)
(x0)

)
= det


∂f1
∂x1

(x0) · · · ∂f1
∂xj

(x0)
...

. . .
...

∂fj
∂x1

(x0) · · · ∂fj
∂xj

(x0)

 ̸= 0.

We define the function h : Rn → Rn as

h(x) = h(x1, . . . , xn) = (f1(x), . . . , fj(x), xj+1, . . . , xn).

We have that h ∈ Ck(Rn;Rn) and moreover det(Dh(x0)) ̸= 0, so by using the inverse function theorem
there exists r0 > 0 so that h|B(x0,r0) is a Ck-diffeomorphism. Let us call V = h(B(x0, r0)) ⊂ Rn, which
is an open set. It is clear that h(B(x0, r0) ∩ Cj) = V ∩ h(Cj). Define now the function F = f ◦ h−1 :
V → Rm, which can be written as

F (y) = F (y1, . . . , yn) = (y1, . . . , yj , g(y1, . . . , yn)), ∀y ∈ V.

for some function g : V ⊂ Rn → Rm−j of class Ck.
Observe that we are done if we prove that Lm(F (V ∩ h(Cj))) = 0 because

Lm(f(B(x0, r0) ∩ Cj)) = Lm(f(h−1(V ∩ h(Cj))) = Lm(F (V ∩ h(Cj))) = 0.

For the functions F and g we have the following properties:
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1. By the chain rule, for every y ∈ V ,

DF (y) = Df(h−1(y))Dh−1(y) =

(
Idj 0
∗ D(g|(y1,...,yj))(yj+1, . . . , yn)

)
,

where g|(y1,...,yj) : V(y1,...,yj) → Rm−j is defined by g|(y1,...,yj)(yj+1, . . . , yn) = g(y1, . . . , yn),
with V(y1,...,yj) =

{
(z1, . . . , zn−j) ∈ Rn−j : (y1, . . . , yj , z1, . . . , zn−j) ∈ V

}
.

Moreover we fix some more notation: πj : Rn → Rj denotes the projection onto the first j-
coordinates and πn−j : Rn → Rn−j denotes the projection onto the last (n− j) coordinates.

2. h is a diffeomorphism with Dh−1(y) = (Dh(x))−1 for every y = h(x) ∈ V , and by item (1) we
have that

DF (y) = Df(h−1(y))Dh−1(y), ∀y ∈ V ⇒ Df(x) = DF (h(x))Dh(x), ∀x ∈ B(x0, r0).

Since det(Dh(x)) ̸= 0 we have that the rank of DF (h(x)) is the same as the rank of Df(x) for
every x ∈ B(x0, r0). In particular, if x ∈ B(x0, r0) ∩ Cj then h(x) = y is a critical point of F
with DF (y) having rank j. And by the expression of DF (y) in item (1) it is clear that for every
y ∈ V ∩ h(Cj)

rank(DF (y)) = j ⇔ (D(g|(y1,...,yj))(yj+1, . . . , yn) = 0.

In other words for a given fixed (y1, . . . , yj) ∈ πj(V ∩ h(Cj)) we have that

(Dg|(y1,...,yj))(yj+1, . . . , yn) = 0 ⇔ (yj+1, . . . , yn) ∈ V(y1,...,yj) ∩ πn−j(h(Cj)).

And the previous situation occurs if and only if x = h−1(y) ∈ B(x0, r0) is a critical point of f
with Df(x) having rank j.

Due to the fact that for any given (y1, . . . , yj) ∈ πj(V ∩ h(Cj)) the function

g|(y1,...,yj) : V(y1,...,yj) ⊂ Rn−j → Rm−j

is of class Ck and

V(y1,...,yj) ∩ πn−j(V ∩ h(Cj)) = {(yj+1, . . . , yn) ∈ V(y1,...,yj) : (Dg|(y1,...,yj)(yj+1, . . . , yn) = 0},

then by applying Theorem 5.8 we obtain that

Lm−j(g|(y1,...,yj))(V(y1,...,yj) ∩ πn−j(h(Cj))) = 0 (5.2.6)

for every (y1, . . . , yj) ∈ πj(V ∩h(Cj)). We finish the proof by using Fubini’s theorem (note that the set
F (V ∩ h(Cj)) is measurable and that F fixes the first j coordinates).

Lm (F (V ∩ h(Cj))) =

∫
F (V ∩h(Cj))

1 dy1 . . . dyjdzj+1 . . . dzm =

=

∫
πj(V ∩h(Cj))

(∫
g|(y1,...,yj)

(
V(y1,...,yj)

∩πn−j(h(Cj))
) 1 dzj+1 . . . dzm

)
dy1 . . . dyj =

=

∫
πj(V ∩h(Cj))

Lm−j(g|(y1,...,yj))(V(y1,...,yj) ∩ πn−j(h(Cj))) dy1 . . . dyj = 0.

It is clear now that Theorem 5.4, Theorem 5.6 and Theorem 5.9 give a complete proof of the classical
Morse-Sard theorem (Theorem 5.1).
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5.3 Morse-Sard theorem in infinite-dimensional Banach spaces

The next question is:

What happens if we work with infinite dimensional Banach spaces X?

Here, unfortunately one does not have the validity of the Morse-Sard theorem. That is, there exists
Banach spaces X and C∞ smooth functions f : X → R whose set of critical values has positive
measure. The firs one to give such an example was Kupka in [13]. We present the following easier
example from Bates and Moreira, contained in [2].

Example 5.10. Let f : ℓ2 → R be the following polynomial of degree 3 (hence of class C∞).

f

( ∞∑
n=1

xnen

)
=

∞∑
n=1

(3 · 2−
n
3 x2n − 2x3n).

The function f satisfies the next properties, whose verification is left to the reader.

• For a given x ∈ ℓ2, Df(x) ∈ ℓ∗2 is written as

Df(x) =
∞∑
n=1

(
6 · 2−

n
3 xn − 6x2n

)
en.

• We have that Df(x) = 0 if and only if xn(2−
n
3 − xn) = 0 for all n ∈ N. Therefore we have

Cf = {
∞∑
n=1

xnen : xn ∈ {0, 2−
n
3 }}

• We have that f(Cf ) = [0, 1]. On the one hand given x = (xn)n≥1 ∈ Cf clearly f(x) is an infinite
sum of positive terms and

f(x) =

∞∑
n=1

(3 · 2−
n
3 x2n − 2x3n) ≤

∞∑
n=1

(3 · 2−
n
3 2−2n/3 − 22−n) =

∞∑
n=1

2−n = 1.

On the other hand let t ∈ [0, 1]. Then there exists a unique sequence (yn)n≥1 ⊂ {0, 1} such that
t =

∑
n≥1 yn2

−n. Now let x = (xn)n≥1 be defined as xn = 0 if yn = 0 and xn = 2−n/3 if
yn = 1. In this way we have x ∈ Cf and

f(x) =

∞∑
n=1

(3·2−
n
3 x2n−2x3n) =

∑
{n∈N: yn=1}

(3·2−
n
3 2−2n/3−22−n) =

∑
{n∈N: yn=1}

2−n =

∞∑
n=1

yn2
−n = t.

• Finally we have that f ∈ C∞(ℓ2;R) .
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Exercises

1. Related to Grinberg’s example [9]. Let C ⊂ [0, 1] be the ternary Cantor set. Build explicitly
a function f : R → R that is of class C1 and so that C ⊂ f(Cf ). Justify rigorously the C1

smoothness of f once given.

2. Prove that if f : Rn → R is of class Cn then f is constant on every connected component of
Cf = {x ∈ Rn : ∇f(x) = 0}.

3. Let B(0, R) ⊂ Rn be the n-dimensional open ball of radius R > 0. Prove that given 0 < r < R,
there exists a constant C(n) that only depends on the dimension n in such a way that with a number
C(n)(R/r)n of open balls of radii r > 0 we can cover the whole ball B(0, R).

4. Related to the Morse-Sard theorem, prove that if n > m, f : Rn → Rm is of class Cq and for
some s < m we have qs ≥ n then Hs(f(A)) = 0, where A = {x ∈ Rn : Df(x) = 0}.

5. Given the function f(x) = |x|, x ∈ R, is it possible to find a function g : R → R of class C1 with
|g(x)− f(x)| < 1/2 for all x ∈ R2 and g not having critical points? Secondly, provide a function
h ∈ C∞(R;R) with only one critical point so that |h(x)− f(x)| < 1/2 for all x ∈ R.

6. Let Γ = {t(cos(t), sin(t)) : t ∈ [0, 2π]}. Prove that it is not possible to define a function
f : R2 → R of class C1 so that ∇f(x) = 0 for all x ∈ Γ and with L1(f(Γ)) > 0.

7. Let f : Rn → Rm be of class C1 with m ≤ n. prove that for every j = 0, 1 . . . ,m − 1 the sets
{x ∈ Rn : rank(Df(x)) ≤ j} are closed.
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