ÁLGEBRA LINEAL HOJA 11

Ejercicio 1. Dados puntos distintos $F_1, F_2 \in \mathbb{R}^2$ y dado $k \in \mathbb{R} \setminus \{\pm 1\}$, demuestra que el lugar geométrico de los puntos $X \in \mathbb{R}^2$ tales que

$$\frac{\mathrm{d}(X, F_1)}{\mathrm{d}(X, F_2)} = k$$

es una circunferencia.

Ejercicio 2.

- 1. Demostrar que las directrices de la elipse de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ son las rectas de ecuación $x = \pm \frac{a^2}{d} = \pm \frac{a}{\epsilon}$, donde $d^2 + b^2 = a^2$ y $\epsilon = \frac{d}{a}$ es la excentricidad.
- 2. Demostrar que las directrices de la hipérbola de ecuación $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ son las rectas de ecuación $x = \pm \frac{a^2}{d} = \pm \frac{a}{\epsilon}$, donde $a^2 + b^2 = d^2$ y $\epsilon = \frac{d}{a}$ es la excentricidad.

Ejercicio 3.

- 1. Una hipérbola se dice *equilátera* si sus asíntotas son perpendiculares entre sí. Demostrar que la excentricidad de una hipérbola equilátera es $\sqrt{2}$.
- 2. La elipse de Fagnano tiene ecuación $x^2 + 2y^2 = 1$. Demuestra que su excentricidad es $\frac{1}{\sqrt{2}}$.

Ejercicio 4. Demuéstrese que, girando los ejes coordenados, se puede transformar la ecuación de la hipérbola $x^2 - y^2 = 2k^2$ en la ecuación $xy = k^2$, donde k es una constante.

Ejercicio 5. Hallar el tipo de cónica, sus elementos geométricos (vértice(s), foco(s), directriz(ces), excentricidad y asíntotas (si las hubiere)) de las cónicas

1.
$$4x^2 + 9y^2 = 36$$
,

$$2. x^2 - 9y^2 = 9,$$

3.
$$x^2 - 7y + 2 = 0$$
.

Hacer una representación gráfica de cada curva.

Ejercicio 6. Hallar la ecuación de la elipse cuyos focos son los vértices de la hipérbola de ecuación $11x^2 - 7y^2 = 77$ y cuyos vértices son los focos de dicha hipérbola. Hacer una representación gráfica de dichas curvas.

Ejercicio 7. Hallar el tipo de cónica en los siguientes casos:

- 1. $3x^2 4xy + 8x 1 = 0$,
- 2. $6x^2 + 9y^2 24x 54y + 51 = 0$
- 3. $9x^2 + 4y^2 18x + 16y 11 = 0$,
- 4. $4x^2 y^2 + 56x + 2y + 195 = 0$.

En cada caso, hallar la ecuación canónica y los elementos de la cónica (vértice(s), foco(s), directriz(ces), excentricidad y asíntotas (si las hubiere)). Hacer una representación gráfica de cada curva que incluya los distintos sistemas de referencia utilizados.

Ejercicio 8. Sea \widetilde{A} la matriz de una cónica \mathcal{C} no degenerada irreducible, y sea $P = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$. La recta de ecuación

$$\begin{pmatrix} 1 & x & y \end{pmatrix} \widetilde{A} \begin{pmatrix} 1 \\ x_0 \\ y_0 \end{pmatrix} = 0$$

llama **polar** de P con respecto a C. La recta de ecuación

$$\frac{\partial f}{\partial x}|_{P}(x-x_0) + \frac{\partial f}{\partial y}|_{P}(y-y_0) = 0$$

se llama **tangente** a C en P, donde $f = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{01}x + 2a_{02}y + a_{00}$.

- 1. Pruébese que P pertenece a C si y solo si P pertenece a la recta polar de P respecto de C si y solo si las rectas tangente y polar coinciden.
- 2. Diremos que un punto P es **exterior** a C si la intersección de su polar con C son dos puntos Q_0 y Q_1 distintos. Pruébese que si P es exterior a C entonces las rectas que unen P con Q_0 y P con Q_1 son tangentes a C.

Ejercicio 9. Encuéntrese la ecuación de la tangente a la parábola $y^2 = 5x$ que es perpendicular a la recta 3x + 2y - 1 = 0, y las coordenadas del punto de contacto.

Ejercicio 10. Encuéntrense las tangentes con pendiente +1 a la hipérbola $4x^2 - 3y^2 + 12 = 0$ y sus puntos de contacto con la misma. ¿Para qué valores de la pendiente hay tangentes a la hipérbola?

Ejercicio 11. Demuéstrese que las rectas que unen cualquier punto P de una elipse o hipérbola con los focos subtienden ángulos iguales con la tangente a la cónica en P.

Ejercicio 12. Hallar la ecuación (en coordenadas polares y cartesianas) de la cónica tal que tiene

- 1. foco F de coordenadas cartesianas $(2,0)^T$, directriz de ecuación x=-4 y excentricidad 1/2,
- 2. foco F de coordenadas cartesianas $(-3,2)^T$, directriz de ecuación x=1 y excentricidad 3,
- 3. foco F de coordenadas cartesianas $(-1,4)^T$, directriz de ecuación 2x y + 3 = 0 y excentricidad 2.

Ejercicio 13. Demostrar que la ecuación en coordenadas polares $r = \frac{7}{3+4\cos\theta}$, define una hipérbola uno de cuyos focos coincide con el polo. Idem para $r = \frac{1}{1-2\sin\theta}$.

Ejercicio 14. Dada la hipérbola $x^2/a^2 - y^2/b^2 = 1$, considérese el par de rectas r, r' dadas por la ecuación $x^2/a^2 - y^2/b^2 = 0$. Calcúlese la distancia de un punto (x_1, y_1) de la hipérbola a las rectas r y r' y compruébese que, cuando la abscisa tiende a infinito, una de estas dos distancias tiende siempre a cero. Estas rectas se denominan asíntotas de la hipérbola.

Ejercicio 15. Demuéstrese que si el ángulo que forman las asíntotas a una hipérbola es denotado por 2θ entonces la excentricidad es $\sec \theta$.

Ejercicio 16. Calcular la ecuación reducida de las siguientes cuádricas y clasificarlas.

1.
$$9x^2 + 36y^2 + 4z^2 - 18x - 144y - 24z + 153 = 0$$

$$2. 2xy + z = 0$$

3.
$$6x^2 + 3y^2 - z^2 + 12x - 18y - 8z + 7 = 0$$

4.
$$4x^2 + 9y^2 - z^2 - 54y - 50z - 544 = 0$$

5.
$$3x^2 - 3y^2 - z^2 + 42x + 144 = 0$$

6.
$$2x^2 + 3y^2 + 23z^2 + 72xz + 150 = 0$$

7.
$$4x^2 + 4y^2 + 4z^2 + 4xy + 4xz + 4yz - 5 = 0$$

8.
$$144x^2 + 100y^2 + 81z^2 - 2164xz - 540x - 720z = 0$$

9.
$$x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z - 24 = 0$$

10.
$$2xy - 6x + 10y + z - 31 = 0$$

11.
$$2x^2 + 2y^2 + 5z^2 - 4xy - 2xz + 2yz + 10x - 26y - 2z = 0$$

Ejercicio 17. Dada la matriz
$$A = BB^T$$
, para $B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$,

- 1. diagonalizar por congruencia la forma cuadrática X^TAX ,
- 2. calcular la ecuación reducida de la cuádrica $X^TAX = 0$, sin hacer uso de invariantes, y decir qué tipo de cuádrica es.