Prácticas/Ejercicios de Álgebra Lineal. Curso 25/26. Doble grado Economía-Matemáticas y Ciencia de Datos

MARÍA JESÚS DE LA PUENTE MUÑOZ (UCM)

Prácticas V 10/10/2025: Hoja 1

Este ejercicio tiene sentido cuando $\mathbb{K} = \mathbb{R}$. Haciendo el cambio de variables $x_1 = {\rm sen}\,\alpha,\, x_2 = {\rm cos}\,\beta,\, x_3 = {\rm tan}\,\gamma$ obtenemos un SLNH 3 EC 3 INCOG que resolvemos, $2 = x_1 = \operatorname{sen} \alpha$, lo cual es imposible ya que $\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1$, para todo $\alpha \in \mathbb{R}$.

Prácticas V 10/10/2025: Hoja 2

$$H_f(A) = \begin{pmatrix} \boxed{1} & -2 & 0 & -3 \\ 0 & 0 & \boxed{1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ H_f(B) = \begin{pmatrix} \boxed{1} & 0 & 4 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}, H_f(F) = \begin{pmatrix} \boxed{1} & 0 & 16 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}, H_f(F) = \begin{pmatrix} \boxed{1} & 0 & 16 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}, H_f(F) = \begin{pmatrix} \boxed{1} & 0 & 16 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}, H_f(F) = \begin{pmatrix} \boxed{1} & 0 & 16 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}, H_f(F) = \begin{pmatrix} \boxed{1} & 0 & 16 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}, H_f(F) = \begin{pmatrix} \boxed{1} & 0 & 16 & 0 \\ 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix}$$

Prácticas V 17/10/2025: Hoja 1

Haciendo el cambio de variables $X = x^2$, $Y = y^2$, $Z = z^2$, llegamos a un SLNH 3EC 3INC 3PAR cuya matriz de coeficientes ampliada es la siguiente

$$\begin{pmatrix} -1/2 & 1 & 1 & | & 2a^2 \\ 1 & -1/2 & 1 & | & 2b^2 \\ 1 & 1 & -1/2 & | & 2c^2 \end{pmatrix}$$

Observemos la simetría de las ecuaciones anteriores. El método de Gauss-Jordan nos proporciona a la matriz ERF siguiente

$$\begin{pmatrix}
\boxed{1} & 0 & 0 & | & \frac{4}{9}(-a^2 + 2b^2 + 2c^2) \\
0 & \boxed{1} & 0 & | & \frac{4}{9}(2a^2 - b^2 + 2c^2) \\
0 & 0 & \boxed{1} & | & \frac{4}{9}(2a^2 + 2b^2 - c^2)
\end{pmatrix}$$

Para cada terna $a, b, c \in \mathbb{R}$ tal que $\begin{cases} -a^2 + 2b^2 + 2c^2 \ge 0, \\ 2a^2 - b^2 + 2c^2 \ge 0, \\ 2a^2 + 2b^2 - c^2 \ge 0, \end{cases}$ hay $2^3 = 8$ soluciones, que $2a^2 + 2b^2 - c^2 \ge 0$ son $x = \pm \sqrt{X} = \pm \frac{2}{3}\sqrt{-a^2 + 2b^2 + 2c^2}, \ y = \pm \sqrt{Y} = \pm \frac{2}{3}\sqrt{2a^2 - b^2 + 2c^2}, \ z = \pm \sqrt{Z} = \pm \frac{2}{3}\sqrt{2a^2 + 2b^2 - c^2}.$ Observemos la simetría de las soluciones anteriores.

son
$$x = \pm \sqrt{X} = \pm \frac{2}{3}\sqrt{-a^2 + 2b^2 + 2c^2}$$
, $y = \pm \sqrt{Y} = \pm \frac{2}{3}\sqrt{2a^2 - b^2 + 2c^2}$, $z = \pm \sqrt{Z} = \pm \frac{2}{3}\sqrt{2a^2 + 2b^2 - c^2}$. Observemos la simetría de las soluciones anteriores.

Interpretación geométrica: En el espacio de parámetros \mathbb{R}^3 , la ecuación $2b^2 + 2c^2 =$ a^2 determina una superficie cónica y la desigualdad $2b^2 + 2c^2 \ge a^2$ determina su exterior.

Análogamente, tenemos que considerar otros dos conos. El conjunto de ternas $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^3$

para las cuales el sistema dado tiene solución es el exterior común a dichos 3 conos; ver figura 1.

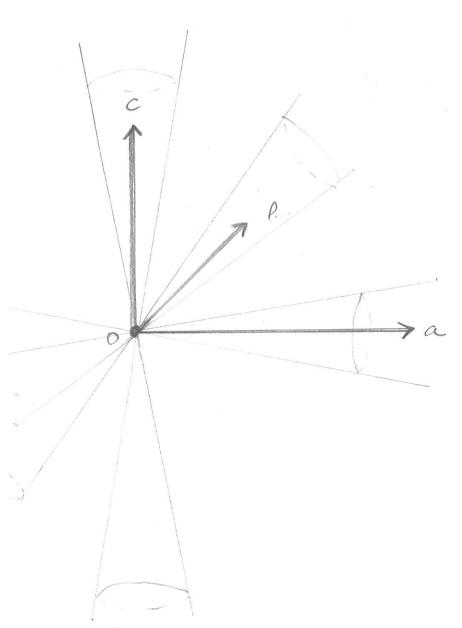
Prácticas V 24/10/2025: Hoja 1

- 14. Si $A^2 = A$ y $B = I_n A$, entonces $B^2 = (I_n A)^2 = I_n^2 I_n A AI_n + A^2 = I_n 2A + A = I_n A = B$. Además $AB = A(I_n A) = A A^2 = A A = 0$. Demostrar BA = 0 es análogo.
 - 15. Sean $A, B \in M_n(\mathbb{K})$.
 - a. a) Si $A = A^T$ y $B = B^T$, entonces $(A + B)^T = A^T + B^T = A + B$, usando una propiedad de la trasposición,
 - b) Si $A = A^T$ y $k \in \mathbb{K}$, entonces $(kA)^T = kA^T = kA$, usando una propiedad de la trasposición,
 - c) CONTRAEJEMPLO: $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, que no es simétrica,
 - d) Si $A = -A^T$ y $B = -B^T$, entonces $-(A + B)^T = -(A^T + B^T) = A + B$, usando una propiedad de la trasposición,
 - e) Si $A = -A^T$ y $k \in \mathbb{K}$, entonces $-(kA)^T = -kA^T = kA$, usando una propiedad de la trasposición,
 - f) CONTRAEJEMPLO: $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2$ que no es antisimétrica.
 - b. Dada $A \in M_n(\mathbb{K})$, la matriz $A A^T$ es antisimétrica, pues $(A A^T)^T = A^T (A^T)^T = A^T A$. El otro caso es parecido.
 - c. Dada $A \in M_n(\mathbb{K})$, tenemos

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

donde el primer sumando es simétrico y el segundo es antisimétrico por los apartados anteriores.

Unicidad: Si A = S + T = S' + T', con $S, S' \in M_n^{sim}(\mathbb{K})$ y $T, T' \in M_n^{antisim}(\mathbb{K})$, entonces S - S' = T - T' es una matriz simétrica y antisimétrica. La única matriz que cumple ambas cosas es la matriz nula. Deducimos S - S' = T - T' = 0, luego S = S' y T = T'.



Exterior commin a tres superficies cónicos en 1R3 (HAE8).

Figura 1