CONTORNOS DE JAMES, AXIOMA DE MATIN Y (P)-PROPIEDADES EN ESPACIOS DE BANACH DUALES

Por

HERNÁN JAVIER CABANA MÉNDEZ (Director: Antonio Suárez Granero)

Título: Contornos de James, copias de $\ell_1(c)$ y P-propiedades en espacios de Banach duales.

<u>Breve resumen</u>: El trabajo que presentamos está dedicado, en líneas generales, al estudio de los contornos de James en un espacio de Banach dual X*. Cuando K es un subconjunto w*-compacto de un espacio de Banach dual X*, un subconjunto B de K se dice que es un **contorno (de James)** de K cuando todo $x \in X$ alcanza en B su máximo sobre K. Por ejemplo, el propio K o el conjunto de los puntos extremos Ext(K) de K son contornos de K. Si B es un contorno de K, siempre ocurre que w*cl-co (B)=w*-cl-co(K) pero, en general, norm-cl-co (B) \neq w*-cl-co(K). Nos vamos a dedicar a estudiar las consecuencias de la igualdad norm-cl-co (B)= w*-cl-co(K) y de la desigualdad norm-cl-co (B) \neq w*-cl-co(K). El estudio de los contornos de James y de las propiedades que pasan del contorno B a todo el conjunto w*-cl-co (K)\$, y viceversa, es un campo de investigación de creciente interés. Nos vamos a centrar en los siguientes resultados

- (a) {Resultados de localización}. Se trata de ver que el w*-compacto K \subset X* contiene una estructura, que denominamos una w*-N-familia, y una copia de la base de $\ell_1(c)$ siempre que norm-cl-co (K) \neq w*-cl-co(K). ¿Qué podemos decir acerca de K ó de B en lo relativo a contener una w*-N-familia y una copia de la base de \$ $\ell_1(c)$? Vemos que en muchos caso existe en K -y en algunas situaciones en B- una w*-N-familia y una copia de la base de $\ell_1(c)$, cuando norm-cl-co (B) \neq w*-cl-co(K). Aún más, vamos a probar que, en muchas situaciones (que incluyen los contornos Ext(K), contornos w*-K-analíticos, w*-contablemente determinados, etc., el w*-compacto K contiene una w*-N-familia ó una copia de la base de $\ell_1(c)$ si y sólo si la contiene el contorno B \subset K.
- (b) {Resultados cuantitativos sobre distancias}. Estamos interesados en comparar las distancias DIST(B,C) con la distancia DIST(w^* -cl-co (K),C), cuando C es un subconjunto convexo de X* y
- B un contorno de un cierto subconjunto w*-compacto K \subset X*. Mostramos que para ciertas clases de subconjuntos convexos C existe una constante M tal que DIST(w*-cl-co (K,C) \leq M·DIST (B,C) para todo subconjunto w*-compacto K de X* y todo contorno B \subset K. En particular demostramos que DIST(B,X)=DIST(B(X**),X) para todo contorno B de B(X**)\$.
- (c) Resultados que relacionan la propiedades (P) con los contornos w^* -contablemente determinados la propiedad super-(P) con la igualdad X^{**} =Sewq(X^{**}).

Finalmente, aplicamos con gran provecho el Axioma de Martin (y otras modalidades de este Axioma como $MA(\omega_1)$, MM) a la obtención de nuevos resultados.