ÁLGEBRA LINEAL Hoja 10

<u>Advertencia:</u> colocaremos las coordenadas de vectores y puntos de \mathbb{K}^n en **columnas**.

Ejercicio 1. En el plano afín \mathbb{K}^2 se tiene la curva Γ de ecuación $y = 2x^3 - 3x^2 + x - 2$. Probar que las rectas que cortan a Γ en tres puntos tales que uno de ellos es el punto medio de los otros dos, pasan todas ellas por un mismo punto, hallando las coordenadas de dicho punto.

Ejercicio 2. Obtener el simétrico del punto $P=(1,3,-1)^T$ con respecto a la recta s: $\begin{cases} x=2\lambda\\ y=2-\lambda\\ z=1+2\lambda \end{cases}$

Ejercicio 3.

1. Calcular una base del espacio de dirección, la dimensión y unas ecuaciones implícitas respecto del sistema de referencia \mathcal{R} del subespacio afín s de \mathbb{K}^5 cuyas ecuaciones pa-

ramétricas respecto de \mathcal{R} son s: $\begin{cases} x_1 = 1 + \lambda_1 + \lambda_2 + 3\lambda_3 \\ x_2 = 6 + 2\lambda_2 + 2\lambda_3 \\ x_3 = -\lambda_1 - \lambda_2 - 3\lambda_3 \\ x_4 = 1 + \lambda_1 + 2\lambda_3 \\ x_5 = \lambda_2 + \lambda_3 \end{cases}$

2. En \mathbb{K}^4 , se considera el subespacio afín H: $\begin{cases} x-y+z-t=1\\ x+y+2z+t=2\\ x-3y-3t=0. \end{cases}$ y se piden la dimensión

y la dirección de H, unas ecuaciones paramétricas de H y una familia de puntos afínmente independientes que genere H.

Ejercicio 4. Obtener ecuaciones paramétricas e implícitas de la recta de \mathbb{K}^3 que pasa por el punto $P = (0, 1, 0)^T$ y es paralela a los planos $\pi_1 : x + y + 2z = 4$ y $\pi_2 : x - y - z = 1$.

Ejercicio 5. En \mathbb{R}^3 , obtener ecuaciones paramétricas e implícitas de la recta perpendicular común a las rectas r y s y la distancia entre ambas rectas, donde

$$r: \left\{ \begin{array}{l} x-y=z-2\\ y=z \end{array} \right., \quad s: \left\{ \begin{array}{l} x=0\\ y=\lambda\\ z=-\lambda \end{array} \right.$$

Ejercicio 6. En \mathbb{R}^3 , hallar unas ecuaciones implícita de la recta l que pasa por el punto $P = (3, 2, 1)^T$, es ortogonal a la recta r y corta a la recta s, siendo

$$r: \begin{cases} x - 3y + 3 = 0 \\ y + z - 3 = 0 \end{cases}, \quad s: \begin{cases} x - 3y - z + 1 = 0 \\ x - 2y + 2z = 3 \end{cases}$$

1

Calcular la distancia entre las rectas l y r.

Ejercicio 7. En \mathbb{R}^5 se consideran los subespacios afines $r: x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$ y $s: x_1 = 0, x_2 = 1, x_5 = 5$.

- a) Hallar la posición relativa de r y s.
- b) Hallar unas ecuaciones implícitas del subespacio afín r + s.
- c) Determinar la recta que pasa por el punto $R = (2, -1, 0, 0, 0)^T$ y corta a r y a s.

Ejercicio 8. Trabajando sobre \mathbb{R} , hallar qué condición tienen que cumplir los puntos $P_i = (x_i, y_i)^T$, i = 1, 2, para encontrarse en lados distintos de la recta de ecuación r : ax + by + c = 0.

Ejercicio 9. Sean A_1, A_2, \ldots, A_r puntos en un espacio afín \mathcal{A} de dimensión n. Probar que dim $\mathcal{A}(A_1, A_2, \ldots, A_r) = d$, donde

$$d+1 = \operatorname{rg} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_{11} & a_{12} & \cdots & a_{1r} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nr} \end{pmatrix}$$

y $(a_{1j}, a_{2j}, \ldots, a_{nj})^T$ son las coordenadas de A_j respecto de cierto sistema de referencia cartesiano de \mathcal{A} dado. En particular, los puntos A_1, A_2, \ldots, A_r son afínmente independientes si y solo si el rango de la matriz anterior es r.

Ejercicio 10. El número m en la ecuación de una recta de la forma y = mx + h se llama **pendiente**. Demuéstrese que $m = \tan \theta$, siendo θ el ángulo que la recta forma con el eje de abscisas. ¿Qué rectas no admiten ser expresadas de esta forma? ¿Qué rango de valores tiene el ángulo θ ?

Ejercicio 11. Demuéstrese que dos rectas con pendientes m_1 y m_2 son perpendiculares si y sólo si $1 + m_1 m_2 = 0$.

Ejercicio 12. Encuéntrese una recta que pase por el punto $(2, -3)^T$ y que forme un ángulo de 60° con el eje de abscisas.

Ejercicio 13. Sin calcular el punto de intersección de las rectas 2x + y + 1 = 0 y x - y + 2 = 0, demuéstrese que la recta de ecuación x + 5y - 4 = 0 pasa por el mismo.

Ejercicio 14. Demuestra que las posibles posiciones relativas de dos rectas afines l_1 y l_2 de un espacio afín de dimensión 3 son las siguientes:

- 1. $l_1 = l_2$;
- 2. $l_1 ext{ y } l_2 ext{ son paralelas y disjuntas};$

- 3. $l_1 ext{ y } l_2 ext{ se cortan en un punto (son incidentes)};$
- 4. l_1 y l_2 no son paralelas y son disjuntas (**se cruzan**).

Demuestra que $l_1 + l_2$ es una recta afín si y sólo si ocurre a). Demuestra que $l_1 + l_2$ es un plano afín si y sólo si ocurre b) o c). Demuestra que $l_1 + l_2$ es todo el espacio afín si y sólo si ocurre d). A las rectas contenidas en un plano (casos a), b) y c)) se las llama **coplanarias**. [Obs: dos rectas son coplanarias si y sólo si son incidentes o paralelas.]

Ejercicio 15. En un espacio afín \mathcal{A} de dimensión ≥ 3 se consideran dos rectas l y l', dos puntos distintos P y Q de l, y dos puntos distintos P' y Q' de l'. Demostrar que l y l' se cruzan si y sólo si los puntos P, Q, P' y Q' son afínmente independientes.

Ejercicio 16. Sean A_1, A_2, A_3 tres puntos afínmente independientes en un plano. Demostrar que las rectas que unen cada A_i con el punto medio de $\overrightarrow{A_k A_h}, k, h \neq i$ se cortan en un punto, el baricentro de A_1, A_2, A_3 (es decir, que las tres medianas de un triángulo se cortan en el baricentro de triángulo).

Ejercicio 17. Determinar la matriz, respecto del sistema de referencia canónico, de la aplicación afín f de \mathbb{K}^2 que cumple que

$$f((1,1)^T) = (-1,0)^T$$
, $f((0,2)^T) = (1,1)^T$, $f((-1,2)^T) = (0,-1)^T$

Ejercicio 18. Determinar la matriz, respecto del sistema de referencia canónico, de la aplicación afín f de \mathbb{K}^3 que cumple que

$$f((0,0,0)^T) = (1,1,-1)^T),$$

$$f((1,1,0)^T) = (-2,-2,-1)^T),$$

$$f((1,0,1)^T) = (0,1,0)^T),$$

$$f((0,0,1)^T) = (2,2,-1)^T).$$

Ejercicio 19. Composición de homotecias. Se consideran homotecias $h_{O_j,r_j}: \mathbb{K}^n \to \mathbb{K}^n$ de centro O_j y razón $r_j \in \mathbb{K} \setminus \{0,1\}$, j=1,2. Demostrar que $h_{O_1,r_1} \circ h_{O_2,r_2}$ es igual a a) $h_{O_1,r_1r_2} = h_{O_2,r_2} \circ h_{O_1,r_1}$ si $O_1 = O_2$, cuando $r_1r_2 \neq 1$.

- b) t_v , cuando $r_1r_2=1$. Calcula el vector v. [Indicación: sale $v=\overrightarrow{O_2O_1}(1-r_1)$]
- c) h_{O_3,r_1r_2} cuando $r_1r_2 \neq 1$ y $O_1 \neq O_2$. Demostrar que O_3 está alineado con O_1 y O_2 .

Ejercicio 20. Demostrar que si una aplicación afín $f : \mathbb{K} \to \mathbb{K}$ no tiene puntos fijos, entonces f^2 tampoco los tiene. Más en general, demostrar que si existe un $k \in \mathbb{N}$ tal que f^k tiene algún punto fijo, entonces f también tiene algún punto fijo.

Ejercicio 21. En \mathbb{R}^3 se consideran las rectas $r: x_1 = 1, x_3 = 0, s: x_1 = 0, x_2 = 1$ y $t: x_2 = 0, x_3 = 1$. Hallar la matriz A correspondiente a una aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(r) = s, f(s) = t y f(t) = r.

Ejercicio 22. Hallar la matriz del movimiento compuesto por la simetría respecto de la recta x = y = z y una traslación de vector $(1, 1, 1)^T$. ¿Tiene puntos fijos?

Ejercicio 23. Sea $f: \mathcal{A} \to \mathcal{A}'$ una aplicación afín y sean $L, L_1, L_2 \subseteq \mathcal{A}$ y $L' \subseteq \mathcal{A}'$ subespacios afines. Demostrar

- 1. f(L) es subespacio afín,
- 2. $f^{-1}(L')$ es subespacio afín o el vacío,
- 3. f conserva las combinaciones afines y, si $\mathbb{K} = \mathbb{R}$, f también conserva las combinaciones convexas,
- 4. si L_1, L_2 son paralelas, entonces $f(L_1), f(L_2)$ son paralelas.

Ejercicio 24. Se consideran en el plano \mathbb{R}^2 los puntos y rectas siguientes

$$O = (0,0)^T$$
, $P = (-1,-1)^T$, $Q = (3,1)^T$, $l_1: x+y=0$, $l_2: x=0$.

- a) Calcular la matriz respecto del sistema de referencia canónico del movimiento f de \mathbb{R}^2 que cumple que $f(P) = O, f(l_1)$ es una recta paralela a l_1 y $Q \in f(l_2)$. ¿Qué movimiento es f?
- b) Idem con $Q = (3, -1)^T$.

Ejercicio 25. Se consideran en \mathbb{R}^3 las rectas s y t dadas por s: x = y + 1 = 0 y t: z = y - 1 = 0. ¿Cuántos movimientos f de \mathbb{R}^3 cumplen que f(s) = t y f(t) = s? Probar que todos ellos son isometrías (en particular, dejan fijo el origen de coordenadas). Clasificar dichos movimientos.

Ejercicio 26. Calcular la matriz del movimiento helicoidal que consiste en una rotación de 60° alrededor de la recta generada por el vector $u = (0, 0, -1)^{T}$ seguida de una traslación de vector $w = (0, 0, 1)^{T}$.