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IMAGE PROBLEM CORNER: OLD PROBLEMS WITH SOLUTIONS

We present solutions to Problems 63-3, 67-1, 68-1, 68-3. Solutions are invited to Problem 63-1; to all of the problems
from issue 65; to parts (a) and (b) of Problem 66-2; to Problem 66-4; Problems 68-2 and 68-4 and to all of the new
problems from the present issue 69.

Problem 63-3: Products of Rectangular Circulant Matrices
Proposed by Rajesh PEREIRA, University of Guelph, Guelph, Canada, pereirar@uoguelph.ca

An n x n matrix C' is said to be circulant if ¢;; = c;; whenever j —¢ =1 —k% mod n. Let m, n and ¢ be positive integers.
We can define a rectangular circulant matrix as follows: An m x n matrix C is said to be a rectangular circulant if
¢ij = ¢k whenever j —i =1—Fk mod ged(m,n). As an example, a 6 x 9 rectangular circulant looks like

([a b ¢ a b ¢ a b (]
c a b c a b ¢ a b
b ¢c a b ¢c a b ¢ a
a b c a b c a b ¢
c a b ¢c a b c a b

b ¢ a b ¢ a b c a]

Let A be an m x n rectangular circulant and B be an n x g rectangular circulant.
(a) Show that AB is also a rectangular circulant.
(b) What is the maximum rank that AB can have?

(c) Show that the Moore-Penrose inverse of a rectangular circulant matrix is a rectangular circulant matrix.

Solution 63-3 by M.J. DE LA PUENTE, Universidad Complutense de Madrid, Spain, mpuente@ucm.es

Let K be a field and let m and n be positive integers. Let I,, be the identity matrix of size m and J,,x, be the all-ones
matrix of size m x n defined over K. Let ® denote the Kronecker product of matrices.

The following characterization of the rectangular circulant as a Kronecker product will be used in all three parts of the
solution.

Proposition 1 (Characterization of rectangular circulants). Let m,n € N and let d = ged(m,n), m' = %, and
n = 5. If C € Myxn(K) is a rectangular circulant, then C = Jy/xn @ C’, with C" a square circulant of size d.
Conversely, for any all-ones matriz J and any square circulant matriz S, the matrix J ® S is a rectangular circulant.

Proof. For the first statement, take C” to be the d x d leading principal submatrix of C. The definition of a rectangular
circulant implies that C' can expressed as a block matrix

C/
oo
The second statement is straightforward. O

(a) We begin with the following lemma:

Lemma 2 (Refinement of square circulant is block square circulant). Let S be square circulant of size n, let d

divide n, and let n' = %. Then S is a block circulant square matriz with square blocks of uniform size, i.c.,

Sll U Sln’

Sn/l e Sn’n/
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with square blocks S;; of size d such that S;; = Sy whenever j —i =1—k mod n’. Moreover, the sum S = Z;il Sij s
the same for all j € {1,2,...,n'} and S is square circulant. Besides, S = Z;Zl Sij is the same for alli € {1,2,...,n'}.

Proof. The (k,l)-entry of S is ), sk,, where the sum is extended to all » =1 mod d. O

Notice that the blocks S;; are Toeplitz but fail to be square circulant, in general.
[ S1 S22 S3 S84 S5 Sg 1
S¢ S1 S2 S3 S84 Sj

Example 3. Let S = % 56 S1S2 53 54 , so that n = 6. Then if we take d = 2 in Lemma 2, we have

S4 S5 S S1 S22 S3
83 S4 S5 S S1 S2

S2 83 S84 S5 S S1

S1+ 84 S2+ S5 S3+ Sg
= S1+83+585 So2+ 84+ 56 . . . <
S = , while taking d = 3 gives S = | s34+ 585 S1+ 54 S2+ S5
So+ 84 +58¢ S1+ 83+ S5
$2+S5 53+86 S1 + 84

Let dg = ged(m, n) and dp = ged(n, q) and let A’ and B’ be as given for A and B, respectively, by Proposition 1. Then,
letting d = ged(da, dp), we have d = ged(m, n, q), and we let e4 = dTA, e = d737 m' =%, n' =% and ¢’ = 4. Note that

ged(eq,ep) = 1. By Lemma 2, A’ and B’ can be refined to block square circulants, namely as

/ / /
All AleA Bll BleB
A= : : and B = : : ,
/ / ’ ’
AeAl AeAeA Begl BeBeB

each with square blocks Agj and BZ’-j, respectively, all of size d. Hence we may define na, ma, np and mp, as well as A;;

and B;; for 4,5 € {1,2,...,n'}, such that

r / / / /
An o o A, Ay o A,
na / / / /
A/ AI AEAl AeAeA AeAl AeAeA
A= |ma: = : : : : :[Aij]i,jzl,z ..... n’
I ! I / I /
A A Ay AL Ay AL
/ / / /
i AeAl AEAGA AeAl AeAeA ]
and
/ / / /
1 e ey o Bl
, nB p B’ ... B ... B ... B
B - B epl egep epl epep
B = |ms: S : : : : :[Bij]i,jzl,Q,...,n"
[ 4 ! / / /
B B By o B, By o B,
/ / / /
i BeBl BGBEB BeBl BEBGB ]

The right-most expressions in the two equations above give block decompositions of A and B, showing that A and B are
block circulant square matrices, with all blocks square of size d. The number of such blocks in any row or column of A
or Bisn' =nges = ngep. Now block multiplication of A and B can be performed and we get

n’ ea eB
(AB)ij = > AuBy; = (Z A§z> <Z Big) ,ohj=12,00
=1 k=1

k=1
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where the last equality is due to the fact that e4 and ep are coprime. Further, take the square circulant matrices A’ :=
12y Ajpand B’ := Y77" | By € Mg(K) (which do not depend on 7 and j) and get (AB);; = (AB)11 = A’ B’ € My(K).

Therefore
AB = Jm’><q’ ®IF (1)

proving that AB is rectangular circulant, by Proposition 1.

(b) In the proof of part (a), we took d = ged(m,n, q) and derived the identity (1) where A’ B’ is a square circulant of
size d. There exist invertible matrices P, Q) such that AB = PUQ, with

v | AP 0d5 (n—d) ,
Om—dyxd Om—-d)x(n—d)

whence rk(AB) = rk(A’ B’) < d. Since one can choose A and B so that A’ B’ is an invertible circulant the maximum
rank that AB can be is d = ged(m,n, q).

(c) Let A € Myxn(K) be rectangular circulant. Write d = ged(m,n), m’ = %, n' = & and express A = Jp s @ A’, with

A’ square circulant of size d, as in proposition 1. We first state some easily proved statements about the Moore-Penrose
inverse of Jy,xn, Kronecker products and circulant matrices respectively. It is easy to see that J,J,;Xn = ﬁJnXm. In

section 2.6 in [2], it is shown that (A ® B)"T = At @ BT. In p. 90 in [1] it is shown that the Moore-Penrose inverse of a
square circulant is square circulant. Hence we have

1

m'n’

1

m'n’

A+ = (Jm’xn’ ® A/)Jr - < Jn/xm/> ® (A/)+ == Jn’xm’ ® (A/)+

with ——(A’)T square circulant, whence AT is rectangular circulant, by Proposition 1.
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Problem 67-1: Integer Solutions of a Matrix Equation
Proposed by Gérald BOURGEOIS, Université de la Polynésie francaise, FAA’A, Tahiti, Polynésie francaise, bourgeois.
gerald@gmail.com

Let n be a positive integer, and let J,, be the n x n matrix all of whose entries are equal to 1.

(a) Show that there exists a matrix X € M, (Z) such that X2 + X = J,, if and only if n = m? 4+ m for some m € Z.

(b) When n is of the form m? + m, find the number of n X n zero-one matrices X which solve X2 + X = J,.

Solution 67-1 by Gary GREAVES, Nanyang Technological University, Singapore, gary@ntu.edu.sg
Ferdinand THRINGER, Ghent University, Belgium, Ferdinand.TIhringer@ugent.be

Franklin KENTER, U.S. Naval Academy, Annapolis, MD, kenter@usna.edu

and Brendan ROONEY, Rochester Institute of Technology, Rochester, NY, brsma@rit.edu

For each positive integer m, let A,, = {0,1,...,m}. The Kautz digraph of degree m and dimension n is the directed
graph whose vertex set consists of all n-tuples (a1, ag,...,a,) of elements in A,, that satisfy the condition a; # a;; for
all ¢ in the range 1 < i < n — 1 and where there is a directed edge from (ay,az,...,a,) to (by,ba,...,b,) if and only if
b; = a;11, for all ¢ in the range 1 <i <n —1.

A key elementary property of the Kautz digraph of degree m and dimension 2 is that, given any two not necessarily
distinct vertices (a1, az) and (by, ba), there is exactly one directed path of length less than or equal to two from (a1, as) to
(b1,b2). If by = asg, this path is of length one and if b1 # as, this path is of length two and has (ag, by) as its intermediate
vertex.
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