ÁLGEBRA LINEAL Hoja 4

Advertencia: colocaremos las coordenadas de vectores y puntos de \mathbb{K}^n en **columnas**.

Ejercicio 1.

- 1. Dados vectores u_1, u_2, u_3 linealmente independientes en un espacio vectorial V, se consideran los subespacios vectoriales $U = L(u_1 + u_2, u_2 + u_3)$ y $W = L(u_1 + u_2 + u_3, u_2 u_3)$. ¿Cuál es la dimensión de $U \cap W$?
- 2. En \mathbb{K}^3 se consideran los subespacios vectoriales

$$U: x_1 + x_2 + x_3 = 0$$
$$W = L((1, 1, 1)^T, (1, 1, 0)^T, (-1, -1, 1)^T)$$

- a) Calcular unas ecuaciones paramétricas, la dimensión y una base de U.
- b) Calcular unas ecuaciones implícitas, la dimensión y una base de W.
- c) Determinar los subespacios vectoriales $U \cap W$ y U + W.
- 3. Se consideran los subespacios vectoriales

$$V_1 = \left\{ \begin{pmatrix} a & b \\ a - b & a + b \end{pmatrix} \in M_2(\mathbb{K}) : a, b \in \mathbb{K} \right\}, \quad V_2 : \left\{ \begin{aligned} a + b + c + d &= 0 \\ 2a - c - d &= 0 \end{aligned} \right.$$

donde $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{K})$. Calcular unas ecuaciones paramétricas, unas ecuaciones implícitas, una base y la dimensión de los subespacios $V_1 \cap V_2$ y $V_1 + V_2$.

4. En \mathbb{K}^4 se consideran los subespacios vectoriales

$$U = L((1, -1, 2, 1)^{T}, (0, 1, -1, 3)^{T}, (2, 0, 1, -1)^{T})$$

$$W : \begin{cases} 2x - y - 3z = 0 \\ x - 2y + 6z - 6t = 0 \end{cases}$$

Calcular la dimensión, una base y ecuaciones paramétricas e implícitas de $U, W, U \cap W$ y U + W.

5. En \mathbb{K}^4 se consideran los subespacios vectoriales U: y+z+t=0 y W: x+y=z-2t=0. Hallar bases, dimensiones y ecuaciones implícitas y paramétricas de $U, W, U\cap W$ y U+W.

Ejercicio 2. Sean $a, b \in \mathbb{K}$ y consideremos los subespacios

$$U: \begin{cases} bx_1 - bx_2 + x_4 = 0 \\ x_3 = 0 \end{cases} W: \begin{cases} (a-1)(2x_1 - x_2) - 2x_3 = 0 \\ 2bx_1 - (a+b)x_2 + 2x_4 = 0 \end{cases}$$

- 1. Calcular las dimensiones de U y W.
- 2. ¿Existen valores de a y b para los que U = W?
- 3. ¿Cómo deben tomarse a y b para que $U \neq W$ y $U + W \neq \mathbb{K}^4$?

Ejercicio 3. Sea U el hiperplano vectorial de \mathbb{K}^3 de ecuación x+y+z=0=z. Determina un subespacio W de \mathbb{K}^3 de forma que $U \cap W = \{0\}$ y U+W tenga por ecuación cartesiana x+y+z=0.

Ejercicio 4. Sean F, G, H, subespacios del espacio vectorial E. Demostrar o dar contraejemplos de las afirmaciones siguientes:

- 1. $F \cap (G + H) = (F \cap G) + (F \cap H)$, (indicación: es falsa)
- 2. $F + (G \cap H) = (F + G) \cap (F + H)$, (indicación: es verdadera)
- 3. $\dim(F \cap (G+H)) = \dim(F \cap G) + \dim(F \cap H) + \dim(F \cap H \cap G)$, (indicación: es falsa).

Ejercicio 5.

- 1. Denotamos por $M_n^{sim}(\mathbb{K})$ al conjunto formado por las **matrices simétricas** y por $M_n^{anti}(\mathbb{K})$ al conjunto formado por las **matrices antisimétricas**. Probar que son subespacios vectoriales de $M_n(\mathbb{K})$ y que $M_n(\mathbb{K}) = M_n(\mathbb{K})^{sim} \oplus M_n^{anti}(\mathbb{K})$. Calcula bases y dimensiones de ambos subespacios. [Aquí, se supone char $\mathbb{K} \neq 2$.]
- 2. Sea $GL_n(\mathbb{K})$ el conjunto formado por las matrices cuyo determinante es no nulo. ¿Es $GL_n(\mathbb{K})$ un subespacio vectorial de $M_n(\mathbb{K})$? Demuestra que $GL_n(\mathbb{K})$ es un grupo con la multiplicación.
- 3. Sea $SL_n(\mathbb{K})$ el conjunto formado por las matrices cuyo determinante es 1. ¿Es $SL_n(\mathbb{K})$ un subespacio vectorial de $M_n(\mathbb{K})$? Demuestra que $SL_n(\mathbb{K})$ es un grupo con la multiplicación.

4. Denotamos por $M_n^{orto}(\mathbb{R})$ al subconjunto de **matrices ortogonales**, ¿es $M_n^{orto}(\mathbb{R})$ un subespacio vectorial de $M_n(\mathbb{R})$? Demuestra que $M_n^{orto}(\mathbb{K})$ es un grupo con la multiplicación. (Recordemos que A es **ortogonal** si $AA^T = I_n = A^TA$.) [La notación más habitual para $M_n^{orto}(\mathbb{R})$ es $O_n(\mathbb{R})$, que junto con $GL_n(\mathbb{K})$ y $SL_n(\mathbb{K})$ se llaman **grupos clásicos**.]

Ejercicio 6. Para cada $a \in \mathbb{K}$ se considera el subespacio vectorial H_a de \mathbb{K}^3 de ecuación ax - y + z = 0. Además, tomamos M = L(u) siendo $u = (1, 1, 1)^T \in \mathbb{K}^3$. ¿Para qué valores de a se cumple que $\mathbb{K}^3 = H_a \oplus M$?

Ejercicio 7. Se considera la base estándar $\mathcal{B} = (1, t, t^2, t^3)$ de $\mathbb{K}[t]_3$ y para cada $a \in \mathbb{K}$, el subespacio vectorial $H_a = \{f \in \mathbb{K}[t]_3 : f(a) = 0\}$.

- 1. Hallar una base y la dimensión de H_a . Obtener ecuaciones implícitas y paramétricas de H_a .
- 2. Sean $a ext{ y } b \in \mathbb{K}$ distintos. Hallar una base de $H_a \cap H_b$ y calcular su dimensión. Obtener ecuaciones implícitas y paramétricas de $H_a \cap H_b$ respecto de \mathcal{B} .
- 3. Probar que todo polinomio de $\mathbb{K}[t]_3$ se puede escribir como suma de un polinomio de H_a y otro de H_b .

Ejercicio 8. En \mathbb{K}^3 se consideran los subespacios

$$U: \begin{cases} x = \lambda + \gamma \\ y = \mu + \gamma \\ z = \lambda + \mu + 2\gamma \end{cases} \quad W: x - y + 2z = 0$$

Se pide:

- 1. Bases de $U, W, U + W y U \cap W$.
- 2. Ecuaciones implícitas de $U \cap W$.
- 3. Una base de un subespacio suplementario de U+W.
- 4. Coordenadas de $(2,3,5)^T$ respecto de la base de U+W obtenida en el primer apartado.

Ejercicio 9.

- 1. Hallar una base y dimensión del subespacio vectorial U: x+y=z+t=0 de \mathbb{K}^4 .
- 2. Obtener unas ecuaciones paramétricas de U.
- 3. Sea el subespacio $W = L(v_1, v_2, v_3) \subseteq \mathbb{K}^4$ donde $v_1 = e_1 + e_2, v_2 = e_1 + e_3$ y $v_3 = e_1 + e_4$. Hallar unas ecuaciones implícitas de U y una base de W.
- 4. Calcular las dimensiones de $U \cap W$ y U + W.

Ejercicio 10. Sea n > 2 un número entero y sean H y H' dos subespacios vectoriales de dimensión n-1 (i.e., hiperplanos) de un espacio vectorial E de dimensión n, siendo $H \neq H'$. Probar que todo vector de E es suma de un vector de H y otro de H' y calcular la dimensión que tiene el subespacio intersección $H \cap H'$.

Ejercicio 11.

1. En $\mathbb{K}_3[x]$ con la base $\mathcal{B}=(x^3,x^2,x,1)$ se consideran los siguientes subespacios vectoriales

$$U = L(x^{2} + 2x, -x^{2} + x, x^{2} + x) \qquad V : \begin{cases} x_{1} = 0 \\ x_{2} = -\beta \\ x_{3} = 0 \\ x_{4} = \alpha + \beta \end{cases} \qquad W : \begin{cases} x_{2} + x_{3} = 0 \\ 2x_{2} - x_{3} = 0 \end{cases}$$

Calcular bases, dimensión y ecuaciones (tanto paramétricas como implícitas) de los subespacios U, V y W. También para $U \cap V, U \cap W, V \cap W, U + V, U + W y V + W$.

2. Sean los subespacios vectoriales de \mathbb{K}^4 :

$$U = L((1, 1, 0, -1)^T, (1, 2, 3, 0)^T, (2, 3, 3, -1)^T)$$
$$W = L((1, 2, 2, -2)^T, (2, 3, 2, -3)^T, (1, 3, 4, -3)^T)$$

Hallar las dimensiones de U + W y $U \cap W$.

Ejercicio 12. Encontrar una base del subespacio U: x+y=z-y=0 y calcular su dimensión. Prolongar dicha base a una de \mathbb{K}^4 .

Ejercicio 13. Si $1 \le r \le n$ y $\mathcal{B} = (v_1, \dots, v_r, v_{r+1}, \dots, v_n)$ es una base de V, demostrar que $V = U \oplus W$, donde (v_1, \dots, v_r) es base de U y (v_{r+1}, \dots, v_n) es base de W. Recíprocamente, si $V = U \oplus W$, donde (v_1, \dots, v_r) es base de U y (v_{r+1}, \dots, v_n) es base de W entonces $(v_1, \dots, v_r, v_{r+1}, \dots, v_n)$ es base de V.

Ejercicio 14.

- 1. En \mathbb{Q}^4 sean H: x-y=z+t=0 y $U\subset\mathbb{Q}^4$ generado por $(1,-1,0,0)^T$, $(1,0,-1,0)^T$ y $(1,0,0,-1)^T$. Hallar bases, dimensiones y ecuaciones implícitas y paramétricas de $H,U,H\cap U$ y H+U.
- 2. Hallar la dimensión y una base del subespacio $W \subset \mathbb{Q}^5$ dado por

$$\begin{cases} x + 2y + 2z - s + 3t = 0 \\ x + 2y + 3z + s + t = 0 \\ 3x + 6y + 8z + s + 5t = 0. \end{cases}$$

- 3. Sean los subespacios $U = L((1,3,-2,2,3)^T,(1,4,-3,4,2)^T,(2,3,-1,-2,9)^T)$ y $W = L((1,3,0,2,1)^T,(1,5,-6,6,3)^T,(2,5,3,2,1)^T)$ de \mathbb{Q}^5 . Hallar una base y la dimensión de $U \cap W$.
- 4. Dados los subespacios de \mathbb{Q}^4 , $U = L((1,2,1,3)^T, (0,1,2,1)^T, (6,11,4,17)^T)$ y $W: 4x_1 x_2 + x_3 x_4 = 0$. Hallar unas ecuaciones paramétricas e implícitas de U + W y de $U \cap W$. ¿Es U + W una suma directa?
- 5. Sean U, W subespacios de \mathbb{Q}^3 definidos por $U = \{(x, y, z)^T \in \mathbb{Q}^3 : x = y = z\}$ y $W = \{(x, y, z)^T \in \mathbb{Q}^3 : x = 0\}$. Hallar una base de U, otra de W y comprobar que $\mathbb{Q}^3 = U \oplus W$.
- 6. Consideremos los subespacios de \mathbb{Q}^4 dados por U: x-y=z+t=0 y $W=L((2,1,1,1)^T,(0,1,-1,-1)^T,(1,0,1,1)^T)$. a) Hallar una base de U y unas ecuaciones implícitas de W. b) Hallar $U\cap W$ y U+W. ¿Es U+W suma directa? c) Si $U'=L((0,2,1,0)^T,(0,0,0,1)^T)$ hallar U+U' y W+U'. ¿Se trata de sumas directas?
- 7. Sean a y b números racionales y consideremos los subespacios U y W de \mathbb{Q}^4

$$U: \begin{cases} bx_1 - bx_2 + x_4 &= 0 \\ x_3 &= 0 \end{cases} \quad y \; W: \begin{cases} (a-1)(2x_1 - x_2) - 2x_3 &= 0 \\ 2bx_1 - (a+b)x_2 + 2x_4 &= 0 \end{cases}$$

- a) Calcular la dimensión de U y W. ¿Existen valores de a y b para los que U=W?
- b) ¿Cómo han de ser a y b para que $U + W \neq \mathbb{Q}^4$?

Ejercicio 15. En \mathbb{Q}^4 sea el subespacio U: x-y+z-2t=x-2y+z-t=0. Hallar unas ecuaciones implícitas de un subespacio $W \subset \mathbb{Q}^4$ tal que $\mathbb{Q}^4 = W \oplus U$. Idem $W' \subset \mathbb{Q}^4$ tal que $\mathbb{Q}^4 = W' \oplus U$ y $W \neq W'$.

Ejercicio 16.

- 1. En \mathbb{K}^2 se considera el haz de rectas paralelas a la recta de ecuación 3x+2y-6=0. Identificar la familia anterior con el espacio cociente \mathbb{K}^2/U , para cierto subespacio U. Hacer una representación gráfica.
- 2. En \mathbb{K}^3 se considera el haz de planos paralelos al plano de ecuación 3x+2y-6=0. Identificar la familia anterior con el espacio cociente \mathbb{K}^3/U , para cierto subespacio U. Hacer una representación gráfica.
- 3. En \mathbb{K}^3 se considera el haz de rectas paralelas a la recta de ecuaciones x=3,y=7. Identificar la familia anterior con el espacio cociente \mathbb{K}^3/U , para cierto subespacio U. Hacer una representación gráfica.

Ejercicio 17.

- 1. Sean $V=\mathbb{K}^5$ y $W:x_4=x_5=0$. Describe los elementos de V/W. Halla una base y la dimensión de V/W.
- 2. Consideremos en \mathbb{K}^4 los subespacios F = L(a,b,c) y G = L(d,e) donde $a = (1,2,3,4)^T, b = (2,2,2,6)^T, c = (0,2,4,4)^T, d = (1,0,-1,2)^T$ y $e = (2,3,0,1)^T$. Se pide: a) Determinar las dimensiones de $F,G,F\cap G,F+G$ y dar una base de cada subespacio. b) Dar bases de los espacios cociente \mathbb{K}^4/F , \mathbb{K}^4/G , $\mathbb{K}^4/(F+G)$ y $\mathbb{K}^4/(F\cap G)$.

Ejercicio 18.

- 1. Sean $\mathcal{B} = (u_1, u_2, u_3, u_4)$, una base de un espacio vectorial $E, v_1 = u_1 + u_3, v_2 = u_1 + u_2 u_3 u_4$ y $W = L(v_1, v_2)$. Se pide:
 - a) Encontrar en E dos vectores linealmente independientes cuyas clases sean (resp. no sean)linealmente independientes en el cociente E/W.
 - b) Encontrar cuatro vectores linealmente independientes en E cuyas clases en E/W no sumen 0 y de modo que existan vectores proporcionales a ellos cuyas clases sí lo sumen.

2. Sea $\mathcal{B} = (u_1, u_2, u_3, u_4)$ una base del espacio vectorial E y consideremos el subespacio vectorial

$$W: \begin{cases} x_1 - 3x_2 - 2x_3 = 0 \\ x_2 + x_3 + x_4 = 0 \end{cases}.$$

- a) Obtener una base de E/W y, calcular con respecto a ella, las coordenadas de la clase $[v]_W$ siendo $v = u_1 + u_2 + u_3 + u_4$.
- b) Encontrar vectores independientes en $E \setminus W$ tales que sus clases en E/W no sean independientes.
- c) Encontrar si es posible (cuatro) vectores linealmente independientes en E cuyas clases en E/W no sumen 0 pero de tal modo que existan vectores proporcionales a ellos cuyas clases sí lo sumen.

Ejercicio 19. Una construcción del cuerpo C. Sea

$$U = \{(x^2 + 1)p(x) : p(x) \in \mathbb{R}[x]\}.$$

Demostrar que U es un subespacio de $\mathbb{R}[x]$ y que $\mathbb{R}[x]/U$ es isomorfo a \mathbb{C} , como \mathbb{R} espacios vectoriales. ¿Qué dimensión tienen? Mediante el isomorfismo anterior, trasladar la multiplicación de \mathbb{C} a $\mathbb{R}[x]/U$ y demostrar que $\mathbb{R}[x]/U$ es un cuerpo.

Otra construcción del cuerpo C. Sea

$$U = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

Demostrar que U, como subespacio vectorial de $M_2(\mathbb{R})$, es isomorfo a \mathbb{C} . Demostrar que U es un cuerpo isomorfo a \mathbb{C} .