Isolated initial singularities for the viscous Hamilton-Jacobi equation

Anh Dao Nguyen

François Rabelais University, Tours, France.

Here, we study the nonnegative solutions with a possible singularity at the point (x, t) = (0, 0) of the viscous Hamilton-Jacobi equation:

$$u_t - \Delta u + |\nabla u|^q = 0$$

in $Q_{\Omega,T} = \Omega \times (0,T)$, where q > 1, $T \in (0,\infty]$, and Ω is a smooth bounded domain in \mathbb{R}^N . We show that if $q \ge q^* = \frac{N+2}{N+1}$, then the singularity is removable. In the case, $1 < q < q^*$, we prove the existence and uniqueness of a very singular solution for the Dirichlet problem, and the Cauchy problem without assumption at the infinity. This leads to a complete description of singular solutions.