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1 Introduction
By tropical linear algebra we mean linear algebra done with the tropical operations a ⊕ b := max{a, b} and
a�b := a+b. The operations⊕,� are called tropical sum, tropical multiplication, respectively. These tropical

operations extend, in a natural way, to matrices of any order.

Wework over R = {0, −1}, where we de�ne (−1)�a = −1 = a� (−1) and 0�a = 0+a = a = a+0 = a�0,
for a ∈ R (so, zero is the neutral element with respect to�). In particular, (−1)� (−1) = (−1) + (−1) = −1. For

tropical addition, the neutral element is −1 and no opposite elements exist. To compensate this lack, tropical

addition is idempotent:wehave a⊕a = a, for a ∈ R. Further,wehaveanorder relation−1 < 0 compatiblewith

the operations. Summing up, (R,⊕,�) is an ordered semiring, which is additively idempotent. An additively

idempotent semiring is called a dioid in [12].

Note that in the de�nition of semiring some authors impose the condition that the neutral elements for

addition andmultiplication aremutually di�erent, butwe donot. Some other authors impose that the neutral

element for addition e is absorbing, i.e., multiplication by this element is trivial ea = e = ae, for any a, but

we do not. Why? Citing Pouly, ordered idempotent semirings are essentially di�erent from �elds and this is one

reason why mathematicians are interested in semirings; see [21]. Another reason is that we want to produce

newsemirings fromagiven semiring, such as the semiring of squarematrices and the semiring of polynomials

over the initial semiring.

We refer to (R,⊕,�) as the tropical semiring or max–plus semiring; see [1] for a summary on max–plus

properties. The so called normal matrices, i.e., matrices [a
ij
] satisfying a

ij
≤ 0 and a

ii
= 0 over the tropical

semiring R are the protagonists of this paper. For any n ∈ N, the set of such squarematrices over R is denoted

by M

N

n
and (M

N

n
,⊕,�) happens to be a semiring. There exist two distinguished matrices: the all zero matrix

Z
n
and the identity matrix I

n
= (b

ij
), with b

ii
= 0, b

ij
= −1, if i = ̸ j.

Assuming n ≥ 2, the bizarre property ofM

N

n
is that the same element, I

n
, is neutral for both tropical oper-

ations ⊕ and �. Here Z
n
is not the neutral element for tropical addition, but it keeps the absorbing property

AZ
n
= Z

n
= Z

n
A, for all A ∈ MN

n
.
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Every normal matrix A satis�es the inequalities I
n
≤ A ≤ Z

n
trivially, whence Z

n
is the top element and I

n

is the bottom element in M

N

n
. Further, normal matrices satisfy

A ⊕ I
n
= A = I

n
⊕ A, AI

n
= A = I

n
A. (1)

Orthogonality is a fundamental notion in mathematics. The purpose of this paper is to investigate pairs

of mutually orthogonal tropical matrices, i.e., to �nd necessary and su�cient conditions for square matrices

A, B to satisfy

AB = Z
n
= BA, (2)

where Z
n
is thematrix,whose all elements are 0.¹ IfA

2

= Z
n
, thenwe say thatA is self–orthogonal. To simplify,

we write AB for A � B, since there is no non–tropical multiplication of matrices in this paper.

Mutual orthogonality of a pair A, B arises in classical algebra (e.g. idempotents and projectors, where

the equivalence A = A

2 ⇔ AB = 0 = BA holds, with B = 1 − A), functional analysis (e.g., families of

orthogonal polynomials and orthogonal functions) and signal theory. In neighboring disciplines, such as

statistics, economics, computer science and physics, orthogonal states are considered.

Combinatorial matrix theory is the investigation of matrices using combinatorial tools (see [4, 5, 14, 15]).

Binary relations on associative rings and semirings, and, in particular, on the algebra of matrices can be

understood with the help of graph theory. Indeed, one studies the so–called relation graph, whose vertices

are matrices in some set, and edges show corresponding elements under this relation. Commuting graphs

and zero–divisor graphs are examples of relation graphs; they have become classical concepts in algebra

and combinatorics.

Orthogonality appears in combinatorial matrix theory and graph theory; see [13, 20, 23] and references

therein. In the paper [2] the notion of the graph generated by the mutual orthogonality relation for elements

of an associative ring was introduced. In the paper [17], the structure of the centralizer {B : AB = BA} (with

tropical multiplication) of a given normal matrix A was studied. In fact, mutual orthogonality of a pair A, B

is a very special case of commutativity AB = BA. Observe that di�erent properties of commutativity relation

of matrices over semirings were intensively studied, see [26] and references therein.

Semirings are widely used in discrete event systems, dynamic programming and linguistics [10, 11, 21].

Recent attention has been paid to the semiring of normal matrices over R ∪ {−∞} with tropical operations,

in [28].

This paper introduces mutual orthogonality in the semiring of square normal matrices over (R,⊕,�).²
Our goal is to �nd necessary and su�cient conditions on (A, B) for orthogonality. The main results are gath-

ered in sections 4 and6: these are Theorems4.33 and4.35 andCorollaries 4.18 and4.31 concerningminimality,

as well as Propositions 6.10 to 6.13, concerning graphs.We depart from an easy–to–check su�cient condition

for mutual orthogonality, namely, the existence of p, q ∈ [n], such that the p–th row and the q–th column of

A and the p–th column and the q–th row of B are zero (Lemma 3.13). Then Theorem 4.33 characterizes mini-

mal pairs (A, B) as themembers of the setM
km

(Notation 4.13), for some k,m ∈ [n]with k ≠ m. Corollary 4.31

shows that the minimal number of o�–diagonal zeros in mutually orthogonal pairs (A, B) is Θ
n
= 4n − 6, for

di�erent matrices A, B of size n ≥ 2, n = ̸ 4. The key concepts are the indicator matrix C of a pair (A, B) as well

as three kinds of o�–diagonal zeros in C: propagation, cost and gift zeros, introduced in De�nitions 3.3 and

4.4. It is quite obvious that zeros propagate from A and B to the products AB and BA and thus, to the indicator

matrix C. However, other zeros (called cost zeros and gift zeros) pop up in C. It happens that carefully placed

1 In the case addressed in this paper, of normal matrices, since the neutral element for addition and the absorbing property are

not attributes of a single element, to call orthogonality to the relation AB = Z
n
= BA is slightly questionable (but not atrocious).

Another possible de�nition is: given matrices A, B ∈ M
n
, say that they are mutually perpendicular if, for every row r in A and

every column c in B, the maximummax
i∈[n]

(r
i
+ c

i
) is attained at least twice, and symmetrically, for every row r in B and every

column c in A, the maximummax
i∈[n]

(r
i
+ c

i
) is attained at least twice. We do not explore this de�nition in the present paper.

2 Wemight have decided to work over the ordered idempotent semiring of extended non–positive real numbersR
≤0
∪{−∞}. Our

choice of simpler semiring {0, −1} is due to the fact that we only mind whether elements vanish or not.
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zeros in A and B produce gift zeros in C, while not so carefully placed zeros in A and B produce cost zeros in

C. Further, gift zeros in C are the ones to maximize in number, for minimality. This is the pivotal idea in the

paper. In the special case A = Bwhen no gift zeros exist, minimality is attained bymaximizing the number of

cost zeros. In section 6,we study a natural graph, denoted byORTHO, arising from the orthogonality relation

between normal matrices, as well as two subgraphs. In Propositions 6.10 to 6.13 we �nd their diameters and

girths.

The paper is organized as follows. In Section 2, normal matrices are de�ned. In Section 3, general prop-

erties of mutually orthogonal tropical normal matrix pairs are collected. In Section 4 we compute Θ
n
, the

minimal number of o�–diagonal zeros in mutually orthogonal pairs, as well as Θ

∆

n
, the minimal number of

o�–diagonal zeros in self–orthogonalmatrices. Section 5 is devoted to the construction of orthogonal pairs of

big size from smaller ones, bymeans of borderedmatrices. In section 6we compute the girth and the diameter

of three graphs related to orthogonal pairs. One graph, denoted ORTHO, studies the relation AB = Z = BA.

Another graph, denotedVNL, studies the (p, q)–su�cient condition stated in the paragraph above. The third

graph, denoted WNL, studies three other su�cient conditions for orthogonality. Altogether, these are the

four su�cient conditions found in Corollary 4.18.

2 Normal matrices
Normal matrices (and a slightly weaker notion called de�nite matrices) over di�erent sets of numbers have

been studied formore than �fty years, under di�erent names, beginningwith Yoeli in [27]. The notion appears

in connectionwith tropical algebra and geometry [6–8, 18, 22, 24, 25, 28]. In computer science they have been

called DBM (di�erence bound matrices). Introduced by Bellman in the 50’s, DBMmatrices are widely used in

software modeling [3, 9, 16, 19].

Over the semiring (R,⊕,�)with R = R
≤0
∪{−∞}, normal matrices have a direct geometric interpretation

in terms of complexes of alcoved convex sets inRn, see [22]. Thenmutual orthogonality re�ects how two such

complexes annihilate each other. However, to explain this is beyond the scope of this paper.

De�nition 2.1 (Normal, strictly normal and abnormal). A square matrix A = [a
ij
] is normal if a

ij
≤ 0 and all

its diagonal entries equal 0. The set of order n normal matrices is denoted by M

N

n
. A normal matrix A = [a

ij
]

is strictly normal if a
ij
< 0 for all i = ̸ j. The set of order n strictly normal matrices is denoted byM

SN

n
. A matrix

is abnormal if it is not normal.

Clearly, M

N

n
and M

SN

n
are closed under ⊕ and �, and I

n
is the identity element for both operations.³ We use

classical addition and substraction of matrices, occasionally.

Notation 2.2 (Elementary matrices). In the set M
n
,

1. let E
ij
denote the matrix with the element −1 in the (i, j) position, and 0 elsewhere,

2. let U
ij
denote the matrix with 0 in the (i, j) position, all diagonal entries equal to 0, and −1 elsewhere.

3. let U
n
denote the matrix where every entry is equal to −1. We write U if n is understood.

4. let Z
n
be the all zero matrix, and I

n
be the identity matrix, with zeros on the diagonal, and −1 elsewhere.

We write Z and I if n is understood.

Remark 2.3. Although Z
n
is not neutral for⊕, the zero matrix Z

n
is an absorbing element in M

N

n
, i.e.,

AZ
n
= Z

n
= Z

n
A, A ∈ MN

n
. (3)

3 (M

N

n
,⊕) is a semilattice (with associative, commutative and idempotent properties).
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Remark 2.4. The equality (3) does not hold without normality. For example, if A = −E
12
, then AZ

n
= −(E

11
+

· · · + E
1n
) and Z

n
A = −(E

12
+ · · · + E

n2
) (classical addition and substraction here).

3 Pairs of mutually orthogonal matrices
In this section, we assume A, B ∈ M

N

n
. Recall that the de�nition of mutual orthogonality is given by the

expression (2). Our goal is to �nd necessary and su�cient conditions on (A, B) for orthogonality.

Lemma 3.1 (Orthogonality for n = 1, 2). Let A, B ∈ MN

n
. Then⁴

1. If n = 1 then A and B are orthogonal if and only if A = B = 0.

2. If n = 2 then

(a) AB = A ⊕ B = BA,

(b) A = A

2

, i.e., every normal matrix of size 2 is multiplicatively idempotent,

(c) A and B are orthogonal if and only if A ⊕ B = Z
2
.

Proof. For Item 1 we have Z
1
= 0 ∈ R. By the rule of multiplication, orthogonality AB = 0 = BA is equivalent

to A + B = 0 = B + A, which holds if and only if A = 0 = B, for A, B ∈ R.
Item 2a is a straightforward computation. The remaining two items follow directly from Item 2a.

Neither of the former statements holds true for abnormal matrices.

Example 3.2. 1. 1� (−1) = 0 = (−1)� 1, i.e., 1 and −1 are orthogonal.

2. (a) Let A =

[
0 1

0 0

]
. Then

[
0 1

0 0

][
0 1

0 0

]
=

[
1 1

0 1

]
≠

[
0 1

0 0

]
=

[
0 1

0 0

]
⊕

[
0 1

0 0

]
and A

2

≠ A in this

case.

(b)

[
−1 0

0 0

]
⊕

[
0 0

0 −1

]
=

[
0 0

0 0

]
≠

[
0 −1

0 0

]
=

[
−1 0

0 0

][
0 0

0 −1

]
.

In the rest of the paper, all matrices are assumed to be normal.

De�nition 3.3 (Indicator matrix). For matrices A, B ∈ M

N

n
, de�ne product matrices L := AB = [l

ij
] and

R := BA = [r
ij
] ∈ MN

n
. The matrix C := [c

ij
] ∈ MN

n
given by

c
ij
=

{
0, if l

ij
= r

ij
= 0,

−1, otherwise

is called the indicator matrix of the pair (A, B).

Obviously, the matrices A, B are mutually orthogonal if and only if the indicator matrix C is zero.

The next Lemma shows how easily zeros are propagated from A or B to C, by tropical multiplication.

Lemma 3.4 (Propagation of zeros). Let A, B ∈ MN

n
and p, q ∈ [n]. If a

pq
= 0, then l

pq
= r

pq
= c

pq
= 0.

Proof. If p = q, the statement is true, by normality. Assumenow that p = ̸ q. Then l
pq

= max
s∈[n](aps+bsq) ≤ 0,

and this maximum is attained at s = q, giving l
pq

= 0 + 0 = 0. Similarly true for r
pq

and, as a consequence,

true for c
pq

.

4 Compare tropical vs. classical linear algebra: in the classical setting, it is easy to prove that for all n ∈ N and A, B ∈ M
n
, the

equality AB = A + B implies AB = BA.
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Corollary 3.5 (Orthogonality by propagation). Let A, B ∈ MN

n
. If A ⊕ B = Z

n
, then C = Z

n
.

Example 3.6 (Easy orthogonality 1). Let A, B ∈ MN

n
be matrices such that the number of zeros in every row

and every column of each matrix is strictly greater than n/2. Then A and B are mutually orthogonal. Indeed,

by symmetry, it is enough to prove L = AB = Z. Let r = [r
i
] (resp. l = [l

j
]) be an arbitrary row of A (resp. an

arbitrary column of B). Since multiplication in the tropical semiring is the sum, addition is the maximum,

and all r
i
, l
j
are non-positive, one obtains that rl = 0 if and only if there exists i ∈ [n] with r

i
= l

i
= 0. Since

more than the half of the entries of r and l are zero, such i always does exist.

Below we show that the hypotheses of Example 3.6 are indispensable.

Example 3.7. 1. The condition that the number of zeros in any row of A is strictly greater than n/2 (only

for the rows) is not su�cient for the orthogonality. The same holds only for the columns. Indeed, with

Notations 2.2, for the matrix A := E
1n

+ · · · + E
n−1,n

∈ MN

n
, the entry (1, n) of A

2

is equal to −1, so A is not

self–orthogonal.

2. The condition that exactly the half of the entries of all rows and columns of A are zero is not su�cient for

the orthogonality. Indeed, for n = 2k consider the matrix A :=

[
Z U

U Z

]
∈ MN

n
. Then the entry (1, n) of

A

2

is −1, so A is not self–orthogonal.

Example 3.8 (Easy orthogonality 2). Let n ≥ 4, A = [a
ij
], B = [b

ij
] ∈ MN

n
and

a
ij
=

{
0, if i = j or i + j ≡ 2 mod 3,

−1, otherwise,

b
ij
=

{
0, if i + j ≡ 0 mod 2,

−1, otherwise.

Then A and B are orthogonal. Notice that AB = Z follows from the facts:

1. in each row of A there is zero in an odd position and there is zero in an even position,

2. if j is even (resp. odd), then b
kj
= 0 for all even (resp. odd) k.

Similarly BA = Z.

Notation 3.9 (ν(A)). For A ∈ MN

n
, let ν(A) denote the number of zero entries in A. Since the diagonal of A

vanishes, we have ν(A) ≥ n.

Here we use the big O notation. In Corollary 3.5 and Examples 3.6 and 3.8, the number of zeros in A and B is

O(n

2

). Indeed, ν(A) ≥

n

2

2

and ν(B) ≥

n

2

2

in Example 3.6, and ν(A) is O(n

2

) and ν(B) =

n

2

2

in Example 3.8. We

want to achieve orthogonality with fewer zeros, only O(n). Our starting point is the following Remark (see

Lemma 3.13 for a proof).

Remark 3.10 (A su�cient condition for orthogonality). Let there exist p, q ∈ [n], such that the p–th row and

the q–th column of A and the p–th column and the q–th row of B are zero. Then AB = Z
n
= BA.

Below we introduce the convenient notation V(p; q) to express Remark 3.10 in short.

Notation 3.11 (V(p; q),W(p; q) and Z(p; q)). For p, q ∈ [n], we consider some subsets of M

N

n

1. V(p; q) := {A ∈ MN

n
: a

pi
= 0 = a

iq
, i ∈ [n]},

2. W(p; q) := {A ∈ MN

n
: a

pi
= 0, i ∈ [n] \ {q}} ∩ {A ∈ MN

n
: a

iq
= 0, i ∈ [n] \ {p}},

3. Z(p; q) := {A ∈ MN

n
: a

pq
= 0},

4. Let V(p
1
, . . . , p

s
; q

1
, . . . , q

t
) be the intersection of all V(p; q), with p ∈ {p

1
, . . . , p

s
} ⊆ [n] and q ∈

{q
1
, . . . , q

t
} ⊆ [n].
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Remark 3.12. It is straightforward from the de�nitions that

V(p; q) = W(p; q) ∩ Z(p; q), Z(p; p) = M

N

n
and V(p; p) = W(p; p). (4)

Next we restate and prove Remark 3.10.

Lemma 3.13 (A su�cient condition for orthogonality). Let A, B ∈ M

N

n
and p, q ∈ [n]. If A ∈ V(p; q) and

B ∈ V(q; p), then AB = Z
n
= BA.

Proof. We will prove that the indicator matrix C of the pair (A, B) is equal to zero. By Lemma 3.4, we have

C ∈ V(p; q) ∩ V(q; p).
Consider i, j ∈ [n] \ {p, q} with i ≠ j. Using A ∈ V(p; q), we get

0 ≥ l
ij
= max

t∈[n]
(a
it
+ b

tj
) ≥ max

t=q,t=i

(a
it
+ b

tj
) = max{b

ij
, b

qj
} = b

ij
⊕ b

qj
, (5)

0 ≥ r
ij
= max

t∈[n]
(b
it
+ a

tj
) ≥ max

t=j,t=p

(b
it
+ a

tj
) = max{b

ij
, b

ip
} = b

ij
⊕ b

ip
. (6)

Using B ∈ V(q; p) we get b
qj
= b

ip
= 0, whence the right hand sides of (5) and (6) are zero. Thus l

ij
= r

ij
= 0

whence c
ij
= 0.

Corollary 3.14. If A ∈ V(p; p) for some p ∈ [n], then A2 = Z
n
.

De�nition 3.15 (Genericity). Let S ⊆ MN

n
be a subset. The matrix A ∈ S is called S–generic if no entry of A is

zero, unless it is required by the structure of S.

Recall that R = {0, −1}.

De�nition 3.16. For p, q ∈ [n], the indicator function of the pair (p, q) of indices is

c(p, q) =

{
0, if p = ̸ q

−1, otherwise.

Lemma 3.17. With p, q ∈ [n] and Notation 3.9,

1. there exists a unique V(p; q)–generic matrix A ∈ MN

n
and ν(A) − n = 2n − 3 − c(p, q),

2. there exists a uniqueW(p; q)–generic matrix A ∈ MN

n
and ν(A) − n = 2n − 4 − 2c(p, q),

3. there exists a uniqueW(p; q) ∩ Z(p; q) ∩ Z(q; p)–generic matrix A ∈ MN

n
and ν(A) − n = 2n − 2.

Proof. 1. We have a zero row, a zero column and the zero main diagonal in A, and the remaining entries are

−1.

Items 2 and 3 are similar.

Lemma 3.18. Let A, B ∈ MN

n
and p, q ∈ [n] with p ≠ q. If A is V(p; q)–generic and AB = Z

n
= BA, then (5)

and (6) are equalities. In particular, b
ij
= 0 or b

qj
= 0 = b

ip
, all i, j ∈ [n].

Proof. By hypothesis, the indicator matrix C of the pair (A, B) is zero, which implies L = AB = Z = BA = R.

The thesis is trivial, if i, j, p, q are not pairwise di�erent, by normality.

Suppose now that i, j, p, q ∈ [n] are pairwise di�erent. The equality L = Z implies 0 = l
ij
. By genericity,

we know that A ∈ V(p; q) and a
ij
< 0, whenever i ≠ j and i = ̸ p and j ≠ q. Then, in 0 = l

ij
= max

t∈[n](ait + btj),

every term on the right hand side is strictly negative except, perhaps, for t = i or t = q. It follows that the

maximum, which is zero, is attained at t = i or t = q and, furthermore, b
ij
= 0 or b

qj
= 0. We conclude that

b
ij
⊕ b

qj
= 0 and (5) is a chain of equalities. Similarly, we prove b

ij
⊕ b

ip
= 0.
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In Lemma 3.18 we have proved that mutual orthogonality of A and B together with O(n) aligned zeros in A

force some entries in B to vanish. This key observation leads us to the notions of cost and gift zeros given

below.

4 Minimal number of zeros in pairs
In this sectionwe assume A, B ∈ MN

n
. Our goal is to �nd necessary and su�cient conditions on the pair (A, B)

for minimal orthogonality, i.e., the orthogonality with matrices A and B having minimal number of zeros.

De�nition 4.1. Let Θ
n
be the minimal number of o�–diagonal zero entries among all pairs of mutually or-

thogonal matrices in M

N

n
. With Notation 3.9,

Θ
n
= min

A,B∈MN

n

{ν(A) + ν(B) − 2n : AB = Z
n
= BA}.

Let A, B ∈ MN

n
. The pair (A, B) is calledminimal if it realizes the value of Θ

n
, i.e., if Θ

n
= ν(A) + ν(B) − 2n and

AB = Z
n
= BA.

Remark 4.2. We have Θ
n
≤ n

2

− n, since the pair (Z
n
, B), with B strictly normal, satis�es ν(Z

n
) = n

2

and

ν(B) = n.

Lemma 4.3. Let A = [a
ij
], B = [b

ij
] ∈ MN

n
and let C = [c

ij
] be the indicator matrix of (A, B). If s, t, k,m ∈ [n]

are pairwise di�erent integers such that a
sk
= b

kt
= b

sm
= a

mt
= 0, then c

sk
= c

kt
= c

sm
= c

mt
= c

st
= 0.

Proof. We get c
sk

= c
kt

= c
sm

= c
mt

= 0, by Lemma 3.4, and get c
st

= 0, by the de�nition of tropical

multiplication.

The next de�nition classi�es the entries of indicator matrices.

De�nition 4.4 (Propagation, cost and gift zeros). Let A = [a
ij
], B = [b

ij
] ∈ MN

n
and C = [c

ij
] be the indicator

matrix of (A, B). Let s, t ∈ [n] with s = ̸ t.

1. If a
st
= 0 or b

st
= 0, then c

st
= 0 is called a propagation zero. Let prop(C) denote the number of propaga-

tion zeros in C.

2. If there exists k ∈ [n] such that s, t, k are pairwise di�erent integers, and a
st
= ̸ 0 ≠ b

st
, and a

sk
= b

kt
=

b
sk
= a

kt
= 0, then c

st
= 0 is called a cost zero. For each such k we can use the notation

c
st
:= ϕ

kk

st
. (7)

3. If c
st

is not a cost zero and there exist k,m ∈ [n] such that s, t, k,m are pairwise di�erent integers, and

a
st
= ̸ 0 = ̸ b

st
, and a

sk
= b

kt
= b

sm
= a

mt
= 0, then c

st
= 0 is called a gift zero. For each such k,m we can

use the notation

c
st
:= ϕ

km

st
. (8)

Let gi�(C) denote the number of gift zeros in C.

In plainwords, assume a
st
≠ 0 = ̸ b

st
. Then two zero entries (a

sk
= a

mt
= 0) in A, togetherwith two zero entries

(b
kt
= b

sm
= 0) in B provide �ve zero entries in C: a gift zero in the (s, t) position and four propagation zeros

in the (s, k), (k, t), (s,m) and (m, t) positions. In particular, carefully placed propagation zeros are attached

to gift zeros, and conversely.

Remark 4.5. The only di�erence between Items 2 and 3 in De�nition 4.4 is whether k = m or not. Moreover, the

notation c
st
= ϕ

km

st
is general and, in the case k = m, it means a cost zero.



Orthogonality for (0, −1) tropical normal matrices | 47

De�nition 4.6 (Duplicates). If A ≠ B, a duplicate in the pair (A, B) is a position (s, t) with a
st
= 0 = b

st
and

s ≠ t.

Notation 4.7 (Σ(A, B, i) and Σ(A, B)). Denote by row(A, i) the i–th row of the matrix A, and by ν(row(A, i))

the number of zeros in the i–th row of A. For a given pair (A, B) with A ≠ B, denote by Σ(A, B, i) the sum

ν(row(A, i))+ ν(row(B, i))−2 and by Σ(A, B) the sum ν(A)+ ν(B)−2n. We simply write Σ(i) or Σ, whenever the

pair (A, B) is understood from the context. Note that Σ(A, B, i) stands for the number of o�–diagonal zeros in

the i–th row of A and B. With these notations Θ
n
from De�nition 4.1 transforms into

Θ
n
= min

A,B∈MN

n

{Σ(A, B) : AB = Z
n
= BA}.

Remark 4.8. 1. Propagation, cost and gift zeros are zeros in the indicator matrix C of a pair (A, B).

2. The indicator matrix C of a pair of normal matrices is normal and, therefore, C has zero diagonal. So zeros

in C can be either diagonal, propagation, cost or gift, and these are mutually exclusive variants.

3. It follows from De�nition 4.4 that the number of cost zeros in any row of C is less than or equal to n −2, and

the number of propagation zeros in any row of C is at least 1, if a cost zero exists in that row. We say that

row(C, i) is a cost row if it contains n − 2 cost zeros and one propagation zero. Similar for columns.

4. It follows from De�nition 4.4 that the number of gift zeros in any row of C is less than or equal to n − 3, and

the number of propagation zeros in any row of C is at least 2, if a gift zero exists in that row. We say that

row(C, i) is a gift row if it contains n−3 gift zeros and 2 propagation zeros and Σ(i) = 2. Similar for columns.

5. Gift zeros do not exist when A = B. Gift zeros do not exist when n ≤ 3.

6. A cost zero c
st
= ϕ

kk

st
requires 2 duplicates (s, k) and (k, t) in the pair (A, B). Note that Σ(s) ≥ 2 and Σ(k) ≥ 2.

7. It is possible to have c
st
= ϕ

km

st
= ϕ

k

′
m

′

st
, with (k,m) = ̸ (k

′
,m

′
) (valid for cost and gift zeros.)

8. If row(C, s) is a cost row, then there exists k ∈ [n] \ {s} such that c
st
= ϕ

kk

st
, for all t ∈ [n] \ {s, k}. (Indeed,

if for some t
1
, t

2
, k

1
, k

2
∈ [n], with k

1
≠ k

2
, we have c

st
1

= ϕ

k
1
k
1

st
1

and c
st

2

= ϕ

k
2
k
2

st
2

, then c
sk

1

, c
sk

2

are

propagation zeros, but row(C, s) contains only one propagation zero, contradiction.) We say that the row is

k–cost to indicate this dependence on k.

9. If row(C, s) is a gift row, then there exist k,m ∈ [n] \ {s} with k ≠ m such that c
st

= ϕ

km

st
, for all t ∈

[n] \ {s, k,m}. (Similar proof to Item 8). We say that the row is km–gift to indicate this dependence on k

and m.

Notation 4.9. Let propagation zeros be marked blue and diagonal zeros be marked red, for a better visual-

ization. The symbol * denotes any element in R = {0, −1}.

Example 4.10. Consider any pair (A, B) (not necessarily orthogonal) inM

N

6

. Taking (k,m) = (3, 4) and assum-

ing a
s3
= b

3t
= b

s4
= a

4t
= 0 for di�erent values of s, t ∈ [6], we get di�erent indicator matrices C, C

′
, C

′′
of the

pair (A, B), where C corresponds to the choice s = 1 and t ∈ {2, 5}, C′ corresponds to s = 1 and t ∈ {2, 5, 6},
and C

′′
corresponds to s ∈ {1, 5, 6} and t = 2.

C =



0 ϕ

34

12

0 0 ϕ

34

15
*

* 0 * * * *

* 0 0 * 0 *

* 0 * 0 0 *

* * * * 0 *

* * * * * 0


, C

′
=



0 ϕ

34

12

0 0 ϕ

34

15

ϕ

34

16

* 0 * * * *

* 0 0 * 0 0

* 0 * 0 0 0

* * * * 0 *

* * * * * 0


, C

′′
=



0 ϕ

34

12

0 0 * *

* 0 * * * *

* 0 0 * * *

* 0 * 0 * *

* ϕ

34

52

0 0 0 *

* ϕ

34

62

0 0 * 0


.

Remark 4.11 (Bounds). If A ≠ B thenmax{ν(A), ν(B)}−n ≤ prop(C) ≤ Σ(A, B) holds for arbitrary pairs (A, B),
the second inequality being an equality if and only if no duplicates exist. This follows from Item 1 in De�nition

4.4. To get minimal pairs one has to avoid duplicates, as much as possible, i.e., one has to minimize the gap

between prop(C) and Σ(A, B). If A = B then ν(A) − n = prop(C).
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Corollary 4.12. If n ≥ 2 then Θ
n
≤ 4n − 6.

Proof. Consider a V(p; q)–generic matrix A and a V(q; p)–generic matrix B, with di�erent p, q ∈ [n], and

apply Lemmas 3.13 and 3.17.

Below we introduce the setM
km

which we need for the later description of minimal pairs.

Notation 4.13 (M
km

). For k,m ∈ [n], a pair (A, B) belongs toM
km

if

0. A is V(m; k)–generic and B is V(k;m)–generic, or

1. A isW(m; k) ∩ Z(k;m)–generic and B isW(k;m) ∩ Z(m; k)–generic, or
2. A isW(m; k)–generic and B isW(k;m) ∩ Z(m; k) ∩ Z(k;m)–generic, or
3. A isW(m; k) ∩ Z(m; k) ∩ Z(k;m)–generic and B isW(k;m)–generic.

Remark 4.14. Two special cases arise:

1. If k = m, then, by expressions (4) in Remark 3.12, the four cases in 4.13 reduce to one case: A, B are V(k; k)–

generic,

2. If A = B, then, by expressions (4) in Remark 3.12 and Item 4 of Notation 3.11, the four cases in 4.13 reduce to

one case: A is V(k,m; k,m)–generic.

In the followingLemma thenecessity is trivial, however, su�ciency is crucial because it tells ushow to recover

the pair (A, B) from the indicator matrix C.

Lemma 4.15 (Characterization ofM
km

). Let C = [c
ij
] ∈ MN

n
be the indicator matrix of a pair (A, B)with A ≠ B.

Then (A, B) ∈M
km

for some k ≠ m, if and only if the following conditions hold:

I for each s, t ∈ [n] \ {k,m} with s = ̸ t, the (s, t) entry is a gift zero with c
st
= ϕ

km

st
,

II c
km

and c
mk

are propagation zeros,

III there are no duplicates in the pair (A, B) (or, equivalently, Σ(A, B) = 4n − 6).

Proof. Necessity follows from De�nition 4.4, Notation 4.13 and Item 6 in Remark 4.8. To prove su�ciency,

notice that Items II and III initialize four cases (both zeros come from B and b
km

= 0 = b
mk

, or a
km

= 0 = b
mk

or a
mk

= 0 = b
km

). Then, by Item I, we get a
sk

= b
kt

= b
sm

= a
mt

= 0 for all s, t ∈ [n] \ {k,m}, s ≠ t,

and no further o�–diagonal zeros appear in A or B, by Item III. Thus, we get cases 0 to 3 of Notation 4.13. An

illustration of how the argument works is found in Example 4.17.

Corollary 4.16. For each pair (A, B) ∈M
km

with A ≠ B and k ≠ m, the indicator matrix C satis�es

1. C = Z
n
,

2. prop(C) = Σ(A, B) = 4n − 6 and gi�(C) = (n − 3)(n − 2).

Proof. For Item 1, we must prove orthogonality of (A, B). If the pair (A, B) is in case 0 of Notation 4.13, then

orthogonality holds true, by Lemma 3.13. If the pair (A, B) is in cases 1 to 3, then orthogonality is checked,

similarly.Now, toprove Item2,we count gift zerosusing Item I and then count propagation zerosusing Items II

and III of Lemma 4.15.

Example 4.17. The following four items correspond to the 4 items from Notation 4.13 for (k,m) = (4, 3). Notice

that the di�erences between the items occur only in entries (k,m) and (m, k). That is why the indicator matrix
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C is the same in all cases. Below the symbol "−" denotes the element −1 ∈ R.

C =



0 ϕ

43

12

0 0 ϕ

43

15

ϕ

43

16

ϕ

43

21

0 0 0 ϕ

43

25

ϕ

43

26

0 0 0 0 0 0

0 0 0 0 0 0

ϕ

43

51

ϕ

43

52

0 0 0 ϕ

43

56

ϕ

43

61

ϕ

43

62

0 0 ϕ

43

65

0


.

0. A
0
=



0 − − 0 − −

− 0 − 0 − −

0 0 0 0 0 0

− − − 0 − −

− − − 0 0 −

− − − 0 − 0


, B

0
=



0 − 0 − − −

− 0 0 − −

− − 0 − − −

0 0 0 0 0 0

− − 0 − 0 −

− − 0 − − 0



1. A
1
=



0 − − 0 − −

− 0 − 0 − −

0 0 0 − 0 0

− − 0 0 − −

− − − 0 0 −

− − − 0 − 0


, B

1
=



0 − 0 − − −

− 0 0 − − −

− − 0 0 − −

0 0 − 0 0 0

− − 0 − 0 −

− − 0 − − 0



2. A
2
=



0 − − 0 − −

− 0 − 0 − −

0 0 0 − 0 0

− − − 0 − −

− − − 0 0 −

− − − 0 − 0


, B

2
=



0 − 0 − − −

− 0 0 − − −

− − 0 0 − −

0 0 0 0 0 0

− − 0 − 0 −

− − 0 − − 0



3. A
3
=



0 − − 0 − −

− 0 − 0 − −

0 0 0 0 0 0

− − 0 0 − −

− − − 0 0 −

− − − 0 − 0


, B

3
=



0 − 0 − − −

− 0 0 − − −

− − 0 − − −

0 0 − 0 0 0

− − 0 − 0 −

− − 0 − − 0


.

Corollary 4.18 (Four su�cient conditions for the existence of orthogonal pairs). Let n ≥ 2 and A, B ∈ MN

n
.

Then the pair (A, B) is orthogonal if there exist k,m ∈ [n] such that one of the following holds:

0. A ∈ V(k;m) and B ∈ V(m; k).
1. A ∈ W(k;m) ∩ Z(k;m) ∩ Z(m; k) and B ∈ W(m; k).

2. A ∈ W(k;m) ∩ Z(m; k) and B ∈ W(m; k) ∩ Z(k;m).
3. A ∈ W(k;m) and B ∈ W(m; k) ∩ Z(k;m) ∩ Z(m; k).

Proof. If k = m, then it follows from Item 1 of Remark 4.14 and Lemma 3.13. If k = ̸ m, then it follows from Item 1

of Corollary 4.16, by allowing A or B to have more zeros than strictly required by the structure of sets V(k;m),

W(k;m), Z(k;m). Note that Item 0 here is just Lemma 3.13, the su�cient condition we started with.

Lemma 4.19. Let n ≥ 3. If the pair (A, B) is orthogonal, then Σ(i) ≥ 2, for all i ∈ [n].

Proof. Suppose that ν(row(A, i)) = 1, i.e., we have only one diagonal zero in row(A, i), then row(B, i) is zero,

by de�nition of tropical multiplication, hence Σ(i) = n − 1 ≥ 2. Similarly if ν(row(B, i)) = 1. If ν(row(A, i)) > 1

and ν(row(B, i)) > 1, then also Σ(i) ≥ 2 and the proof is complete.
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Lemma 4.20. If the pair (A, B) is minimal and n ≥ 3, then there exist at least three mutually di�erent indices

i ∈ [n] such that 2 ≤ Σ(i) ≤ 3.

Proof. The �rst inequality 2 ≤ Σ(i) holds for all i ∈ [n] by Lemma 4.19. Suppose that for n − 2 rows i we have

Σ(i) ≥ 4. Then Σ ≥ 4(n − 2) + 2 · 2 = 4n − 4 > 4n − 6, which contradicts with Corollary 4.12 and the proof is

complete.

4.1 Arbitrary pairs

The aim of this subsection is to prove that Θ
n
= 4n − 6, for n ≥ 2, n ≠ 4, as well as to construct minimal pairs.

In the following we assume that C ∈ MN

n
is the indicator matrix of the pair (A, B).

Lemma 4.21. Let n ≥ 6. If the pair (A, B) is minimal, then no row in C is a cost row.

Proof. By hypothesis, the pair (A, B) is orthogonal. Suppose there exists s ∈ [n] such that row(C, s) contains

n−2 cost zeros. Then, by Item8ofRemark4.8, there exists k ∈ [n]\{s} such that c
st
= ϕ

kk

st
, for all t ∈ [n]\{s, k}.

Then, by Item 6 of Remark 4.8, we have n − 2 duplicates (k, t), t ∈ [n] \ {s, k}, hence Σ(k) ≥ 2(n − 2). Using
Lemma 4.19 we get Σ ≥ 2(n − 1) + 2(n − 2) = 4n − 6. Hence Σ = 4n − 6, by Corollary 4.12. So Σ(k) = 2(n − 2)

and Σ(i) = 2, for all i ≠ k, i.e., (A, B) has the following structure based on the number of zeros: the number

of o�–diagonal zeros in row(A, k) and row(B, k) is exactly 2(n − 2) and the number of o�–diagonal zeros in

row(A, i) and row(B, i) is exactly 2, for all i = ̸ k. We have four cases.

1. (A duplicate exists.) If there exists s

′ ∈ [n] \ {s, k} such that a
s
′
k
′ = b

s
′
k
′ = 0 for some k

′
with k

′
≠ s

′
,

then there is only one propagation zero in row(C, s

′
). Then by Item 4 of Remark 4.8 there is no gift zero

in row(C, s

′
). Since row(C, s

′
) is zero, then by Items 2 and 8 of Remark 4.8, row(C, s

′
) is k

′
–cost and c

s
′
t
=

ϕ

k

′
k

′

s
′
t

, for all t ∈ [n] \ {s′, k′}. Hence Σ(k

′
) ≥ 2(n − 2). Since 2(n − 2) > 2 we get that k

′
= k. Since for

t = s we have c
s
′
s
= ϕ

kk

s
′
s

, then, by Item 6 of Remark 4.8, (k, s) is also a duplicate alongside with other

n − 2 duplicates (k, t), t ∈ [n] \ {s, k}, hence Σ(k) ≥ 2(n − 1) > 2(n − 2), which is a contradiction with the

structure of (A, B).

2. If there exists s

′ ∈ [n] \ {s, k} such that a
s
′
k
′ = b

s
′
m
′ = 0 for some k

′
,m

′
, where s

′
, k

′
,m

′
are pairwise

di�erent, then there are only two propagation zeros in row(C, s

′
). Moreover, by Item 6 of Remark 4.8, there

is no cost zero in row(C, s

′
), since b

s
′
k
′ ≠ 0 ≠ a

s
′
m
′ (no duplicates). Since row(C, s

′
) is zero, then by Items 2

and 9 of Remark 4.8 the row(C, s

′
) is k

′
m

′
–gift and so c

s
′
t
= ϕ

k

′
m

′

s
′
t

, for all t ∈ [n] \ {s′, k′,m′}. Then, by
Item 3 of De�nition 4.4, ν(row(A,m

′
)) − 1 ≥ n − 3 and ν(row(B, k

′
)) − 1 ≥ n − 3. Since n − 3 > 2, we have 2

rows with more than 2 o�–diagonal zeros, which contradicts with the structure of (A, B).

3. If there exists s

′ ∈ [n] \ {s, k} such that row(A, s

′
) has no o�–diagonal zeros, then row(B, s

′
) is zero and

Σ(s

′
) = n − 1, which is a contradiction with the structure of (A, B).

4. Similarly, if there exists s

′ ∈ [n] \ {s, k} such that row(B, s

′
) has no o�–diagonal zeros, we also get a

contradiction with the structure of (A, B).

Thus, there is no row in C with n − 2 cost zeros, and the proof is complete.

Lemma 4.22. Let n ≥ 4, the pair (A, B) be orthogonal, and row(C, s) be km–gift. Then the following holds:

1. Σ(k) ≥ n − 2 and Σ(m) ≥ n − 2.

2. If there exists s

′ ∈ [n] \ {s, k} such that c
s
′
s
= ϕ

km

′

s
′
s

for some m

′ ∈ [n] \ {s, s′}, then Σ(k) ≥ n − 1.
3. If there exists s

′ ∈ [n] \ {s, k} such that c
s
′
s
= ϕ

k

′
m

s
′
s

for some k

′ ∈ [n] \ {s, s′}, then Σ(m) ≥ n − 1.

Proof. 1. Since row(C, s) is km–gift, then s, k,m are mutually di�erent and, by Item 9 of Remark 4.8, it has

n − 3 gift zeros c
st

= ϕ

km

st
, for all t ∈ [n] \ {s, k,m}. Thus, by Item 3 of De�nition 4.4, a

mt
= b

kt
= 0,

t ∈ [n] \ {s, k,m}, hence ν(row(A,m)) − 1 ≥ n − 3 and ν(row(B, k)) − 1 ≥ n − 3. Consider c
km

. Since (A, B) is

an orthogonal pair, then C = Z, hence c
km

= 0. By Item 2 of Remark 4.8, we have one of the following cases:
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i. If c
km

is a propagation zero, then at least one of a
km
, b

km
is zero, hence Σ(k) ≥ n − 3 + 1 = n − 2.

ii. If c
km

is a cost zero ϕ

k

′
k

′

km

for some k

′
then, by Item 2 of De�nition 4.4, a

kk
′ = 0 (a zero which has not been

counted previously) and Σ(k) ≥ n − 3 + 1 = n − 2.

iii. If c
km

is a gift zero ϕ

k

′
m

′

km

for some k

′
,m

′
then, by Item 3 of De�nition 4.4, a

kk
′ = 0 (a zero which has not

been counted previously) and Σ(k) ≥ n − 3 + 1 = n − 2.

Thus, in each case we get Σ(k) ≥ n − 2. Reasoning similarly for c
mk

= 0, we also get Σ(m) ≥ n − 2.

2. By Item 1, we have Σ(k) ≥ n − 2. Since c
s
′
s
= ϕ

km

′

s
′
s

(this can be a cost or a gift zero), then, by Items 2, 3 of

De�nition 4.4 we have b
ks
= 0. Note that b

ks
does not coincide with the other n − 2 zero entries in row(A, k)

and row(B, k)mentioned above. Hence Σ(k) ≥ n − 2 + 1 = n − 1.

3. By Item 1.i, we have Σ(m) ≥ n − 2. Since c
s
′
s
= ϕ

k

′
m

s
′
s

, then by Items 2, 3 of De�nition 4.4 we have a
ms

= 0.

Note that a
ms

does not coincide with other n − 2 zero entries in row(A,m) and row(B,m)mentioned above.

Hence Σ(m) ≥ n − 2 + 1 = n − 1.

Lemma 4.23. Let n ≥ 5, (A, B) be an orthogonal pair, and Σ(s) = 3, for some s ∈ [n]. Then either ν(row(A, s))−

1 = 1 and ν(row(B, s)) − 1 = 2 or ν(row(A, s)) − 1 = 2 and ν(row(B, s)) − 1 = 1.

Proof. Indeed, if ν(row(A, s))−1 = 0, then row(B, s)must be zero, by tropical multiplication, and then Σ(s) =

n − 1, which contradicts with Σ(s) = 3. Similarly, if ν(row(B, s)) − 1 = 0.

Lemma 4.24. Let n ≥ 5 and (A, B) be an orthogonal pair. If Σ(s) = 3, for some s ∈ [n], then either

1. a
sk

= b
sl
= b

sm
= 0 for some k, l,m ∈ [n] \ {s}, with l = ̸ m, and for each t ∈ [n] \ {s, k, l,m} we have

c
st
= ϕ

km

st
or c

st
= ϕ

kl

st
, or

2. b
sk

= a
sl
= a

sm
= 0 for some k, l,m ∈ [n] \ {s}, with l = ̸ m, and for each t ∈ [n] \ {s, k, l,m} we have

c
st
= ϕ

mk

st
or c

st
= ϕ

lk

st
.

In any case, there exists k ∈ [n] \ {s} with Σ(k) ≥ n − 3.

Proof. By Lemma 4.23 we have two cases:

1. If ν(row(A, s)) − 1 = 1 and ν(row(B, s)) − 1 = 2, then a
sk
= b

sl
= b

sm
= 0, for some k, l,m ∈ [n] \ {s}, with

l = ̸ m. Then we have at most 3 propagation zeros in row(C, s) and, by Item 2 of Remark 4.8 and Items 2, 3

of De�nition 4.4, for each t ∈ [n] \ {s, k, l,m} we have c
st

= ϕ

km

st
or c

st
= ϕ

kl

st
. Thus, b

kt
= 0 for all

t ∈ [n] \ {s, k, l,m} and so ν(row(B, k))−1 ≥ n −4. If ν(row(A, k))−1 = 0, then row(B, k)must be zero and

Σ(k) = n − 1 ≥ n − 3. If ν(row(A, k)) − 1 > 0, then also Σ(k) ≥ n − 3, and Item 1 is proved.

2. If ν(row(A, s)) − 1 = 2 and ν(row(B, s)) − 1 = 1, then b
sk
= a

sl
= a

sm
= 0, for some k, l,m ∈ [n] \ {s}, with

l = ̸ m. The rest of the proof is similar to the proof of the previous item.

Lemma 4.25. Let n ≥ 6. If the pair (A, B) is minimal and there are at least two di�erent gift rows s, s

′
in C, then

both rows are km–gift, for the same k,m ∈ [n] \ {s, s′}, with k = ̸ m.

Proof. Using Item 9 of Remark 4.8, denote the gift zeros of row(C, s) by c
st
= ϕ

km

st
, for all t ∈ [n] \ {s, k,m},

and the gift zeros of row(C, s

′
) by c

s
′
t
= ϕ

k

′
m

′

s
′
t

, for all t ∈ [n] \ {l, k′,m′}. We have three cases:

1. Suppose that {k,m} ∩ {k′,m′} = ∅. Then, by Item 1 of Lemma 4.22 for rows s, s

′
and by Lemma 4.19, we

get Σ ≥ 4(n − 2) + 2(n − 4) = 6n − 16 > 4n − 6, which contradicts with Corollary 4.12.

2. Suppose that |{k,m} ∩ {k′,m′}| = 1. Without loss of generality consider two cases: k = k

′
and k = m

′
. If

k = k

′
, then by Lemma4.22 for rows s, s

′
and by Lemma4.19we get Σ ≥ 2(n−2)+(n−1)+2(n−3) = 5n−11 >

4n − 6, which contradicts with Corollary 4.12. If k = m

′
, then, by Item 1 of Lemma 4.22 for rows s, s

′
, by

Item 3 of De�nition 4.4, and by Lemma 4.19, we get Σ ≥ 2(n − 2) + 2(n − 3) + 2(n − 3) = 6n − 16 > 4n − 6,

because ν(row(A, k)) − 1 ≥ n − 3 and ν(row(B, k)) − 1 ≥ n − 3, which contradicts with Corollary 4.12.
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3. Suppose that {k,m} = {k′,m′}. If k = k′ andm = m

′
then the Lemma is proved. If k = m

′
andm = k

′
, then

by Item 3 of De�nition 4.4 and by Lemma 4.19 we get Σ ≥ 4(n − 3) + 2(n − 2) = 6n − 16 > 4n − 6, because

ν(row(A, i)) − 1 ≥ n − 3 and ν(row(B, i)) − 1 ≥ n − 3 for i = k,m, which contradicts with Corollary 4.12.

Thus, k = k

′
and m = m

′
and the proof is complete.

Lemma 4.26. Let n ≥ 6 and the pair (A, B) be minimal. If Σ(i) = 2 for some i ∈ [n], then row(C, i) is gift. In

particular, A ≠ B.

Proof. There are three cases:

1. If there exist j, j

′ ∈ [n] \ {i} with j ≠ j

′
such that a

ij
= a

ij
′ = 0, then ν(row(B, i)) = 1, since Σ(i) = 2. Then,

by tropical multiplication, row(A, i)must be zero, and this contradicts Σ(i) = 2. If there exist j, j

′ ∈ [n] \{i}
with j ≠ j

′
such that b

ij
= b

ij
′ = 0, it is similar.

2. If there exist j, j

′ ∈ [n] \{i}with j ≠ j

′
such that a

ij
= b

ij
′ = 0, then we have a pair of propagation zeros and

no duplicates in the i–th row, hence, by Item 2 of Remark 4.8, we have n − 3 gift zeros in the i–th row of C,

providing a gift row and proving the Lemma.

3. The remaining case is j = j

′
and a

ij
= b

ij
= 0 (a duplicate), in which we have exactly one propagation zero

in row(C, i), then, by Item 4 of Remark 4.8, there is no gift zero in row(C, p). Hence, by Item 2 of Remark

4.8, we have n − 2 cost zeros in row(C, i), so that the row is cost, contradicting Lemma 4.21.

In every case we have A di�erent from B, due to the existence of gift zeros.

The following Lemma uses Notation 4.13.

Lemma 4.27. Let n ≥ 6 and the pair (A, B) be minimal. If there exist at least two di�erent p, p

′ ∈ [n] with

Σ(p) = Σ(p

′
) = 2, then A ≠ B and (A, B) ∈M

km
for some k and m with k ≠ m.

Proof. By Lemma 4.26, A ≠ B and rows p and p

′
of C are gift rows, and by Lemma 4.25, there exist k,m ∈

[n] \ {p, p′} with k = ̸ m such that c
qt
= ϕ

km

qt
, for all t ∈ [n] \ {q, k,m} and q = p, p

′
. Then, by Items 2, 3 of

Lemma 4.22 for row p, and, by Lemma 4.19, we get Σ ≥ 2(n−1)+2(n−2) = 4n−6. By Corollary 4.12 Σ = 4n−6.

So (A, B) has the following structure based on the number of zeros: Σ(q) = n − 1 for q = k,m and Σ(q) = 2

for q ≠ k,m. Then similarly we get for all q ≠ k,m that c
qt

= ϕ

km

qt
, t ∈ [n] \ {q, k,m}. Show that c

km
and

c
mk

are propagation zeros. Indeed, if c
km

= ϕ

k

′
m

′

km

for some k

′
,m

′ ∈ [n] \ {k,m} (not necessarily k′ ≠ m′),
then a

m
′
m
= 0, but b

m
′
m

is also zero because of gift zeros in row(C,m

′
), hence Σ(m

′
) = 3 > 2, which is a

contradiction with the structure of (A, B). Similarly for c
mk

. Hence, by Lemma 4.15, (A, B) ∈ M
km

and the

proof is complete.

Lemma 4.28. Let n ≥ 6 and the pair (A, B) be minimal. If there exists p ∈ [n] with Σ(p) = 2, then there exists

p

′ ∈ [n] with p ≠ p

′
and Σ(p

′
) = 2.

Proof. By contradiction, assume that Σ(p) = 2 holds only for p ∈ [n]. Then, by Lemma 4.19, Σ(i) ≥ 3, for all

i ∈ [n] \ {p}. By Lemma 4.26, row(C, p) is a gift row. Moreover, by Item 1 of Lemma 4.22 there are 2 rows with

at least (n−2) o�–diagonal zeros. Thus, as a whole we get Σ ≥ 2(n−2)+3(n−3)+2 = 5n−11 > 4n−6, which

contradicts with Corollary 4.12, and the proof is complete.

Lemma 4.29. Let n ≥ 7 and the pair (A, B) be minimal. Then there exists p ∈ [n] with Σ(p) = 2.

Proof. By contradiction, assume that there is no row p with Σ(p) = 2. By Lemma 4.20, there exists s ∈ [n]

such that 2 ≤ Σ(s) ≤ 3. Hence, by Lemma 4.19, Σ(i) ≥ 3 for i ∈ [n] and Σ(s) = 3. By Lemma 4.24 for row s, we

have two cases, without loss of generality suppose that a
sk
= b

sl
= b

sm
= 0 for some k, l,m ∈ [n] \ {s}, with

l = ̸ m, and for each t ∈ [n] \ {s, k, l,m} we have c
st
= ϕ

km

st
or c

st
= ϕ

kl

st
, and Σ(k) ≥ n − 3. Using Σ(i) ≥ 3 for

i ∈ [n] \ {k}, we get Σ ≥ (n − 3) + 3(n − 1) = 4n − 6, hence, by Corollary 4.12, Σ = 4n − 6. Then Σ(k) = n − 3 and
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Σ(i) = 3 for i ∈ [n]\{k}. Take row s′ /∈ {s, k, l,m} (it exists, because n ≥ 7). Since s′ ≠ k, then, by Lemma 4.24,

we have two cases:

1. If a
s
′
k
′ = b

s
′
l
′ = b

s
′
m
′ = 0 for some k

′
, l

′
,m

′ ∈ [n] \ {s′}, with l

′
= ̸ m

′
, and for each t ∈ [n] \ {s′, k′, l′,m′}

we have c
s
′
t
= ϕ

k

′
m

′

s
′
t

or c
s
′
t
= ϕ

k

′
l

′

s
′
t

, and Σ(k

′
) ≥ n − 3.

(a) If k ≠ k

′
, then Σ(k

′
) ≥ n − 3 ≥ 4. It is a contradiction with Σ(q) = 3 for q ≠ k.

(b) If k = k

′
, then c

s
′
t
= ϕ

kl

′

s
′
t

or c
s
′
t
= ϕ

km

′

s
′
t

, for all t ∈ [n] \ {s′, k, l′,m′}. Since s′ ∈ [n] \ {s, k, l,m} and
c
st
= ϕ

kl

st
or c

st
= ϕ

km

st
, for all t ∈ [n] \ {s, k, l,m}, then c

ss
′ = ϕ

kl

ss
′ or c

ss
′ = ϕ

km

ss
′ . Hence by Items 2, 3 of

De�nition 4.4 b
kt
= 0 for all t ∈ [n] \{k, l′,m′}, whence ν(row(B, k))−1 ≥ n−3. If ν(row(A, k))−1 = 0,

then row(B, k) must be zero and Σ(k) ≥ n − 1 > n − 3. If ν(row(A, k)) − 1 > 0, then also Σ(k) > n − 3,

which contradicts with Σ(k) = n − 3.

2. If b
s
′
k
′ = a

s
′
l
′ = a

s
′
m
′ = 0 for some k

′
, l

′
,m

′ ∈ [n] \ {s′}, with l

′
≠ m

′
, and for each t ∈ [n] \ {s′, k′, l′,m′}

we have c
s
′
t
= ϕ

m

′
k

′

s
′
t

or c
s
′
t
= ϕ

l

′
k

′

s
′
t

, and Σ(k

′
) ≥ n − 3.

(a) If k ≠ k

′
, then Σ(k

′
) ≥ n − 3 ≥ 4 contradicts with Σ(q) = 3 for q ≠ k.

(b) If k = k

′
, then c

s
′
t
= ϕ

l

′
k

s
′
t

or c
s
′
t
= ϕ

m

′
k

s
′
t

, for all t ∈ [n]\{s′, k, l′,m′}. Hence by Items 2, 3 ofDe�nition 4.4

a
kt
= 0 for all t ∈ [n] \ {s′, k, l′,m′}, whence ν(row(A, k)) − 1 ≥ n − 4. Since c

st
= ϕ

kl

st
or c

st
= ϕ

km

st
, for

all t ∈ [n] \ {s, k, l,m}, then by Items 2, 3 of De�nition 4.4 b
kt
= 0 for all t ∈ [n] \ {s, k, l,m}, whence

ν(row(B, k)) − 1 ≥ n − 4. Hence Σ(k) ≥ 2(n − 4) > n − 3, which contradicts with Σ(k) = n − 3.

Thus, (A, B) cannot be minimal and the proof is complete.

Lemma 4.30. Let n = 2 or n ≥ 7. If the pair (A, B) is minimal, then A ≠ B and (A, B) ∈M
km

for some k,m ∈ [n]
with k ≠ m.

Proof. Let n = 2. Then, by Item 2c of Lemma 3.1, using Notation 2.2, we �nd all minimal pairs (A, B): these are

(Z, I), (I, Z), (U
12
, U

21
), (U

21
, U

12
). Note that A = ̸ B for each of these pairs. By Notation 3.11, U

12
is V(1; 2)–

generic, U
21

is V(2; 1)–generic, I isW(2; 1)–generic, and Z isW(1; 2) ∩ Z(2; 1) ∩ Z(1; 2)–generic. Hence, by

Notation 4.13, if (A, B) is a minimal pair, then (A, B) ∈M
12

or (A, B) ∈M
21
.

Now let n ≥ 7. If (A, B) is a minimal pair, then by Lemma 4.29 there exists p ∈ [n] with Σ(p) = 2. Hence

by Lemma 4.28 there exists p

′ ∈ [n] with p ≠ p

′
and Σ(p

′
) = 2. Therefore, Lemma 4.27 is applicable which

guarantees that A ≠ B and (A, B) ∈M
km

, for some k,m ∈ [n] with k ≠ m. The proof is complete.

Corollary 4.31. If n ≥ 2, n ≠ 4, then Θ
n
= 4n − 6. If n = 4, then Θ

n
= 8.

Proof. If n = 2 or n ≥ 7, then the statement follows from Lemma 4.30 and Item 2 of Corollary 4.16.

Let n = 3 and let (A, B) be minimal. By Lemma 4.19, Σ(i) ≥ 2 for all i ∈ [n]. Then, using Corollary 4.12, we

get 6 = 2n ≤ Σ(A, B) = Θ
3
≤ 4n − 6 = 6, hence Θ

3
= 4n − 6.

Let n = 4 and let (A, B) be minimal. By Lemma 4.19, Σ(i) ≥ 2 for all i ∈ [n]. In addition, by Example 4.34,

Θ
4
≤ Σ(A

4
, B

4
) = 8. Then, 8 = 2n ≤ Σ(A, B) = Θ

4
≤ 8, hence Θ

4
= 8.

Let n = 5 and let (A, B) be minimal. Suppose that Θ
5
= Σ(A, B) < 4n − 6 = 14. Then by Lemma 4.19,

Σ(i) ≥ 2 for all i ∈ [n]. Since 3(n − 1) + 2 · 1 = 14 > Θ
5
, there exist at least two rows p, p

′ ∈ [n] with

Σ(p) = Σ(p

′
) = 2. Also there is no cost row in C (indeed: if a cost row exists, then, by Item 6 of Remark 4.8 and

Lemma 4.19, we get Σ(A, B) ≥ 2(n −2) +2(n −1) = 4n −6 > Θ
5
, a contradiction). Hence p and p

′
are gift rows,

by the proof of Lemma 4.26. Then, by the proof of Lemma 4.25, using 5n − 11 = 6n − 16 = 14 > Θ
5
, we get

that there exist k,m ∈ [n] \ {p, p′} with k = ̸ m such that c
qt
= ϕ

km

qt
, for all t ∈ [n] \ {q, k,m} and q = p, p

′
.

Then, by Items 2, 3 of Lemma 4.22 for row p, and, by Lemma 4.19, we get Σ(A, B) ≥ 2(n−1)+2(n−2) = 4n−6,

which is a contradiction with Σ(A, B) < 4n − 6. Hence, Θ
5
≥ 4n − 6, and Corollary 4.12 completes the proof.

Let n = 6 and let (A, B) be minimal. Suppose that Θ
6
= Σ(A, B) < 4n − 6 = 18. By Lemma 4.19, Σ(i) ≥ 2

for all i ∈ [n]. Since 3n = 18 > Θ
6
, there exists at least one row p ∈ [n] with Σ(p) = 2. Then, by Lemmas 4.27,
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4.28, we get A ≠ B and (A, B) ∈ M
km

, for some k,m ∈ [n] with k ≠ m. Hence Σ(A, B) = 4n − 6, by Item 2 of

Corollary 4.16, which is a contradictionwith Σ(A, B) < 4n−6. Hence,Θ
6
≥ 4n−6, and Corollary 4.12 completes

the proof.

Remark 4.32. Comparing Θ
n
= prop(C) = 4n−6 and gi�(C) = (n−2)(n−3), we notice that prop(C) ≤ gi�(C) if

and only if n ≥ 8, the case n = 7 giving4n−6 = 22 > 20 = (n−2)(n−3). Asymptotically, the ratio gi�(C)/ prop(C)

is n/4.

Theorem 4.33. Let n = 2 or n ≥ 7. Then the pair (A, B) is minimal if and only if A = ̸ B and (A, B) ∈ M
km

for

some k,m ∈ [n] with k ≠ m.

Proof. The necessity follows from Lemma 4.30. Let us prove the su�ciency.

Assume, n = 2. Then, by Item 2c of Lemma 3.1, using Notation 2.2, we �nd all minimal pairs (A, B): (Z, I),

(I, Z), (U
12
, U

21
), (U

21
, U

12
). Using Notation 3.11, we get that for k ≠ m, the sets of V(k;m)–generic matrices

and of W(m; k) ∩ Z(k;m)–generic matrices are both equal to {U
km
}, the set of W(k;m)–generic matrices

equals {I}, and the set ofW(k;m)∩ Z(m; k)∩ Z(k;m)–generic matrices equals {Z}. Hence, by Notation 4.13,

if A ≠ B and (A, B) ∈M
km

for some k,m ∈ [2] with k = ̸ m, then (A, B) is minimal.

Now let n ≥ 7. Then Θ
n
= 4n − 6, by Corollary 4.31. If A ≠ B and (A, B) ∈M

km
, for some k,m ∈ [n] with

k = ̸ m, then, by Item 2 of Corollary 4.16, we get Σ(A, B) = 4n − 6 = Θ
n
, hence (A, B) is minimal.

The following example shows that Theorem 4.33 does not hold for n = 3, 4, 5, 6. It also shows that few gift

rows or no gift rows is possible for n ≤ 6.

Example 4.34. The following orthogonal pairs (A
n
, B

n
), n = 3, 4, 5, 6, are minimal, but (A

n
, B

n
) /∈ M

km
for

all k,m ∈ [n] with k ≠ m. The minimality of the pairs follows from Corollary 4.31.

A
3
=

0 − −

− 0 −

− − 0

 , B3 =
0 0 0

0 0 0

0 0 0

 , C3 =
0 0 0

0 0 0

0 0 0

 .

A
4
=


0 − − 0

− 0 0 −

− 0 0 −

0 − − 0

 , B4 =

0 − 0 −

− 0 − 0

0 − 0 −

− 0 − 0

 , C4 =


0 ϕ

43

12

0 0

ϕ

34

21

0 0 0

0 0 0 ϕ

21

34

0 0 ϕ

12

43
0

 .

A
5
=


0 − − 0 −

− 0 0 − 0

− 0 0 − 0

0 − − 0 −

− 0 0 − 0

 , B5 =

0 − 0 − −

− 0 − 0 −

0 − 0 − −

− 0 − 0 0

− − − 0 0

 , C5 =


0 ϕ

43

12

0 0 ϕ

43

15

ϕ

34

21

0 0 0 0

0 0 0 ϕ

21

34
0

0 0 ϕ

12

43
0 0

ϕ

34

51

0 0 0 0

 .

A
6
=



0 − − 0 − −

− 0 − − 0 −

− − 0 − − 0

0 − − 0 − −

− 0 − − 0 −

− − 0 − − 0


, B

6
=



0 − − − 0 0

− 0 − 0 − 0

− − 0 0 0 −

− 0 0 0 − −

0 − 0 − 0 −

0 0 − − − 0


, C

6
=



0 ϕ

45

12

ϕ

46

13

0 0 0

ϕ

54

21

0 ϕ

56

23

0 0 0

ϕ

64

31

ϕ

65

32

0 0 0 0

0 0 0 0 ϕ

12

45
ϕ

13

46

0 0 0 ϕ

21

54
0 ϕ

23

56

0 0 0 ϕ

31

64

ϕ

32

65

0


.

4.2 Self–orthogonal matrices

If A

2

= Z
n
, then A is called self–orthogonal. Now we set A = B and let C be the indicator matrix of the pair

(A, A). Then, a
sk
= a

kt
= 0 with s, t, k ∈ [n] pairwise di�erent and a

st
= ̸ 0 yield a cost zero c

st
= ϕ

kk

st
.
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Notice that Θ
n
≤ 2Θ

∆

n
where Θ

∆

n
is the minimum over the diagonal ∆ of M

N

n
×M

N

n

Θ

∆

n
:= min

A∈MN

n

{ν(A) − n : A2 = Z
n
}. (9)

By Corollary 3.14 and Lemma 3.17, we know that Θ

∆

n
≤ 2n − 2. The aim of this subsection is to prove that

Θ

∆

n
= 2n − 2 and so Θ

n
= 2Θ

∆

n
− 2 (this agrees with the minimal values of ν(A) − n found in Lemma 3.17). The

following theorem is an analogue of Theorem 4.33 for the case A = B. Observe that gift zeros do not exist, as

remarked in Item 5 of Remark 4.8, and we cannot use Lemmas 4.15, 4.22, 4.25, 4.26 and 4.29.

Theorem 4.35. Let n ≥ 5. The matrix A ∈ MN

n
is self–orthogonal with the minimal number of o�–diagonal

zeros Θ

∆

n
if and only if there exists k ∈ [n] such that A is V(k; k)–generic.

Proof. Let A be self–orthogonal with minimal number of o�–diagonal zeros, i.e., ν(A) − n = Θ

∆

n
. By Lemma

4.19, ν(row(A, i)) − 1 ≥ 1 for all i ∈ [n]. Show that there exist at least two rows s, s

′
with ν(row(A, s)) − 1 = 1

and ν(row(A, s

′
)) − 1 = 1 (indeed, if ν(row(A, i)) − 1 ≥ 2 for n − 1 rows, then ν(A) − n ≥ 2(n − 1) + 1 =

2n − 1 > 2n − 2, which contradicts with Θ

∆

n
= ν(A) − n ≤ 2n − 2). Let a

sk
= 0 for some k ∈ [n] \ {s} and

a
s
′
k
′ = 0 for some k

′ ∈ [n] \ {s′}. Since row(C, s) contains only one propagation zero, C does not contain

gift zeros, and row(C, s) is zero then, by Items 2 and 8 of Remark 4.8, row(C, s) is k–cost and c
st

= ϕ

kk

st
,

for all t ∈ [n] \ {s, k}. Similarly, row(C, s

′
) is k

′
–cost and c

s
′
t
= ϕ

k

′
k

′

s
′
t

, for all t ∈ [n] \ {s′, k′}. By Item

2 of De�nition 4.4, a
kt

= 0 for all t ∈ [n] \ {s, k}, and a
k
′
t
= 0 for all t ∈ [n] \ {s′, k′}. If k = ̸ k

′
, then

ν(row(A, k)) − 1 ≥ n − 2 and ν(row(A, k

′
)) − 1 ≥ n − 2, whence using ν(row(A, i)) − 1 ≥ 1 for i ∈ [n] \ {k, k′}

we get Θ

∆

n
= ν(A) − n ≥ 2(n − 2) + (n − 2) = 3n − 6 > 2n − 2, a contradiction. Thus, k = k

′
and a

kt
= 0 for all

t ∈ [n] \ {k}. Hence ν(row(A, k))−1 ≥ n −1. Then ν(A)− n ≥ (n −1) + (n −1) = 2n −2, hence ν(A)− n = 2n −2.

Then ν(row(A, k)) − 1 = n − 1 and ν(row(A, i)) − 1 = 1 for all i ∈ [n] \ {k}. Since for all i ∈ [n] \ {k} row(C, i)
contains only one propagation zero, similarly we get that row(C, i) is k–cost and c

it
= ϕ

kk

it

, for all i ∈ [n] \ {k}
and for all t ∈ [n] \ {i, k}, which completes the proof.

For the su�ciency, let the matrix A be V(k; k)–generic. Then, by Corollary 3.14 and Lemma 3.17 A is self–

orthogonal and ν(A) − n = 2n − 2. Using the proved necessity we get the desired result.

The following example shows that Theorem 4.35 is not true for n = 3.

Example 4.36. A =

 0 −1 0

0 0 −1

−1 0 0

 is self–orthogonal, by Example 3.6, but A /∈ V(k; k), for k ∈ [3].

5 Orthogonality by bordering
In this section we study what happens with orthogonality after adding a row and a column, which enables

us to construct orthogonal pairs of arbitrary sizes. We assume n ≥ 2.

Let the matrix A =

[
B v

w

T

0

]
∈ MN

n
be decomposed into blocks, with B ∈ MN

n−1
, and v, w non–positive

vectors.

Proposition 5.1 (Orthogonality by bordering). Let A
k
=

[
B
k

v
k

w

T

k

0

]
∈ M

N

n
be as above, with k = 1, 2. If

B
1
B
2
= Z

n−1
= B

2
B
1
, then A

1
A
2
= Z

n
= A

2
A
1
if and only if B

1
v
2
⊕v

1
= B

2
v
1
⊕v

2
andw

T

1
B
2
⊕wT

2
= w

T

2
B
1
⊕wT

1

are zero vectors.

Proof. Easy computations show that

A
1
A
2
=

[
Z
n−1

B
1
v
2
⊕ v

1

w

T

1
B
2
⊕ wT

2
0

]
, A

2
A
1
=

[
Z
n−1

B
2
v
1
⊕ v

2

w

T

2
B
1
⊕ wT

1
0

]
.
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The rest is immediate.

Notation 5.2. For i, j ∈ [n] let P

ij

= [p
kl
] be the permutation matrix corresponding to the transposition (ij),

i.e., p
kl
= 0 if (k, l) = (i, j) or (j, i) or k = l ∈ [n] \ {i, j}, p

kl
= −1, otherwise.⁵

De�nition 5.3 (Orthogonal set of a matrix). For any subset S ⊆ MN

n
, de�ne the set Or(A)

S
:= {B ∈ S : AB =

Z
n
= BA}. Write Or(A) if S is the ambient space.

Lemma 5.4 (Decreasing size). If A ∈ M

N

n
and there exists i ∈ [n] such that both the i–th row and the i–th

column of A have no zero entries except on the main diagonal, then P

ni

AP

ni

=

[
B v

w

T

0

]
, with v, w ∈ Rn−1

≤0

without zero entries, and

Or(P

ni

AP

ni

) =

{[
D Z

(n−1)×1

Z
1×(n−1)

0

]
: D ∈ Or(B)

}
.

In particular, |Or(A)| = |Or(B)|.

Proof. First, it is easy to check that P

ni

Or(A)P

ni

= Or(P

ni

AP

ni

). Now, set A
1
= P

ni

AP

ni

, B
1
= B, v

1
= v,w

1
= w

in Lemma 5.1 and notice that, by hypothesis, the vectors v
1
and w

1
never vanish. If A

1
A
2
= Z

n
= A

2
A
1
, then

the vector B
1
v
2
⊕ v

1
= B

1
v
2
is zero, by Lemma 5.1. From normality of B

1
and monotonicity of �, it follows

that I
n−1

≤ B
1
≤ Z

n−1
and v

2
≤ B

1
v
2
≤ Z

n−1
v
2
. But the vector Z

n−1
v
2
is constant, so it vanishes if and only if

v
2
vanishes. Similarly, w

2
vanishes. Then the last row and column in A

2
are zero and, if we write D = B

2
, we

get the statement.

Corollary 5.5. The only matrix orthogonal to a strictly normal matrix of order n is Z
n
.

Proof. Let A ∈ M

SN

n
and, for j ∈ [n], let A

j
denote the principal submatrix of A of order j. Then applying

Lemma 5.4 repeatedly for j ∈ [n], i = j, A = A
j
and B = A

j−1
, we obtain that |Or(A

n
)| = |Or(A

n−1
)| = · · · =

|Or(A
2
)| = 1. Since Z ∈ Or(X) for any X ∈ MN

n
, the result follows.

Corollary 5.6 (Self–orthogonality by bordering). Let A =

[
B v

w

T

0

]
∈ MN

n
be decomposed into blocks, with

B ∈ MN

n−1
. If B is self–orthogonal, then A is self–orthogonal if and only if Bv and w

T

B are zero vectors.

Proof. We have A

2

=

[
B

2 ⊕ vwT Bv ⊕ v
w

T

B ⊕ wT 0

]
, where the matrix vw

T

is non–positive, but not necessarily

normal. By hypothesis, we have B

2

= Z, whence B

2 ⊕ vwT = Z ⊕ vwT = Z and Bv ⊕ v = (B ⊕ I)v = Bv.

6 Three orthogonality graphs
In this sectionwecompute thediameter andgirth of three types of graphs related to theorthogonality relation.

Graphs can have loops but no multiple edges. We assume n ≥ 3 since otherwise the graphs under considera-

tion are disconnected andmore or less trivial. In the �rst andmost intuitive graph, denotedORTHO, vertices

are matrices and an edge between twomatrices A, Bmeans that A, B are mutually orthogonal. A loop stands

for a self–orthogonal matrix.

Let Γ = (V , E) be a graph with the vertex set V and edges E ⊆ V × V. We consider three di�erent sets of

vertices.

5 Properties of P

ij

are analogous in classical and tropical linear algebra. In general, P

ij

is not a normal matrix.
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De�nition 6.1. A path (or walk) is a sequence v
0
, e

1
, v

1
, e

2
, v

2
, . . . , e

k
, v
k
of vertices v

0
, . . . , v

k
∈ V and

edges e
1
, . . . , e

k
∈ E where e

i
= (v

i−1
, v
i
) for all i = 1, . . . , k. If v

0
= v

k
, then the path is closed. The length of

the former path is k. A path is elementary if all the edges are distinct. A cycle is a closed elementary path.

De�nition 6.2. The girth of a graph Γ is the length of the shortest cycle in Γ which is not a loop.

De�nition 6.3. The graph Γ is said to be connected if it is possible to establish a path from any vertex to any

other vertex of Γ.

De�nition 6.4. The distance dist(u, v) between two vertices u and v in a graph Γ is the length of the shortest

path between them. If u and v are unreachable from each other, then we set dist(u, v) =∞. It is assumed that

dist(u, u) = 0 for any vertex u.

De�nition 6.5. The diameter diam(Γ) of a graph Γ is themaximumof distances between vertices, for all pairs

of vertices in Γ.

Recall that the absorbing property (3) in Remark 2.3 says that Z is orthogonal to every matrix. On the other

hand, if A is strictly normal, then the only matrix orthogonal to A is Z, by Corollary 5.5. So, it is reasonable to

consider

(M

N

n
)

∗
:= M

N

n
\

(
M

SN

n
∪ {Z}

)
as a set of vertices. Namely, we delete the vertex which is connected with all other vertices as well as the set

of isolated vertices.

Recall Notation 3.11. In view of Corollary 4.18, other interesting sets of matrices are

VNL :=

⋃
p,q∈[n], p= ̸q

V(p; q), VNL

∗
= VNL \ {Z},

WNL :=

⋃
p,q∈[n], p= ̸q

W(p; q), WNL

∗
= WNL \ {Z}.

Now we de�ne the corresponding graphs.

De�nition 6.6. The vertex set of the graphORTHO is (M

N

n
)

∗
. Matrices A, B ∈ (MN

n
)

∗
are joined by an edge in

ORTHO if and only if AB = Z = BA. In particular, loops in ORTHO correspond to self–orthogonal matrices.

Lemma 3.13 is motivation for the following De�nition.

De�nition 6.7. The vertex set of the graph VNL is VNL

∗
. Matrices A, B ∈ VNL∗ are joined by an edge in

VNL if and only if there exist p, q ∈ [n] with A ∈ V(p; q) and B ∈ V(q; p).

De�nition 6.8. The vertex set of the graph WNL is WNL

∗
. Matrices A, B ∈ WNL∗ are joined by an edge in

WNL if and only if there exist k,m ∈ [n] with A and B satisfying one of the conditions 1, 2, 3 in Corollary

4.18.

Remark 6.9. Notice that VNL

∗
,WNL

∗ ⊆ (M

N

n
)

∗
and, by Corollary 4.18, the graphs VNL,WNL are subgraphs

of ORTHO.

Proposition 6.10. Let n ≥ 3. Then girth(ORTHO) = girth(VNL) = 3.

Proof. RecallNotation 3.11 and takeA
1
∈ V(1, 2; 3),A

2
∈ V(2, 3; 1)andA

3
∈ V(3, 1; 2). ThenA

1
−A

2
−A

3
−A

1

make a cycle in VNL, so girth(ORTHO) ≤ girth(VNL) ≤ 3. Since the graphs under consideration have no

multiple edges, the proof is complete.

Proposition 6.11. Let n ≥ 3. Then ORTHO is connected and diam(ORTHO) = 3.
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Proof. Let A, B bematrices corresponding to distinct vertices in the graphORTHO. Each of them has at least

one o�–diagonal zero. Assume a
ij
= 0 = b

km
, with i = ̸ j and k = ̸ m. We can assume that (i, j) = ̸ (k,m). Then,

by Notations 2.2 and Corollary 3.5, A ∈ Or(E
ij
)
(M

N

n

)
∗ , B ∈ Or(E

km
)
(M

N

n

)
∗ , and also E

km
∈ Or(E

ij
)
(M

N

n

)
∗ , since

(i, j) = ̸ (k,m). So the path A − (E
ij
) − (E

km
) − B shows that diam(ORTHO) ≤ 3.

Now, consider thematrices U
ij
, U

km
, with i, j ∈ [n], i ≠ j, k,m ∈ [n], k = ̸ m and (i, j) = ̸ (k,m). Since n ≥ 3,

there exists l ∈ [n] \ {i, k}, and the l–th row of the product U
ij
U
km

is non–zero. Hence, U
ij
and U

km
are not

orthogonal and dist(U
ij
, U

km
) > 2, which completes the proof.

Proposition 6.12. Let n ≥ 3. Then diam(VNL) = 2.

Proof. LetA, B bematrices corresponding to twodistinct vertices in the graphVNL. If for some p, q ∈ [n]both
A, B ∈ V(p; q) then we have a path A−C−B, where C ∈ V(q; p) is non–zero. Now assume A ∈ V(p; q), p = ̸ q,
B ∈ V(c; d), c = ̸ d, and p = ̸ c. If |{p, q, c, d}| = 2, then (p, q) = (d, c) and we have a path A − B. Otherwise

the set {p, q, c, d} contains at least 3 di�erent numbers. Consider the set S = V(q; p) ∩ V(d; c) and an S–

generic matrix C. We show that C ≠ Z. Indeed, in C the q–th and the d–th rows are zero, and also the p–th

and the c–th columns are zero. The number of zeros in C satis�es ν(C) ≤ 2n + 2(n − 2) + n = 5n − 4. But

since |{p, q, c, d}| ≥ 3, then at least 3 diagonal zeros (among c
qq
, c
pp
, c
dd
, c
cc
) intersect with zero rows and

columns of C. So ν(C) ≤ 5n − 4 − 3 = 5n − 7. It is clear that 5n − 7 < n

2

, so C is not the zero matrix. So we have

a path A − C − B, by De�nition 6.7. We have shown that diam(VNL) ≤ 2.

Now, consider a V(i; j)–generic matrix L, i, j ∈ [n], i = ̸ j, and a V(k;m)–generic matrix M, k,m ∈ [n],

k = ̸ m, (i, j) ≠ (k,m), (i, j) ≠ (m, k). Then, by De�nition 6.7, L and M are not joined by an edge in VNL and

dist(L,M) > 1, which completes the proof.

Proposition 6.13. If n ≥ 4, then diam(WNL) = 2.

Proof. Let A, B be matrices corresponding to two distinct arbitrary vertices in the graph WNL. If, for some

p, q ∈ [n] both A, B ∈ W(p; q) thenwe have a path A−C−B, where C ∈ W(q; p)∩Z(q; p)∩Z(p; q) is non–zero.
Assume A ∈ W(p; q), p ≠ q, B ∈ W(c; d), c ≠ d, and p = ̸ c. If |{p, q, c, d}| = 2, then (p, q) = (d, c) and we

have a path A−C−B, where C ∈ V(p; q)∩V(q; p) is non–zero. Otherwise the set {p, q, c, d} contains at least
3 di�erent numbers. Consider the set S = V(q; p) ∩ Z(p; q) ∩ V(d; c) ∩ Z(c; d) and an S–generic matrix C. We

show that C ≠ Z. Indeed, in C the q–th and the d–th rows are zero, and also the p–th and the c–th columns

are zero, besides c
pq

= c
cd

= 0. The number of zeros in C satis�es ν(C) ≤ 2n + 2(n − 2) + 2 + n = 5n − 2. But

since |{p, q, c, d}| ≥ 3, then at least 3 diagonal zeros (among c
qq
, c
pp
, c
dd
, c
cc
) have been counted twice. So

ν(C) ≤ 5n − 2 − 3 = 5n − 5. We have 5n − 5 < n

2

, so C is not the zero matrix. So we have a path A − C − B, by

De�nition 6.8. We have shown that diam(WNL) ≤ 2.

Now, consider a W(i; j)–generic matrix L, with i, j ∈ [n], i ≠ j, and a W(k;m)–generic matrix M, with

k,m ∈ [n], k ≠ m, (i, j) ≠ (k,m). Then, by De�nition 6.8, L and M are not joined by an edge in WNL and

dist(L,M) > 1, which completes the proof.

The following example shows that the above Lemma is not true if n = 3.

Example 6.14. For A =

 0 −1 0

−1 0 −1

−1 0 0

 ∈ W(1; 2), B =

 0 0 −1

−1 0 0

−1 −1 0

 ∈ W(1; 3)we get that dist(A, B) = 3

inWNL.

Indeed, the following path shows that dist(A, B) ≤ 3 inWNL

A −

0 0 −1

0 0 0

0 −1 0

 −
0 −1 0

0 0 −1

0 0 0

 − B.
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Note that matrices A and B are not mutually orthogonal. Let us show that dist(A, B) > 2 inWNL. Indeed,

suppose that we have a path A −D −B inWNL. By de�nition, A and D are connected if for some k andm one

of the following items holds:

1. A ∈ W(k;m) ∩ Z(k;m) ∩ Z(m; k) and D ∈ W(m; k),

2. A ∈ W(k;m) ∩ Z(m; k) and D ∈ W(m; k) ∩ Z(k;m),
3. A ∈ W(k;m) and D ∈ W(m; k) ∩ Z(k;m) ∩ Z(m; k).

The structure of A implies that the only case left is the item 3 with k = 1,m = 2. Similarly, for B with

k = 1,m = 3. But D ∈ W(2; 1) ∩ Z(1; 2) ∩ Z(2; 1) and D ∈ W(3; 1) ∩ Z(1; 3) ∩ Z(3; 1) only if D is zero and the

proof is complete.
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