On Fourier Series of Jacobi-Sobolev Orthogonal Polynomials

María Francisca Pérez Valero
Universidad Carlos III de Madrid

Let μ be the Jacobi measure on the interval $[-1,1]$ and introduce the discrete Sobolev-type inner product

$$
\langle f, g\rangle=\int f(x) g(x) d \mu(x)+\sum_{k=1}^{K} \sum_{i=0}^{N_{k}} M_{k, i} f^{(i)}\left(b_{k}\right) g^{(i)}\left(b_{k}\right),
$$

where the mass points b_{k} belong to $\mathbb{R} \backslash \operatorname{supp}(\mu)$ and $M_{k, i} \geq 0$ with $M_{k, N_{k}} \neq 0$. The pointwise convergence of the Fourier Series associated with this inner product is studied. In such a way we generalize the results given in [1]. The technique used here requires estimates for the Jacobi-Sobolev orthogonal polynomials at the mass points. To this end, we obtain the order of the ratio $\frac{q_{n}^{(k)}(x)}{q_{n}(x)}$, when $k<n$ and $x \in \mathbb{C} \backslash[-1,1]$. Here $\left(q_{n}(x)\right)_{n=0}^{\infty}$ is the sequence of orthonormal polynomials for a measure μ in the Szegő class.
[1] F. Marcellán, B. P. Osilenker, I. A. Rocha, On Fourier Series of JacobiSobolev Orthogonal Polynomials, J. Inequal. Appl. 7(5) (2002), 673-699.

