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Abstract

In this work we study numerical approximation for positive solutions of

a heat equation with a nonlinear flux condition which produces blow up of

the solution. By a semidiscretization in space we obtain a system of ordinary

differential equations which is expected to be an approximation of the original

problem.

We describe in terms of the nonlinearity when solutions of this system

exists globally in time and when they blow up in infinite time. We also find

the blow-up rates and the blow-up set.

Moreover, under certain condition in the initial data, we also prove that

the numerical blow-up time converges to the real blow-up time when the

mesh-size goes to zero.

Keywords: Reaction-diffusion equations, numerical blow-up, nonlinear

boundary condition.
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Resumen

En este trabajo estudiamos una aproximación numérica para solucio-

nes positivas de la ecuación del calor con condición de flujo no lineal en

la frontera. Mediante una semidiscretización en espacio obtenemos un sis-

tema de ecuaciones diferenciales ordinarias, que esperamos sea una buena

aproximación del problema original.

Describimos, en términos de la no linearidad, cuando las soluciones del sis-

tema de ecuaciones están definidas globalmente y cuando explotan en tiempo

finito. También calculamos la tasa de explosión y el conjunto de explosión.

Además, bajo hipótesis adicionales en el dato inicial, también demostra-

mos la convergencia de los tiempos de explosión al tiempo de explosión del

problema original, cuando el tamaño de la malla tiende a cero.

Keywords: Ecuaciones de reacción-difusión, explosión numérica, condi-

ciones de frontera no lineales.
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1 Introduction

In this work we study the behavior of a numerical approximation of the

following problem,






ut (x, t) = uxx (x, t) in (0, 1)× [0, T )

ux (0, t) = −up (0, t) in [0, T )

ux (1, t) = 0 in [0, T )

u (x, 0) = ψ (x) in [0, 1]

(1)

Where p > 0 and the initial data ψ (x) is a smooth positive function which

satisfies the boundary condition.

Such problems can be interpreted of a model for heat propagation. In this

case u stands for the temperature, and −ux represents the heat flux. Hence

the boundary condition represent a nonlinear radiation law at the boundary.

This kind of boundary condition appears also in combustion problems when

the reaction happens only at the boundary of the container, for example

because of the presence of a solid catalyzer.

Local in time existence and uniqueness can be obtained by using a con-

traction mapping principle. The time T is the maximal existence time for

the solution, which may be finite or infinite. If T <∞, then

lim sup
t→T

‖u(·, t)‖L∞([0,1]) = ∞,

and we say that it blows up. If T = ∞ we say that the solution is global.

For references on blow-up problem, see [5] and the references there in.

The major questions that have been studied since then are:
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1. For which values of p does blow-up occur?

2. For which initial functions does blow-up occur?

3. With which rate (in t) does the solution approach the blow-up time?

4. Where are the blow-up points located?

In the survey, [6], this questions have been analyzed. Let us summarize

the known results for the solutions of (1).

1. For p ≤ 1 the solution is global in time.

2. For p > 1 all solution blows up in finite time.

3. Let u be a blow-up solution, then

‖u(·, t)‖L∞([0,1]) ∼ (T − t)−
1

2(p−1)

4. The only blow-up point is x = 0.

This work is devoted to studying a numerical approximation of (1). The

main point we are interested in is to know how the answers of the above

questions (respect to the continuous problem) are reproduced by numeri-

cal methods. In other words, we ask ourselves all these questions related

to numerical approximations for blow-up problem (1); and we compare the

answers with the ones concerning the continuous problem.

Inspired in [7], where the author study the heat equation with reaction

in the interior of the domain,




ut = uxx + up in (−1, 1)× (0, T )

u(−1, t) = u(1, t) = 0 in [0, T )

u(x, 0) = u0(x) in [0, 1]
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We analyze a semidiscretizations in space, ie, discretizing the spatial va-

riable x keeping t continuous. Therefore, we replace the original problem

by a system of ordinary differential equations. For references of this type of

numerical approximation see the survey [8].

More precisely, we consider a uniform mesh for the space variable, and we

approximate the diffusion term uxx using a standard central finite difference

second order scheme. We denote by U(t) = (u1(t), · · · , uN(t)) the values of

the numerical approximation at the nodes xi = (i−1) h with h = 1/(N −1),

at time t. Then U(t) is a solution of the following system





u′1(t) =
2

h2
(u2(t)− u1(t)) +

2

h
up1(t) ,

u′j(t) =
1

h2
(uj+1(t)− 2uj(t) + uj−1(t)), j = 2, · · · , N − 1 ,

u′N(t) =
2

h2
(uN−1(t)− uN(t)) .

(2)

To begin our analysis we prove that numerical approximations given by

(2) converge uniformly if we consider a regular bounded solution of the con-

tinuous problem. Hence our scheme is uniformly convergent in sets of the

form [0, L]× [0, T − τ ].

Our main results concern the behavior of the numerical approximations

given by (2). Significant differences appear between the continuous and the

discrete problem.

First we prove that positive solutions of the numerical problem blow up

if and only if p > 1. Hence, the blow-up condition is the same that for the

continuous problem.
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Next, we turn our attention to the blow-up rate. For decreasing initial

data we find that the blow-up rate for the numerical scheme is given by

‖U(t)‖∞ ∼ (Th − t)−
1

p−1 if p > 1.

Therefore, the blow-up rate does not coincide with the continuous one. In

order to reproduce the correct blow-up rate we need to use a adaptive mesh

refinement near of the boundary x = 0. Some references that use adaptive

numerical methods are [1], [2] and [4].

Concerning to the blow-up time, we show the convergence of the discrete

blow-up time Th to the continuous one T , i.e.

Th → T as h→ 0 .

Finally, for the blow-up set of the numerical approximations we prove

that

B(U) =

{
{x1} p > 2,

{x1, · · · , xK} p ≤ 2,

where the constant K ≥ 2 depends only on p. In fact is the integer that

verifies
K + 1

K
< p ≤

K

K − 1
.

In particular, for p > 2 the only blow-up point is x = 0 and the blow-up set

coincides with the continuous one. However, for p ≤ 2, the blow-up set is

larger than a single point, x = 0. But, as xK → 0 as h→ 0, our result show

that

B(U) → B(u), as h→ 0.

Moreover, the asymptotic behavior of the blow-up nodes is given by

uj ∼ (Th − t)j−1− 1
p−1 , if p 6=

K

K − 1
or j 6= K ,
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and by

uj ∼ ln(Th − t), if p =
K

K − 1
.

This work is organized as follows: In Section 2 we describe our numerical

approximation. In Section 3 we describe some properties of the numerical

scheme and prove the convergence of the method. In Section 4 we prove the

numerical blow-up results and find the numerical blow-up rates. In Section

5 we shows the convergence of the blow-up times to the continuous one.

Section 6 is devoted to the numerical blow-up sets. In Section 7 we present

some numerical experiments.
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2 The method of lines

The basic idea of the method of lines is to replace the spatial (boundary-

value) derivatives in the PDE with algebraic approximations. Once this is

done, the spatial derivatives are no longer stated explicitly in terms of the

spatial independent variables. Thus, only the time variable remains and we

have a system of ODEs that approximate the original PDE.

In our case, we approximate the spacial derivatives by finite difference.

To do that, we take a uniform partition {xj} of the interval [0, 1] of size h,

xj = (j − 1) h j = 1, · · · , N and h =
1

N − 1
,

and we use a truncated Taylor expansion for small h,

u (xj+1, t) = u (xj , t)+hux (xj , t)+
h2

2!
uxx (xj , t)+

h3

3!
uxxx (xj , t)+

h4

4!
uxxxx

(
ηj, t

)
,

u (xj−1, t) = u (xj , t)−hux (xj , t)+
h2

2!
uxx (xj , t)−

h3

3!
uxxx (xj , t)+

h4

4!
uxxxx

(
ηj−1, t

)
,

where ηj ∈ (xj , xj+1). Summing this two expressions we get the following

approximation of uxx(xj , t)

uxx (xj , t) =
1

h2

(
u(xj+1, t)−2u(xj, t)+u(xj−1, t)

)
−
h2

24
(uxxxx

(
ηj , t

)
−uxxxx

(
ηj−1, t

)
).

Observe that in the approximation of uxx(xj , t) appears the nodes xj−1, xj , xj+1,

so this is not a valid approximation for the first and the last nodes.

Since u is a solution of the heat equation, we have

ut (xj , t) =
1

h2

(
u(xj+1, t)−2u(xj, t)+u(xj−1, t)

)
−
h2

24
(uxxxx

(
ηj , t

)
−uxxxx

(
ηj−1, t

)
).
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In order to obtain and approximating equation for the first node, we use

the boundary condition.

u (x2, t) = u (x1, t) + hux (x1, t) +
h2

2!
uxx (x1, t) +

h3

3!
uxxx (η1, t)

= u (x1, t)− hup (x1, t) +
h2

2!
ut (x1, t) +

h3

3!
uxxx (η1, t) .

Then,

ut(x1, t) =
2

h2
(u (x2, t)− u (x1, t)) +

2

h
up (x1, t)−

h

3!
uxxx (η1, t) .

In a similar way we obtain the approximating equation for the last node,

ut(xN , t) =
2

h2
(u (xN−1, t)− u (xN , t)) +−

h

3!
uxxx

(
ηN−1, t

)
.

Summing up, we get that a smooth solution of (1) satisfies





ut(x1, t) =
2

h2
(u (x2, t)− u (x1, t)) +

2

h
up (x1, t) +O(h) ,

ut (xj , t) =
1

h2

(
u(xj+1, t)− 2u(xj, t) + u(xj−1, t)

)
+O(h2) , j = 2, · · · , N − 1 ,

ut(xN , t) =
2

h2
(u (xN−1, t)− u (xN , t)) +O(h) .

Finally, removing the truncation error terms, we obtain the following

ode’s system




u′1(t) =
2

h2
(u2(t)− u1(t)) +

2

h
up1(t) ,

u′j(t) = δ2uj(t), j = 2, · · · , N − 1 ,

u′N(t) =
2

h2
(uN−1(t)− uN(t)) .

(3)

where the operator δ2 is defined by

δ2uj =
uj+1 − 2uj + uj−1

h2
.
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We remark that for a fixed h the right hand side of this system is a

Lipstchiz continuous function. Then, for a bounded initial data, we can

apply the Picar’s Theorem to obtain local existence and uniqueness.
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3 Convergence

In this section we collect some preliminary results for our numerical method.

In particular we prove convergence for regular solutions.

First, we prove a comparison principle, for a more general problem





v′1(t) =
2

h2
(v2(t)− v1(t)) +

2

h
m (t) f (v1(t)) +K1 h

v′j(t) = δ2 (vj (t)) +Kj h
2 j = 2, . . . , N − 1

v′N (t) =
2

h2
(vN−1 (t)− vN (t)) +KN h

vj(0) = g(xj) j = 1, . . . , N

(4)

where m is a positive function and the function f is increasing.

Definition 1 We call W a supersolution (resp. a subsolution) if it satisfies

(4) with upper (resp. lower) inequalities instead of equalities.

Theorem 2 Let V and W be a subsolution and a supersolution respectively

such that wj(0) > vj(0). Then, W (t) > V (t), for every t > 0.

Proof. Let β such that

0 < β < min
j=1,··· ,N

(wj (0)− vj(0))
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Let us define the function E :=W − V . Which satisfies




e′1 ≥
2
h2 (e2 − e1) +

2
h
m (t) (f (w1)− f (v1))

e′j ≥ δ2 (ej) j = 2, . . . , N − 1

e′N ≥ 2
h2 (eN−1 − eN )

ej(0) > β j = 1, . . . , N

We argue by contradiction, assume that there exists a first time t0 > 0 where

the vector E reaches the level β. Let us define

j0 = min{j = 1, . . . , N : uj(t0) = β}.

Then, at time t0, we have

ej(t0) > β j = 1, . . . , j0

ej(t0) ≥ β j = j0, . . . , N

e′j0 (t0) ≤ 0

m(t0) > 0

f(w1(t0))− f(v1(t0)) > 0

From this inequalities and the equation satisfies by ej0 we arrive a con-

tradiction. Indeed,

i) If j0 = 1,

0 ≥ e′1 (t0) ≥
2

h2
(e2 (t0)− β) +

2

h
m (t) (f (w1)− f (v1)) > 0,
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ii) If 2 ≤ j0 ≤ N − 1,

0 ≥ e′j0(t0) ≥ δ2ej0(t0) =
ej0+1 (t0)− 2β + ej0−1 (t0)

h2
> 0.

iii) If j = N ,

0 ≥ e′N (t0) >
2

h2
(eN−1 (t0)− β) > 0.

Thus, we have that E > β and the result follows.

Now, we are able to show our convergence result for regular solutions.

Theorem 3 Let u ∈ C4([0, 1]× [0, T − τ)) be a positive solution of (1) and

uh the numerical approximation given by (3). Then, there exists a constant

D such that for every h small enough the following estimate holds

max
j=1,...,N

|u(xj, t)− uj(t)| 6 D
(
‖ψ(xj)− uj(0)‖L∞ + h2

)

for all time t ∈ [0, T − τ ].

Proof. We define the error function as

ej(t) = u(xj , t)− uj(t).

Let c be a constant such that u ≤ c for every t ∈ [0, T − τ ] and

t̃ = max{t ∈ [0, T − τ ] such that |ej | ≤ c/2} (5)

so as to ensure that, up to time t̃, none of the solutions, neither the appro-

ximation nor the continuous solution, blow up. The following estimates will

be performed restricting ourselves to t ∈ [0, t̃]. Afterwards, we will show that

t̃ = T − τ .
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Since u ∈ C4([0, 1]× [0, T − τ )) there exists positive constants

‖uxxxx‖L∞

12
+ 1 6 K1,

‖uxxx‖L∞

6
+ 1 6 K2, p (‖u‖L∞ + 1)p−1

6 K3,

where ‖·‖L∞ denote the norm in L∞ ([0, 1]× [0, T − τ ]). With this notation

the error function satisfies





e′1 (t) < 2
h2 [e2 (t)− e1 (t)] +

2
h
(up1 (t)− up (x1, t)) +K2h

e′j (t) < 1
h2 (ej+1 (t)− 2ej (t) + ej−1 (t)) +K1h

2 j = 2, · · · , N − 1

e′N (t) < 2
h2 (eN−1 (t)− eN (t)) +K2h

ej (0) = ψ(xj)− uj(0) j = 1, · · · , N

Applying the Mean Value Theorem to the function g(s) = sp in the first

equation we obtain

e′1 (t)−
2

h2
[e2 (t)− e1 (t)] <

2K3

h
e1 (t) +K2h.

Then, the error function is a subsolution of the following system





w′
1(t) = 2

h2 (w2 − w1) +
2K3

h
w1 +K2h

w′
j(t) = δ2wj(t) +K1h

2 j = 2, · · · , N − 1

w′
N(t) = 2

h2 (wN−1 − wN) +K2h

wj (0) = ψ(xj)− uj(0) +
h2

2
j = 1, · · · , N

(6)

Let us look for a supersolution of the form

Vj (t) := A(h)ϕ (t) γ (xj) j = 1, · · · , N,
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where

A(h) = (‖ψ(xj)−uj(0)‖L∞([0,1])+h
2), ϕ (t) = e2K1t, γ (x) = e−C1(x−1)+C2x.

- For the first equation, we get

V ′
1(t) = 2K1e

K1tA(h)γ(0) > 0

and

2

h2
(V2 − V1) +

2K3

h
V1 +K2h =

2

h
A(h)ϕ(t)

(
γ(h)− γ(0)

h
+K3γ(0)

)
+K2h.

Using the Taylor expansion for the function γ, we obtain that

2

h2
(V2−V1)+

2K3

h
V1+K2h =

(
2
A(h)

h2

(
γ′(0) + γ′′(ξ)

h

2
+K3γ(0)

)
+K2

)
h,

where ξ ∈ (0, h). Now, we impose that

2γ′(0) + γ′′(ξ)h+ 2K3γ(0) +K2 < 0, (7)

then using the fact A(h)/h2 > 1, we obtain that

2

h2
(V2 − V1) +

2K3

h
V1 +K2h < 0 < V ′

1(t).

- For the interior nodes. Using, again, the taylor expansion we get that

δ2Vj +K1h
2 <

(
1

12
A(h)ϕ(t)‖γxxxx‖L∞([0,1]) +K1

)
h2.

Since A(h) → 0 as h→ 0, we get that for h small enough

δ2Vj +K1h
2 < 2K1h

2.

On the other hand, A(h) > h2, ϕ ≥ 1 and γ(xj) ≥ 1, then

V ′
j (t) = 2K1A(h)ϕ(t)γ(xj) > 2K1h

2.
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So,

V ′
j (t) > 2K1h

2 > δ2Vj +K1h
2.

- For the last node.

V ′
N(t) = 2K1A(h)ϕ(t)γ(1) > 0

and

2
h2 (VN−1 − VN) +K2h =

(
2ϕ(t) A(h)

h2

γ(1−h)−γ(1)
h

+K2

)
h

=
(
2ϕ(t) A(h)

h2 (−γ ′(1) + γ′′(ξ)h
2
) +K2

)
h

where ξ ∈ (1− h, h). Now, we impose that

−γ′(1) + γ′′(ξ)
h

2
+K2 < 0, (8)

then using the fact A(h)/h2 > 1, we obtain that

2

h2
(V2 − V1) +

2K3

h
V1 +K2h < 0 < V ′

1(t).

- For the initial data.

Vj(0) = γ(xj)A(h) > A(h) > ψ(xj)− uj(0) + h2 > wj(0).

- Finally, we verify the conditions (7) and (8). We start by (8)

−γ′(1) + γ′′(ξ)
h

2
+K2 = C1 − C2 + ‖γ′′‖L∞([0,1])

h

2
+K2.

Then taking C2 = 2(C1 + K2) condition (8) holds for h small enough. For

(7) we have that

2γ′(0) + γ′′(ξ)h +K3γ(0) + 2K2 ≤ −2C1e
C1 + 2C2 + ‖γ′′‖L∞([0,1])h+ 2K3e

C1 +K2

= 2(K3 − C1)e
C1 + 2C1 + 5K2 + ‖γ′′‖L∞([0,1])h.
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Notice that the function G(s) = 2(K3 − s)es + 2s + 5K2 goes to −∞ as

s → ∞. Then, taking C1 large we obtain that G(C1) < 0. Therefore, for h

small condition (7) also holds.

Therefore, Vj is a supersolution of system (6). Hence, applying the com-

parison principle (see 2), we get

ej(t) ≤ wj(t) ≤ Vj(t) ≤ eC1eK1TA(h).

Arguing in the same way with −ej we obtain

|ej(t)| ≤ wj(t) ≤ Vj(t) ≤ eC1e2K1TA(h).

Since A(h) → 0 as h→ 0 we can take h small enough such that,

eC1e2K1TA(h) ≤ c/2, t ∈ [0, T − τ ].

Hence t̃ = T − τ and the theorem is proved.

Remark 4 In order to observe only the error of the method, we consider

initial data for problem (3) which satisfies

max
1≤j≤N

|ψ(xj)− uj(0)| = 0(hγ) γ > 2 .
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4 Blow-up versus global solution. Blow-up

rate

This chapter shows the existence of solutions that exploit, the rate with which

they do (which coincides with the ongoing problem) and the convergence of

blow-up time of the discrete problem to the continuous when h→ 0.

Lemma 5 Let a, b, p be three positive constants. If x : R → R satisfies

{
axp(t) ≤ x′(t) ≤ bxp(t) t > t0

x(t0) = x0 > 0

Then, for p ≤ 1 the function x is global in time, while for p > 1 the function

x blows up at a finite time T . Moreover, in the blow-up case there exists two

positive constants such that

C1(T − t)
−1
p−1 ≤ x(t) ≤ C2(T − t)

−1
p−1 .

Proof. Take the case p > 1. Integrating the inequality, as x′ (t) > axp (t),

we have ∫ t

t0

x′ (t)

xp (t)
ds > a

∫ t

t0

ds

changing variables ∫ x(t)

x0

1

sp
ds > a (t− t0)

=⇒ (x(t))1−p

1−p
> a (t− t0) +

x1−p
0

1−p

=⇒ (x (t))1−p
6 x1−p

0 − a (p− 1) (t− t0)
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If x (t) be global, then it is always positive, but as a > 0, then for t sufficiently

large the right member is negative, a contradiction. Therefore, x (t) can not

exist beyond time t0 +
x1−p
0

(p−1)a
, which explodes in finite time, T . To estimate

the rate, we integrate the inequality x′ (t) > axp (t) between t and T the time

of explosion: ∫ T

t

x′ (t)

xp (t)
ds > a

∫ T

t

ds

changing variables ∫ +∞

x(t)

1

sp
ds > a (T − t)

=⇒ (x(t))1−p

p−1
> a (T − t)

=⇒ x (t) 6 C (T − t)−
1

p−1

thus x (t) blows up at most with the rate indicated. Now, consider the case

p < 1. Proceeding as before, we have

(x (t))1−p

1− p
6 a (t− t0) +

x1−p
0

1− p

=⇒ (x (t))1−p
6 x1−p

0 + a (1− p) (t− t0)

=⇒ x (t) 6
[
x1−p
0 + a (1− p) (t− t0)

] 1
1−p
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and x (t) is bounded by
[
x1−p
0 + a (1− p) (t− t0)

] 1
1−p , that does not blows

up. If p = 1, then

log (x (t)) 6 a (t− t0) + log x0

=⇒ log (x (t)) 6 log ea(t−t0) + log x0

=⇒ log (x (t)) 6 log
(
x0 ∗ e

a(t−t0)
)

=⇒ x (t) 6 x0 ∗ e
a(t−t0)

and as before, x0 ∗ ea(t−t0) does not blows up. Thus we see that x (t) is

dominated by global functions.

Lemma 6 Let U be a solution of (3) with uj(0) > uj+1(0), j = 1, · · · , N .

Then

uj(t) > uj+1(t), j = 1, · · · , N

Proof. We argue by contradiction, assume that there exists a first time

t0 > 0 and a first node j0 where uj0 (t0) = uj0+1 (t0).

Let us define the function

ej (t) := uj (t)− uj+1 (t) j = 1, · · · , N − 1.

Which satisfies,




e′1 =
1

h2
e2 +

2

h
up1

e′j = δ2ej j = 2, · · · , N − 2

e′N−1 =
1

h2
(eN−2 − 3eN−1)
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Notice that ej(0) > 0 for all j = 1, . . . , N − 1, then at time t0 we have that

ej(t0) ≥ 0 j = 1, · · · , N − 1.

and at node j0,

ej0(t0) = 0 e′j0(t0) ≤ 0.

From this inequality and the equation satisfies by ej0 we arrive a contra-

diction. Indeed,

i) If j0 = 1,

0 ≥ e′1(t0) =
1

h2
e2(t0) +

2

h
up1(t0) ≥

2

h
up1(t0) > 0.

ii) If 2 ≤ j0 ≤ N − 2,

0 ≥ e′j0(t0) =
1

h2
(ej0+1(t0) + ej0−1(t0)) ≥ 0.

Then, ej0−1(t0) = 0, and

0 ≥ e′j0−1(t0) =
1

h2
(ej0(t0) + ej0−2(t0)) ≥ 0.

So, ej0−2(t0) = 0. Iterating this procedure, we get ej(t0) = 0 for all j ≤ j0.

In particular, e1(t0) = 0 which is a contradiction by i).

iii) Finally, if j0 = N − 1, we get

0 ≥ e′N−1 =
1

h2
eN−2 ≥ 0.

Which implies that eN−2 = 0 and by ii) we get a contradiction.

Theorem 7 A solution of (3) blows up if and only if p > 1. Moreover, if

p > 1 and U(0) is decreasing, then there exists two constants, C1 = C1(h)

and C2 = C2(h), such that

C1(T − t)
−1
p−1 ≤ ‖U(t)‖∞ ≤ C2(T − t)

−1
p−1 .
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Proof. First we consider a decreasing initial data U(0). By Lemma 6, U(t)

is decreasing and then its maximum will be ui(t).

We define the function

w(t) =
1

2
u1(t) +

N−1∑

j=2

uj(t) +
1

2
uN(t)

which satisfies

w′ (t) = 1
2
u′1 (t) +

∑N−1
j=2 u

′
j (t) +

1
2
u′N (t)

= 1
2

[
2
h2 (u2 − u1) +

2
h
up1 (t)

]
+
∑N−1

j=2 δ
2uj (t) +

1
2

2
h2 (uN−1 − uN)

= 1
h2 (u2 − u1) +

1
h
up1 (t) +

1
h2

∑N−1
j=2 (uj−1 − 2uj + uj+1) +

1
h2 (uN−1 − uN)

= 1
h2 (u2 − u1) +

1
h
up1 (t) +

1
h2 (u1 − 2u2 + u3) + (u2 − 2u3 + u4) + · · ·

+ (uN−2 − 2uN−1 + uN) +
1
h2 (uN−1 − uN)

= 1
h
up1 (t) .

On the other hand, since U(t) is decreasing vector, we have

1

2
u1(t) 6 w (t) 6

1

2
u1(t) +

N−1∑

j=2

u1(t) +
1

2
u1(t) = (N − 1)u1 (t) =

1

h
u1 (t) .

Therefore,
1

2p
up1(t) 6 wp (t) 6

1

hp
up1 (t)

and the function w satisfies

hp−1wp(t) 6 w′(t) 6
2p

h
wp(t) (9)

Then Lemma 5 gives us the desired result for decreasing solution.
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Finally, we observe that this blow-up result is valid for every initial data

as we can use a comparison argument with an increasing supersolution or

subsolution.

Remark 8 Notice that integrating the lower estimate in (9), for p ≤ 1 we

get that

w(t) → ∞ as t→ ∞ .

Then the numerical solution grows up for p ≤ 1, i.e.,

‖U‖∞ → ∞ as t→ ∞ .

24



5 Blow-up time

In this section we study the convergence of the numerical blow-up time to

the continuous one. Inspired in [3] we take convex initial data, that is, we

impose the hypothesis

ψ′′(x) ≥ µ > 0 . (10)

Using Taylor expansion in the nodes of the mesh, it is easy to see that




2
h2 (ψ(x2)− ψ(x1)) +

2
h
ψp(x1) = ψ′′(x1) +O(h)

δ2ψ(xj)(0) = ψ′′(xj) +O(h2) j = 2, . . . , N − 1

2
h2 (ψ(xN−1)− ψ(xN ) = ψ′′(xN ) +O(h)

On the other hand, if we consider a nice approximation of the initial data

(nice in the senses of Remark 4) we get that for all β < µ and h small enough




2
h2 (u2(0)− u1(0)) +

2
h
(u1(0))

p > β > 0

δ2 (uj(0)) > β > 0 j = 2, . . . , N − 1

2
h2 (uN−1(0)− uN(0)) > β > 0

(11)

This estimates allow us to obtain and upper blow-rate estimate indepen-

dent of h.

Lemma 9 Let U be a solution of (3). If the initial data satisfies (11) with

β independent of h, then exists C > 0, independent of h, such that

u′j ≤ Cupj . (12)
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Proof. Notice that as p > 1 the function f(x) = xp is convex. So, it satisfies

xp − yp ≥ p yp−1 (x− y) . (13)

Now, we look for the equations satisfies for vector

ej := u′j − Cupj .

For the first node,

e′1 −
2
h2 (e2 − e1) =

(
u′′1 − Cpup−1

1 u′1
)
− 2

h2 [(u
′
2 − Cup2)− (u′1 − Cup1)]

=
(
u′′1 − Cpup−1

1 u′1
)
− 2

h2 [u
′
2 − u′1 − Cup2 + Cup1]

= u′′1 − Cpup−1
1 u′1 −

2
h2 [u

′
2 − u′1]−

2C
h2 [u

p
1 − up2]

= u′′1 − Cpup−1
1

[
2
h2 (u2 − u1) +

2
h
up1
]
− 2

h2 [u
′
2 − u′1]

−2C
h2 [up1 − up2]

=
[
u′′1 −

2
h2 (u

′
2 − u′1)

]
+ 2C

h2

[
(up2 − up1)− pup−1

1 (u2 − u1)
]

− 2
h
Cpup−1

1 (up1)

= 2
h
pup−1

1

(
u

′

1

)
− 2

h
pup−1

1 (Cup1)

+2C
h2

[
(up2 − up1)− pup−1

1 (u2 − u1)
]

= 2
h
pup−1

1 e1 +
2C
h2

[
(up2 − up1)− pup−1

1 (u2 − u1)
]

>
2
h
pup−1

1 e1 .
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In middle nodes:

e′j − δ2ej =
(
u′′j − Cpup−1

j u′j
)
− 1

h2

(
u′j+1 − 2u′j + u′j−1

)

+ C
h2

(
upj+1 − 2upj + upj−1

)

= − C
h2

[
pup−1

j (uj+1 − 2uj + uj−1)−
(
upj+1 − 2upj + upj−1

)]

= − C
h2

{[
pup−1

j (uj+1 − uj)−
(
upj+1 − upj

)]

+
[
pup−1

j (uj−1 − uj)−
(
upj−1 − upj

)]}

> 0 .
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Finally, in last node:

e′N − 2
h2 (eN−1 − eN ) =

(
u′′N − Cpup−1

N u′N
)
− 2

h2

(
u′N−1 − CupN−1

)

+ 2
h2 (u

′
N − CupN)

=
(
u′′N − Cpup−1

N u′N
)

− 2
h2

[
u′N−1 − u′N − CupN−1 + CupN

]

= u′′N − Cpup−1
N u′N − 2

h2

[
u′N−1 − u′N

]

−2C
h2

[
upN − upN−1

]

= −2C
h2

[
pup−1

N (uN−1 − uN) +
(
upN − upN−1

)]

= −2C
h2

[
pup−1

N (uN−1 − uN)−
(
upN−1 − upN

)]

> 0 .

Moreover, by the hypothesis of the initial data we have that for C small

enough

ei(0) ≥ β − Cupi ≥
β

2
.
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Then, E is a supersolution of the problem




w′
1 =

2
h2 (w2 − w1) +

2
h
pup−1

1 (t)w1

w′
j = δ2wj j = 2, · · · , N − 1

w′
N = 2

h2 (wN−1 − wN)

wj (0) = 0 j = 1, · · · , N

Which the unique solution is given by W = 0. So, applying the comparison

principle we get

ej(t) = u′j(t)− Cupj > 0 j = 1, . . . , N .

Notice that, from (12) and Lemma 5 we obtain, in another way, that the

solution of the problem (3) blows-up in finite time for p > 1. Moreover,

integrating (12), we get

(Th − t) ≤
1

C

∫ ∞

‖U(t)‖∞

1

sp
ds =

‖U(t)‖1−p

K
. (14)

The independence of h in the upper estimate gives us the key to proof the

convergence of the blow-up times.

Theorem 10 Let u be a blowing up regular solution of problem (1), with

an strictly convex initial data (ψ′′ ≥ µ > 0) and let U be the approximation

given by (3) with initial data U(0), which satisfies

max
1≤j≤N

|ψ(xj)− uj(0)| = 0(hγ) γ > 2 .

If T and Th be the blow up times of u and U respectively, then

Th → T as h→ 0 .
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Proof. Given ε > 0 we choose M large enough such that

M1−p

K
≤
ε

2
,

where the constant K is given in (14).

Since u blows up a time T , we can choose τ < ε/2 such that

‖u(·, T − τ )‖L∞([0,1]) ≥ 2M .

On the other hand, by the convergence result (Theorem 3), we have that

for h small enough,

max
j=1,...,N

|u(xj, T − τ)− uj(T − τ )| 6 D
(
‖ψ(xj)− uj(0)‖L∞ + h2

)
< M .

Hence,

‖U(T − τ)‖∞ ≥M .

Now, thanks to the upper estimate (14), we get

|Th − (T − τ)| ≤
1

K
‖U(T − τ)‖1−p ≤

1

K
M1−p ≤

ε

2
.

Finally,

|Th − T | ≤ |Th − (T − τ)|+ |τ | ≤
ε

2
+
ε

2
= ε .
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6 Blow-up set

In this section we study the blow-up set, which is define as

B(U) = {xi : ui → ∞ as t→ Th}.

Since we consider positive and decreasing solutions, we know that the

first node is in the blow-up set. Moreover the behavior near the blow-up

time of this node is given in Section 4,

u1 ∽ (T − t)
−1
p−1

The question is: Also explodes the next node, the second? Let’s see.

For the equation of the second node, we have

u′2 (t) =
1

h2
(u3 (t)− 2u2 (t) + u1 (t)) 6

2

h2
u1 (t) .

Then, by integration between τ < t < Th we get

u2(t)− u2(τ) ≤
2

h2

∫ t

τ

u1(s) ds .

Now, using the behavior of u1, we obtain

u2(t)− u2(τ ) ≤
2

h2

∫ t

τ

(Th − s)−1/(p−1) ds .

In the case p > 2 we can choose t = Th to obtain

u2 (Th)− u2 (τ) 6
2

h2
p− 1

p− 2
(Th − τ )

p−2
p−1 < C .

Thus, u2 remains bounded and x2 6∈ B(U).
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For p = 2:

u2 (t)− u2 (τ ) 6
2

h2
[ln (Th − t)− ln (Th − τ)]

and for p < 2:

u2 (t)− u2 (τ) 6
2

h2
p− 1

2− p

[
(Th − t)

p−2
p−1 − (Th − τ )

p−2
p−1

]

In order to obtain a lower bound, we observe from the equation of the

second node,

u′2 (s) =
1

h2
(u1 (t)− 2u2 (t) + u3 (t)) >

1

h2
(u1 (t)− 2u2 (t)) ,

because the solutions are positive. And, multiplying both sides by the inte-

grating factor e
2
h2

t, we have

(
e

2
h2

tu2 (t)
)′

= e
2
h2

t

[
u′2 (s) +

2

h2
u2 (t)

]
>
e

2
h2

t

h2
(u1 (t))

Integrating this inequality between τ < t < Th

u2(t) ≥
1

h2

∫ t

τ

e
2
h2

(s−t)u1(s) ds+ e
2
h2

(τ−t)u2(τ) .

Since the time lives in a bounded interval, the exponential in the above

inequality are uniformly bounded from bellow. So, there exist positive cons-

tant such that

u2(t) ≥ C1

∫ t

τ

u1(s) ds+ C2u2(τ ) .

Using now the behavior of u1, we get that for p = 2

u2 (t) ≥ C1 [ln (Th − t)− ln (Th − τ )] + C2u2(τ )

and for p < 2:

u2 (t) ≥ C1
p− 1

2− p

[
(Th − t)

p−2
p−1 − (Tt − τ )

p−2
p−1

]
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Then,

x2 ∈ B(U), for p ≤ 2 .

Summing up, we get that the behavior of u2 near the blow-up time is given

by

u2 (t) ∼





1 if p > 2

ln (Th − t) if p = 2

(Th − t)1−
1

p−1 if p < 2

Now, let’s look at the third node. Following the same way with the

equation of the third node we get that there exists positive constant such

that

C1 + C2

∫
u2(t) dt ≤ u3(t) ≤ C3 + C4

∫
u2(t) dt

Therefore, using the behavior of u2 near the blow-up time we get

u3 (t) ∽





1 if p > 3
2
(remains bounded)

ln (T − τ) if p = 3
2
(blows up)

(Th − τ )2−
1

p−1 if p < 3
2
(blows up)

Then, we know the asymptotic behavior of u3, in particular

x3 ∈ B(U), for p ≥
3

2
.

Notice that all the interior nodes have the same equation. So, applying

the same argument given above, if we assume that the first j− 1 nodes blow

up, then for the node j we have that there exists positives constant such that

C1 + C2

∫
uj−1(t) dt ≤ uj(t) ≤ C3 + C4

∫
uj−1(t) dt
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But,

uj−1 ∼ (T − h− t)j−2− 1
p−1 ,

then

uj (t) ∽






1 if p > j
j−1

(remains bounded)

ln (Th − τ ) if p = j
j−1

(blows up)

(Th − τ )j−1− 1
p−1 if p < j

j−1
(blows up)

Thus, finally found a general rule for the propagation of the blow-up. For

j ∈ {2, 3, ..., N}, uj (t) blows up if and only if:

1 < p ≤
j

j − 1
.
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7 Numerical experiments

In this Section we present some numerical experiments. Our goal is to show

that the results presented in the previous sections can be observed when

one perform numerical computations. For the numerical experiments we use

an adaptive ODE solver provided by MATLAB (ode23s, which solve stiff

differential equations).

First we consider a monotone decreasing initial data, which satisfies the

boundary condition,

φ(x) =
1

2
(x− 1)2 + 1 .

We start with the case p ≤ 1, in Figure 1 and Figure 2 we represent the

evolution of the solution. Global existence can be appreciate.
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Figure 1. Evolution of the solution with p = 1
2
.
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Figure 2. Evolution of the solution with p = 1.

In both cases, we can appreciate that the solution grows up, see Remark

8.

We can observe in Figure 3 that for p = 3 the solution blows-up near the

boundary x = 0.
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Figure 3. Evolution of the solution with p = 3.

The surface looks flat because the solution remains bounded away from

zero, then compared to the blow-up points is negligible.

When you run the program, Matlab tells you that can not continue with

the numerical integration (which confirms the existence of singularity, accor-

ding to the theoretical interpretation) at some time. Then we take this time

as computational blow-up time.

37



In the following picture, we show that the computational blow-up time

converges as N goes to infinity.

0 200 400 600 800 1000
0.0132

0.0133

0.0134

0.0135

0.0136

0.0137

0.0138

0.0139

N

T
h

Figure 4 Blow-up time for p = 3.

In this particular case

Th → 0.013227.

In order to see the computational blow-up rates, in the next figure we

display ln(ui) versus ln(Th − t) for i = 1, 2.
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Figure 5 Blow-up rates for p = 3.

We can appreciate that the curve for u1(t) = ‖U(t)‖∞ (blue curve) beco-

mes parallel to the dotted blue line which has slope −1/2. The green curve

(corresponding to u2) is flat and then u2 remains bounded. These behaviors

correspond to the expected blow-up set and blow-up rate,

B(U) = {x0} , u1(t) ∼ (Th − t)−
1
2

1

2
=

1

p− 1
.

Finally to see the propagation of the blow-up to the interior node, we

consider p = 1.6 and p = 1.4. In this cases, Theorem .... gives

B(U) =

{
{x0, x1} p = 1.6

{x0, x1, x2} p = 1.4
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Figure 6 Blow-up rates for p = 1.6.

The blue color corresponds to u1, green for u2 and red for u3. Notice that

red line is flat, so u3 remains bounded and we obtain the expected blow-up

set.

On the other hand, the doted lines have slopes −10/6 (blue) and −4/6

(green). Which gives us the expected blow up rates for u1 and u2

−
1
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10

6
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1
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4

6
.
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Figure 7 Blow-up rates for p = 1.4.

The blue color corresponds to u1, green for u2, red for u3 and black for

u4. Since the flat line is the black line we get the expected blow-up set.

Doted lines have slopes −10/4 (blue), −3/2 (green) and −1/2 (red).

Which also gives us the expected blow up rates for u1, u2 and u3
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