Algebra Lineal

Grado en Ingenieria del Software/Informdtica

Facultad de Informdtica, UCM

Alvaro Martinez Pérez






Indice general

P

2.

Conceptos preliminares| 1
[LI. La base de las matematicas] . . . . .. ... ... ... ... .. 1
(1.2. Implicacion, teorema y demostracion. . . . . . . . . .. .. .. 2
[1.3. Conjuntos y operaciones con conjuntos.| . . . . . . . . . . . .. 4
[1.4. Lenguaje matematicol. . . . . . . . .. ... ... ... .... 4
Variable complejal 9
[2.1. Numeros complejos v operaciones| . . . . . . .. .. ... ... 9
2.1.1. Definicionl . . . ... .. ... L 9
[2.1.2. Suma yresta] . . . . .. ... 10

[2.2. Conjugado, modulo y argumento| . . . . . .. ... ... ... 11
2.2.1. Productoy division| . . . . . . . ... ... L. 12

[2.3. Forma trigonométrica, polar y exponencialf . . . . . .. .. .. 14
[2.4. Potencias de nimeros complejos| . . . . . . ... 16
[2.5. Raices de nimeros complejos|. . . . . . .. ... ... ... .. 16
. Elementos basicos del algebra lineal| 19
B.1. Matrices] . . . . ... 19
3.1.1. Definicionl . . .. ... ... ... L 19
BI2 Sumal. . . . . o 21
(3.1.3. Multiplicaciéon de una matriz por un nimero| . . . . . . 21
[3.1.4.  Multiplicacion de matrices| . . . . . . . ... ... ... 22
[3.1.5. Matrices especiales| . . . . . .. .. ... ... .. 22
[3.1.6. Inversa de una matrizl . .. .. ... ... ... .... 23
[3.1.7. Algebra de matrices|. . . . . . . . . .. ... ... ... 24
[3.1.8.  Calculo de la inversa de una matriz por el método de |
Gauss-Jordan| . . .. ... 0oL 26

B.2. Determinantes . . . . . . . . .. ... 27
3.2.1. Defimiciond. . . ... .. ... oL 27
[3.2.2. Aplicaciones de los determinantes| . . . . . . . ... .. 31

[3.3. Sistemas de ecuaciones lineales. . . . . ... ... ... .... 35



i INDICE GENERAL
3.3.1. Teorema de Rouché-Frobenius . . . . . . . . ... ... 36

[3.3.2. Método de Gauss y método de Cramer| . . . . . . . .. 38

[3.3.3.  Sistemas homogéneos| . . . . . ... ... 42

[4. Espacios vectoriales| 45
[4.1. Definicion y propiedades| . . . . . . . . . ... ... 45
[4.2. Dependencia e independencia lineal| . . . . .. ... ... ... 47
[4.3. Base de un espacio vectoriall . . . .. ... ... 47
[4.4.  Dimension de un espacio vectorial . . . . . .. .. .. ... .. 50
[4.5. Subespacios vectoriales| . . . . .. ..o o000 50
[4.6. Interseccion y suma de subespacios vectoriales| . . . . . . . .. 54
[4.7. Matriz cambio de basel . . . . . ... ... ... L. 56
[4.8. Producto escalar y norma| . . . . .. ... ... .00 58

[5. Aplicaciones lineales| 61
[5.1. Definicion v propiedades| . . . . . . . . .. .. ... L. 61
[5.1.1. Clasificacion de las aplicaciones lineales.| . . . . . . .. 63

[5.2. Matriz asociada a una aplicacion lineall . . . . . . .. .. ... 64
[5.3. Sobre el conjunto de las aplicaciones lineales| . . . . . . . . .. 66
[>.3.1. Composicion de aplicaciones lineales| . . . . . . . ... 67

[5.3.2.  El conjunto de aplicaciones lineales como espacio vec- |

[ toriall . . . . ... 68
b.4. Cambio de base de una aplicacion hneall . . . . . .. ... .. 68
5.5. Aplicaciones lineales en R? y algunos movimientos del plano| . 71

[6. Diagonalizacién de matrices| 73
[6.1. Definicidon y propiedades| . . . . . . . . ... ... 73
[6.2. Calculo de los valores propios| . . . . .. ... ... ... ... 74
[6.3. Calculo de los vectores propios|. . . . . . . .. ... ... ... 75
[6.4. Propiedades de los vectores propios y valores propios| . . . . . 78
[6.5. Diagonalizacion de una matriz| . . . . . . . . . ... ... ... 79
[6.6. Bases ortonormales y método de Gram-Schmidt| . . . . . . .. 80
[6.7. Diagonalizacion de matrices simétricas| . . . . . . . . . .. .. 82

[6.8. Calculo de potencias de matrices| . . . . ... ... ... ... 84




Capitulo 1

Conceptos preliminares

1.1. La base de las matematicas.

Vamos a empezar por introducir algunos de los términos béasicos del len-
guaje matematico.

Lo primero que necesitamos son las definiciones. No se pueden hacer
matematicas si existe ambigiiedad en el lenguaje.

Definicion: FEs un enunciado o proposicion que exrpone un concepto o
determina un objeto de forma unica y precisa.

Por ejemplo, vamos a suponer que ya conocemos la definiciéon de triangulo
y la definicion de angulo recto. Entonces podriamos definir a partir de éstas
un objeto nuevo:

Definicién 1.1.1. Se llama tridngulo rectangulo a aquel en el que uno de
sus dngulos es recto.

Una vez definido (y fijado) este concepto podemos seguir construyendo
a partir de ahi: podemos definir lo que son los catetos, la hipotenusa y asi
construir, sin ninguna ambigiiedad, todos los conceptos que vamos a necesi-
tar.

Una vez que tenemos los conceptos podemos empezar a construir mate-
maticas con ellos. Lo primero que necesitamos es un punto de partida, unas
piezas béasicas que van a ser nuestras “verdades iniciales” y se llaman axio-
mas. Es el Gnico momento en matematicas en el que vamos a asumir algo
como ‘“cierto” sin maés.

Axioma: Es una proposicion verdadera que se admite sin demostracion.

Los axiomas siempre son lo mas simples e intuitivamente evidentes que
sea posible y siempre se trata de tener el menor ntimero posible de ellos. El
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objetivo en matematicas es construir todo el conocimiento sacando conclu-
siones a partir de los axiomas.
Un ejemplo de axioma seria:

Ejemplo 1.1.2. Dados dos puntos diferentes se puede trazar una inica linea
recta que los une.

Este tipo de afirmaciones son la base sobre la que se sustentan todas las
mateméaticas. No vamos a entrar en esto por ser un tema algo mas complejo
pero debemos decir que no son verdades absolutas: si cambiamos los axiomas
tenemos otras teorias igual de vélidas, s6lo son un punto de partida que
aceptamos por acuerdo.

Ya tenemos los conceptos y un punto de partida a partir del cual empezar
a extraer conclusiones. Veamos cudl es el proceso.

1.2. Implicacién, teorema y demostracion.

Implicaciéon: Es una proposicion que establece que si la proposicion A
es verdadera entonces la proposicion B también lo es. Se denota A = B.
Suele expresarse con una expresion del tipo “Si A, entonces B”. En este caso
diremos que A es una condicion suficiente para B (porque es suficiente que se
verifique A para saber que se verifica B) y que B es una condicion necesaria
para A (porque no puede verificarse A si no se verifica B porque A = By
habria una contradiccion).

Ejemplo 1.2.1. Si un nimero n es multiplo de 4 entonces n es maltiplo de
2. Dicho de otro modo: n es multiplo de 4 = n es maultiplo de 2.

Si la implicacion no es verdadera se denota A # B.
Ejemplo 1.2.2. n es mailtiplo de 2 % n es miltiplo de /.

Es importante notar que para que una implicaciéon no sea verdadera basta
con que exista una tnica excepcion.

Si A= By B = A decimos que “A es condicién necesaria y suficiente
para B” o “A si y sblo si B”. Se denota A < B.

Observacion 1.2.3. Dada una implicacion A = B, si no se cumple B,
entonces no se puede cumplir A. Por ejemplo, en la frase: si llueve, entonces
la acera se moja, st la acera estd seca, significa que no ha llovido. Ndtese,
sin embargo, que el que la acera estd mojada, no implica necesariamente que
haya llovido. Puede haberse mojado de cualquier otra manera y la implicacion
sigue siendo cierta.
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Ejercicio 1.2.4. En la expresion: Yo iré al cine solo si ti vas, scudl es la
implicacion? Ndtese que esta expresion no es equivalente a: “si ti vas, yo

voy”.

Una proposicién o un teorema son enunciados de la forma A = B
donde la proposicion A se llama hipdtesis y la proposicion B se llama tesis.

Por ejemplo, y ya que conocemos las definiciones de triangulo rectangulo,
catetos e hipotenusa, podemos enunciar el Teorema de Pitagoras.

Teorema 1.2.5. Si un tridngulo es rectangulo entonces la suma de los cua-
drados de los catetos es igual al cuadrado de la hipotenusa.

En este caso, la hipotesis es que el tridngulo es rectangulo y la tesis que la
suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa.

Por supuesto, en matematicas cualquier afirmacion, cualquier enunciado
que no sea un axioma, debe ser demostrado.

Una demostraciéon es una sucesion de pasos logicos de forma que, to-
mando como verdadera una hipotesis, aseguran la veracidad de una tesis.

Por ejemplo:

Proposicion 1.2.6. Dado un nimero elevado al cuadrado si lo dividimos
por 4 el resto solo puede ser 0 o 1.

Demostracion. Consideramos un ntimero n. Si n es par entonces n = 2k para
algin nimero k. Si n es impar entonces n = 2k+1 para algian k. En el primer
caso, n? = (2k)* = 22k* = 4k*. Si dividimos 4k*/4 = k? y el resto es 0. En
el segundo caso, n? = (2k + 1)? = (2k)? + 4k + 1 = 4k* + 4k + 1. Al dividir
(4k* + 4k + 1) /4 el cociente es k? + k y el resto es 1. O

Siguiendo el razonamiento paso a paso podemos tener la certeza de que el
enunciado es cierto. Este es el modo de proceder en matematicas. Ahora bien,
debemos tener mucho cuidado a la hora de hacer las implicaciones porque a
partir de una implicacion falsa, podemos demostrar cualquier cosa.

Ejemplo 1.2.7. La siguiente cadena de implicaciones contiene en realidad
dos errores. ;Cudles?

Sean a,b dos nimeros reales tales que a = b. Entonces, a = b = a® =
ab=a* - =ab—-VvV = (a+b)(a—b)=bla—b)=a+b=b=>b+b=
b=2b=0=2=1 jlo cual es una contradiccion!
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1.3. Conjuntos y operaciones con conjuntos.

La definicion de conjunto es bastante técnica asi que nos conformare-
mos con una idea intuitiva. Entendemos como conjunto, “una coleccion de
elementos”.

Veamos algunos ejemplos:

» A={a,b,c} es un conjunto con tres elementos: a, b y c.

= N es el conjunto de los nameros naturales: 1, 2, 3...

Z es el conjunto de los nimeros enteros: ... -3, -2, -1, 0, 1, 2, 3...

R es el conjunto de los nimeros reales.

() es el conjunto vacio, es decir, el conjunto que no contiene ningin
elemento.

Podemos definir el conjunto a través de una propiedad como “el con-
junto de todos los ntimeros pares’.

1.4. Lenguaje matematico

. Una de sus caracteristicas fundamentales es la precision: no puede haber
ambiegiiedad alguna en matematicas. La otra, es que se escribe con la ayuda
de una serie de simbolos (cuantificadores, simbolos de relacion...) para que
las expresiones sean concisas, rapidas de leer y escribir y claras de interpre-
tar. Por supuesto, requiere algin tiempo (y practica) acostumbrarse a dicho
lenguaje. El dominio de este lenguaje es indispensable para leer matemaéticas
en cualquier libro o tratado y para trabajar con ellas.

Un elemento a que pertenece a un conjunto A se denota a € A. Normal-
mente se utilizan letras mintsculas para los alementos y maytsculas para los
conjuntos. Por ejemplo, —3 € Z. Esto, que literalmente dice “-3 pertenece al
conjunto de los enteros”, habria que leerlo como “-3 es un ntmero entero”.
Si queremos escribir: “tomamos un ntmero real cualquiera”, la forma de es-
cribir esto en lenguaje matematico seria: “sea a € R” (o cualquier otra letra
mintscula en lugar de a).

Si un elemento a no pertenece a un conjunto A se denota a ¢ A. Por
ejemplo, —3 ¢ N.

Si hablamos de relaciones entre conjuntos A y B, decimos que A esta
incluido en B si todo elemento de A estd en B. Se denota A C B. Asi, por
ejemplo, N C Z C R.
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La intersecciéon de A y B, denotado A N B es el conjunto de elementos
que pertenecen simultaneamente a Ay B.

La unién de A y B, denotado A U B es el conjunto de elementos que
pertenecen a A o a B. Por ejemplo, si A = {a,b,c} y B = {b, ¢, d} entonces
ANB={bc}y AUB={a,b,c,d}.

Pregunta 1.4.1. Si A son los nimeros naturales mailtiplos de 2 y B son los
numeros naturales miltiplos de 3, ;quiénes serain ANB y AUB?

Simbolos de orden: menor que “<”, menor o igual que “<”, mayor que “>”
y mayor o igual que “>".

Cuantificadores: Se trata de unos simbolos basicos para el razonamiento
logico y, en particular, matematico. Vamos a usar tres:

s Existe. Se denota: 3. Una expresion del tipo “dx...” quiere decir que
“existe al menos un elemento z...”

= Para todo. Se denota: V. Una expresion como “V z,y...” quiere decir que
“para todo x,y...”

» Tal que. Se denota |. Una expresion como “Vx Jy|y > a” se leeria
“para todo zx existe y tal que y es mayor que z”.

Ejemplo 1.4.2. Escribir matemdticamente usando cuantificadores la siquien-
te proposicion: Para todo nimero natural, existe un entero tal que la suma
de ambos es 0.

Solucion: Yn € N, 3z € Z|n+ 2z =0.

Ejercicio 1.4.3. Sea P el conjunto de niumeros pares e I el de niumeros
impares. Traducir de lenguaje matemdtico a lenguaje humano las siguientes
proposiciones y decidir si son ciertas of falsas:

» Va,bel,a+be P yabel.

YVace PyVbel, ab+ae€P.

Va,bel cona<b, Ic€ Pla<c<hb.

Va,bel cona<byVee P,a<c<hb.

Va,be N, dce I|a® < c < b2

Va,beN, dc € N|a? + b* = .

Ejemplo 1.4.4. Traducir de lenguaje matemdtico a lenguaje humano, o al
revés, las siguientes exrpresiones:
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= Para todo nimero natural, hay un nimero natural mayor. Vn € N, dm €
N|m > n.

= Para todo niumero par, existe un nimero impar mayor que €l. Vn =
2k, Im =2K +1|m > n.

s Ve eR z <22 e 2<0 62> 1. Solucion: un nimero real es menor
que su cuadrado si y solo si el niumero es negativo o mayor que 1.

» Vry,re € R|rp <1y, 3¢ € Qlry < g < 1. Solucidon: dados dos nai-
meros reales cualesquiera (con uno mayor que otro), existe un nimero
ractonal entre ambos.

Ejercicio 1.4.5. Supongamos que denotamos por L un conjunto de locos,
P un conjunto de periodicos y D un conjunto de dias. Un loco se denotaria
[ € L, un periodico, p € P y un dia seria d € D. Para escribir que el loco d
lee el periodico p el dia d escribiriamos: “l lee p en d”. Traducir a lenguaje
matematico las siguientes expresiones:

» Algun loco habrd que cada dia lea todos los periddicos.
s Algin loco habrd cada dia que lea todos los periddicos.
» Cada loco lee algin periddico cada dia.

» Cada dia hay algin periddico que todo los locos leen.

= Todos los dias habrd algin loco que lea algin periddico.
» Todos los locos leen todos los periodicos cada dia.

s Hubo un dia en el que algin loco leyo algin periddico.

El lenguaje matematico tiene la ventaja de que es preciso y no caben
distintas interpretaciones. En cambio, el lenguaje comin depende muchas
veces de sobreentendidos. Al traducir el lenguaje comun a lenguaje mate-
matico hay que tener siempre mucho cuidado para capturar el significado
exacto. Fl siguiente ejemplo muestra la dificultad que puede tener entender
una implicacién expresada en lenguaje comun.

Ejemplo 1.4.6. La siguiente proposicion “Yo voy sdlo si ti vas” es equiva-
lente (matemdticamente hablando, es decir, es equivalente como proposicion
logica) a una de las siguientes. ;Sabrias decir a cudl?

= S5 vas i, voy yo,
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st voy Yo, es que tu vas,

= {1 vas Y yo no,

no vas y no voy,

voy y ti no vas,
= 0 vamos los dos o ninguno.

El producto cartesiano de dos conjuntos A y B, se denota A x B, y es
el conjunto de pares (z,y) con z € A, y € B.

También se puede considerar el producto cartesiano de n conjuntos Xj,
Xy ooy Xy Xy X Xo X+ -+ x X, que serd el conjunto de n-tuplas (z1, xa, ..., Ty)
con z; € X; para cada ¢ = 1,2,...,n. El ejemplo que mas vamos a usar va
a ser el espacio usual de 3 dimensiones R* 6 R x R x R donde los puntos o
elementos del conjunto vienen dados por tres nimeros reales: (a, b, c).

Sean A y B conjuntos. Una aplicaciéon f de A en B es una correspon-

dencia en la que a cada elemento de A le corresponde un (y sélo un) elemento
de B. Se denota
f:A—B

a— fla)=">
Ejemplo 1.4.7.
fTR—=R
T 2

definida en R. Esta aplicacion toma un niumero x y le asocia otro ni-

mero que es 3.

[ R\{3} - R
3r +1
r—3
definida en R\{3}, es decir, todos los niimeros reales menos el 3 (que
haria 0 el denominador).

T —r

Definiciéon 1.4.8. Una aplicacion f: A — B se dice que es inyectiva si
dados dos elementos distintos de A sus imdgenes por f son distintas, es
decir, si a; # ay entonces f(ay) # f(az).

Esto es lo mismo que decir que f es inyectiva si f(a1) = f(ag) implica
que a; = as.
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Definicion 1.4.9. Una aplicacion f: A — B se dice que es sobreyectiva o
suprayectiva si todo elemento de B es imagen de algiun elemento de A, es

decir, si¥b € B Ja € A tal que f(a) =b.

Por tltimo, si tenemos tres conjuntos A, B, C' y aplicaciones f: A — By
g: B — C, la composicion h = go f es una aplicacion que va de Aen C'y
a cada elemento x € A le asocia h(x) = g(f(z)). Por ejemplo, supongamos
f:R—TRyg: R — Rtales que f(r) =coszy g(y) = y*. Entonces h = go f
es la aplicacion h(z) = cos®z (es decir, h(x) = (cosz)?, primero hacemos el
coseno, que seria aplicar f y después elevamos lo que haya salido al cuadrado,
que seria aplicar g).



Capitulo 2

Variable compleja

2.1. Numeros complejos y operaciones

2.1.1. Definicién

El conjunto mas elemental de nimeros es el de los naturales, N = {1,2.3,...}.
Podemos sumarlos, pero cuando tratamos de restarlos, nos encontramos con
que no podemos calcular n —m si n < m sin salirnos de N, asi que necesi-
tamos definir mas numeros: los enteros Z. Ahora podemos sumar, restar y
multiplicar sin problemas, pero cuanto intentamos dividir, podemos calcular
algunas divisiones como 6/3 pero si intentamos dividir 7/3 nos vuelven a
faltar nimeros. Entonces definimos los racionales. Y cuando estos se quedan
cortos, afiadimos los irracionales, como /2 o 7 para formar el conjunto de
los reales. Pero, una vez maés, cuando intentamos calcular las raices de un
polinomio, a veces podemos, como en 22 — 3z +2 = 0, ¥y a veces 1o, como en
2241 = 0. Para poder encontrar soluciones a cualquier polinomio, definimos
un nuevo conjunto de ntmeros, los numeros complejos.

Definimios la unidad imaginaria i tal que 2 = —1. Esto nos permite resol-
ver cualquier rafz cuadrada negativa ya que v/—4 = /4 - (—1) = Vi1 =
21.

Un nimero complejo es una expresion de la forma

a+ bi

con a,b € R. Esta expresion se denomina forma bindmica del niimero com-
plejo (veremos otras formas de expresarlos mas adelante). El valor a se llama
parte real y el valor b se llama parte imaginaria. Asi, si z = a+ bi denotamos
Re(z) = aelIm(z) =b.

El conjunto de los numeros complejos se denota por

C={a+1bi:abecR}

9
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Este conjunto se puede identificar con R? donde al ntimero complejo a + bi
le corresponde el punto (a,b). Asi, el eje horizontal se denomina eje real y el
vertical, eje imaginario.

Observacion 2.1.1. Igual que los naturales son los enteros positivos, los

numeros reales, son los complejos cuya parte imaginaria es 0. St la parte real
es 0, decimos que el nidmero es imaginario puro.

2.1.2. Suma y resta

La suma y la resta de nimeros complejos se hacen operando la parte real
y la parte imaginaria por separado.

s (34 2i)+ (5—4i) = (345) + (2i — 4i) = 8 — 2.

. (342i) — (5—4i) = (3 —5) + (20 — (—4i)) = —2 + 6i.

En general, dados dos ntumeros complejos cualesquiera (a+ bi) y (¢ + di),
su suma se define como

(a+bi) + (c+di) = (a+c) + (b+ d)i.
Del mismo modo, la resta se define como
(a+bi) — (c+di) = (a —c) + (b —d)i.

Es inmediato ver que la suma de nimeros complejos cumple las propie-
dades deseables en cualquier operacion. Si

» asociativa: (21 + 29) + 23 = 21 + (22 + 23) V21, 29, 23 € C,
= conmutativa: z; + 2o = 29 + 21 V21,29 € C,

= tiene elemento neutro: 0 + 01,

= tiene elemento opuesto: —(a + bi) = —a — bi.

Ejercicio 2.1.2. Probar las propiedades anteriores para la suma de comple-
jos.
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2.2. Conjugado, moédulo y argumento
Se define el conjugado de un ntimero complejo z = a + bi al ntimero:
Z=a — bi,

cambiando de signo la parte imaginaria.
Por ejemplo, 2431 =2 — 3¢, 0 2 — 31 = 2 + 3i.

Ejercicio 2.2.1. Demostrar las siguientes propiedades del conjugado:

|
I

L] z

|

= Z=12z sty solosizeR

" atn=n+%
n =7
Se define el modulo de un nimero complejo z = a + bi al nimero:
2| = Va2 + b2
Ejercicio 2.2.2. Demostrar las siguientes propiedades del modulo

» |z| representa la distancia del punto z al 0

= |z = 2]

| Re(2)] <[]

|21 + 22| < |21| + |22]

|21 — 29| representa la distancia entre zy zy

|z — 20| = R representa la circunferencia de centro zy y radio R

Se define el argumento de un nimero complejo z = a+bi, arg(z), al angu-
lo 6 que forma el vector (a,b) con el eje real positivo en sentido antihorario.
Notese que 6 + 27k es igual al angulo 6 para todo k € Z. Elegiremos repre-
sentar el argumento por un angulo entre 0 y 27 radianes (otra posibilidad
natural serfa considerar el angulo entre —7 y 7).

Si a + bi tiene argumeto 6 y a # 0 es facil ver que tg(f) = 2. Notese
también que dado un angulo 6, tg(0) = tg(f + ). Si utilizamos una calcula-
dora, al calcular el arcotangente de un niimero, nos va a dar un angulo entre
—m/2 y w/2. Para determinar el argumento del nimero complejo, debemos
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saber primero en qué cuadrante esta y ajustar el angulo que nos devuelve la
calculadora. Si el angulo esta en el tercer cuadrante, habra que sumarle 7. Si
estd en el cuarto cuadrante, la calculadora nos dara un ntimero negativo asi
que, para obtener un ntimero entre 0 y 27 habra que sumarle 27. Por tltimo,
si estd en el segundo cuadrante, nos saldrd un niimero negativo en el cuarto
cuadrante y, por tanto, habra que sumarle 7. En resumen:

(arctg(l), si z esta en el 1¢" cuadrante,
3 sia=0yb>0,
arg(z) =60 = (¢ arc tg(g) +m, si z estd en el 2° o 3¢ cuadrante,
-5 sia=0yb<0,

arctg() + 2m, si z estd en el 4 cuadrante
Ejemplo 2.2.3. = Verelcasodel+i,—1—14,1—1,—1+71.

s Siz=—341i,|2| =2y =arctg (ﬁg)+w:—%+ﬂ: %”7 ya que

—V3 + 1 estd en el segundo cuadrante.

2.2.1. Producto y divisiéon

Para multiplicar dos nimeros complejos, simplemente desarrollamos el
paréntesis multiplicando término a término:

» (3+2i)-(5—4i) =15—8%—12i +10i = 15+ 8 — 21 = 23 — 2i.
En general, el producto de nimeros complejos se define como
(a+ bi)(c+ di) = (ac — bd) + (ad + be)i.

Es inmediato ver que el producto de ntimeros complejos cumple las si-
guientes propiedades:

» asociativa: (27 - 29) « 23 = 21 - (22 - 23) V21, 29, 23 € C,
= conmutativa: z; - 20 = 29 - 21 Vz1, 29 € C,
= tiene elemento neutro: (1 + 07)

= es distributivo respecto a la suma: z; - (22 + 23) = 21 - 20 + 21 - 23.
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Ejercicio 2.2.4. Probar las propiedades mencionadas para el producto de
complejos.

Podemos definir la division como sigue, multiplicando numerador y de-
nominador por el conjugado del denominador:

g 2+ CHDO+D) 2424240 _ 1430 _ 1 4 34
1—i — (1—)(+i)  1—i*4i—i 2 2 2"
En general, se define como

a+bi  (a+bi)(c— di) _ac+bd+bc—ad,
ctdi (ctd)c—di) E+d 12"

Observacion 2.2.5. El producto de nimeros complejos tiene elemento ele-
mento inverso para todo z = a + bi distinto del 0:

1 a b
bi)! = = — .
(a+bi) at+bi @+b @+
Por ejemplo:
3 4 3 4
(34 44)7* ' '

T3t 32425 25¢

Ejercicio 2.2.6. Demostrar las siguientes propiedades del conjugado y el
modulo:

m 21R9 = 21%2

| ] z_l

7l siz#£0

B 2129 = %172

w2 l=7"1 5iz2#0
= Re(z) = ZZ

» Im(z) = 52

22 =22

n [212] = [21]] 2|
stz #0, |2 = %

Ejercicio 2.2.7. Probar que si z125 = 0 entonces z; =0 0 z5 = 0.

Ejercicio 2.2.8. Demostrar las siguientes propiedades:
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. zZ1tze __ 21 z2
stzy A0, 22 =224+ 2

1

N 4
SZZQ%O,i:zlg

‘ 1 1 1.1 _ 11
siz1, 20 #0, 22 = (2122) 7 =2 2 =4

(21 4+ 22)% = 22 + 22125 + 23

(21 + 22)" = 305 (1) A ™" 24

2.3. Forma trigonométrica, polar y exponencial

Forma trigonométrica:
Dados el moédulo p y el argumento 6 de un nimero complejo z = a + b,
por trigonometia elemental, tenemos que

a = pcosb, b= psen6.
Por tanto, podemos expresar el niimero complejo como
z = p(cos@ +isenf),

lo que se conoce como forma trigonométrica de z.

Dos niimeros complejos son iguales si tienen el mismo moédulo y sus ar-
gumentos se diferencian en 2k7 para algin k € Z.

Dados dos niimeros complejos en forma trigonométrica, el producto y el
cociente se expresan del siguiente modo:

Siz= p(cos(@) —|—isen(9)>, P p’(cos(G’) + isen(9')>

_ 22 :p(cos(&) + isen(@)) 0 ( cos(8') + z’sen(ﬁ'))
=pp'[cos(0 4+ ') + isen(f + 0')]

(para demostrarlo, basta hacer los productos uno a uno y usar las
formulas del coseno y el seno de la suma de angulos).

n 2= 5(008(9 —0)+isen(d —0"))

z

(basta ver que z’ﬁ(cos(& —0') 4+ isen(f — 0’)) = z).

Ejercicio 2.3.1. Comprobar que si tomamos los nimeros complejos 1 +1 =
V2(cos(m/4)+isen(m/4)) y —2+2i = v/8(cos(3w/4)+isen(3m/4)) obtenemos
el mismo resultado:
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= multiplicdindolos en forma bindmica o en forma trigonométrica, es de-
CIT, VEamos que

(1+4)(—242i) = —4 = 4 cos(m)
= \/§<COS(7T/4) + isen(ﬁ/4))\/§<cos(37r/4) +1 sen(37r/4)>.

» dividiéndolos en forma binomica o en forma trigonométrica, es decir,
veamos que

94 22 _ % = 2sen(r/2) = \/§<COS(37r/4) + isen(37r/4)> |
\/§( cos(m/4) + isen(w/él))

141

Forma polar:

Ya hemos visto co6mo un ntimero complejo queda determinado por su mo-
dulo y su argumento. Dado un ntimero complejo z con modulo p y argumento
0, se denota en forma polar como

Z = pPg.

Por ejemplo, 144 = v/2(cos(7/4) +isen(n/4)) se podria denotar en forma
polar como \/§7r/4.
Asi, denotado en forma polar, tenemos que

2 = potly = (pP)ore v ==L = (£> :
2 Py P/ o—e
Forma exponencial:
Por tltimo, usando la férmula de Euler, e = cos(f) + isen(f) pode-
mos expresar el nimero complejo z con moédulo p y argumento 6 en forma
exponencial simplemente como

z = pe

Por ejemplo, 144 = v/2(cos(7/4) +isen(r/4)) se podria denotar en forma
exponencial como v/2¢7.
Denotado en forma exponencial, tenemos que
i0
i(0-+0") Z _ pe P (00"

y ; - pxew' - ;6 '

ZZI _ peiep/ew' _ (ppl)e
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Ejercicio 2.3.2. Escribir en forma trigonométrica, polar y exponencial el
numero z = —1 — \/gz
p=2 0= arctg(%g) +r=3+7= %’T. Por tanto,

4 4 A
z = 2<COS (g) + 7sen (—W>> = u4r = 26’4?.
Conviene recordar que:

V3 o1 V2 V2 1 V3

1
]-7r = 5 a0 17r - ) 17T‘:_ —1.
/6= "5 Tgb b e =gt

A partir de estos, podemos calcular de forma inmediata los puntos 1, /6
¥ Ljr/4 para cualquier j,k € N.

2.4. Potencias de ntimeros complejos

Primero notamos que i = —1, i = —i, i* = 1 y, a partir de ahi, para
todo 4 < k € N, i* = i/ siendo j el resto de dividir k entre 4.

Teorema 2.4.1 (Formula de De Moivre). Para cualquier nimero complejo
z = p(cosf +isend) yn € N, se verifica que

2" = p"(cos(nb) + isen(nd)).
Ejercicio 2.4.2. Demostrar, por induccion, la formula de De Moivre.
En forma polar con z = py, tenemos que
2" = pry-
En forma exponencial con z = pe'?, tenemos que
o = (pel®)" = prein?,

Ejercicio 2.4.3. Ver que (1 —1)® =16 (ndtese que arg(l —i) = %’r)

2.5. Raices de ntimeros complejos

Dado un nimero complejo z se dice que w € C es una raiz n-ésima de z
si w™ = z.
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Teorema 2.5.1. Todo nimero complejo z = p(cos + isenf) distinto de 0
tiene exactamente n raices n-ésimas distintas, dadas por

0+ 2kw . 9+2k7r>

wk:W<COST+zsen -

Ejemplo 2.5.2. Las raices n-ésimas de la unidad, 1 = 1(cos0 +isen0) son

2km | 2km
Wy = COS —— —+15en —.
n n
En particular, las raices cibicas de la unidad serian wyg = 1, wy = cos %’T—F
cem 2 1 3 —cos T L ieendr — 1 _ V3,
Lsen 5 = —5 + 570 Y Wy = COs 5~ +1Sel 5 = —3 51

Ejercicio 2.5.3. Calcular las raices cuartas de z = 16(cosm + isenm).

Al igual que con los nimeros reales, dado un polinomio P(z) con coefi-
cientes complejos y un nimero o € C tenemos que

P(a) =0siy solosi z — a divide a P(z).

Nota: Esto nos permite aplicar el método de Ruffini para calcular raices de
polinomios también en C.

Ejercicio 2.5.4. Factorizar el polinomio z* — 1.

Teorema 2.5.5 (fundamental del dlgebra). Un polinomio de gradon > 1 con
coeficientes en C tiene exactamente n raices en C (contando multiplicidades).

Proposicion 2.5.6. Dado un polinomio P(z) con coeficientes reales, si a €
C es una raiz, entonces o € C.

Ejercicio 2.5.7. Demostrar la proposicion anterior usando las propiedades
del conjugado.
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Capitulo 3

Elementos basicos del algebra
lineal

3.1. Matrices

3.1.1. Definicién

Una matriz real no es mas que un conjunto de nimeros reales dispuestos
de cierta manera.

Se llama matriz real de orden mxn (o de m filas y n columnas) al conjunto
de m - n nimeros reales dispuestos de la forma

a/ll a12 --------- aln
A _ a21 a22 --------- a2n
aml a/m2 ......... a/mn

Se representan por A, (a;j) 0 (aij)mxn. El elemento a;; se llama coeficiente,
el indice 7 corresponde a la fila y el j a la columna. El conjunto de todas las
matrices de orden m x n se denota M., xn.

Dos matrices A y B de orden m X n son iguales si sus coeficientes a;; y
b;; son iguales para i =1,2,...,m, j =1,2...,n.

1 4
(120)#(3
3 6

Hay algunos tipos de matrices que son importantes y les damos un nom-
bre:

Ejemplo 3.1.1.

19
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Una matriz de orden m x 1 es una matriz columna.
Una matriz de orden 1 X n es una matriz fila.
Si m = n la matriz es una matriz cuadrada.

Si en una matriz cuadrada todos los elementos fuera de la diagonal son
0 (a;; = 0Vi # j) decimos que la matriz es diagonal.

I,, denota la matriz cuadrada de orden n cuyos elementos de la diagonal
principal son 1 y los restantes 0 (a; = 1 Vi y a;; = 0 Vi # j). Sino
hay ambigiiedad en el orden, la denotaremos simplemente como I.

Si en una matriz cuadrada todos los elementos por encima o por debajo
de la diagonal son 0 (a;; = 0Vi > j 0 a;; = 0Vi < j) decimos que la
matriz es triangular.

Una matriz se llama escalonada por renglones o simplemente escalonada
si cumple con las siguientes propiedades:

1. Todas las filas cero estan en la parte inferior de la matriz.

2. El primer elemento diferente de cero (o pivote) de cada fila esta a
la derecha del primer elemento diferente de cero (o pivote) de la
fila anterior.

Una matriz escalonada se llama reducida si todos los pivotes son 1 y
todos los coeficientes encima del pivote son 0.

Ejemplo 3.1.2. Triangular superior. Sii > j entonces a;; = 0:

2 3
1 -2
0 2

S O =

Triangular inferior. Si i < j entonces a;; = 0:

0
1

W N =~
OO

—2

Diagonal. Sii # j entonces a;; = 0:

S O N
o = O
w o O
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3.1.2. Suma

Dadas dos matrices A y B de orden m X n definimos la matriz suma
C = A+ B como la matriz cuyos coeficientes son de la forma: ¢;; = a;; + b;;
para todo 1, J.

Notese que la suma de matrices sélo estd definida entre matrices que
tengan el mismo orden.

Ejemplo 3.1.3.

—123+20—1_122
1 0 2 31 1) \413

4 0 1 " 3 1
12 3 -2 0
Propiedades.

Dadas las matrices A, B, C' de orden m x n se verifica:

» Asociativa: (A+ B)+C =A+ (B+ ().

no estd definida.

» Existe elemento neutro (representamos como 0 a la matriz tal que a;; =
0 para todo i,j): A+0=0+ A = A.

» Existe elemento opuesto (representamos como (—A) a la matriz de
coeficientes —a;;): A+ (—A) =(—A)+ A =0.

» Conmutativa: A+ B =B + A.

3.1.3. Multiplicacién de una matriz por un nimero
Dado A € R, la matriz AA se define como la matriz cuyos coeficientes son

)\Cbz‘j.

. , 1 2 3 3 6 9
Ejemplo 3.1.4. Sz)\—ByA—(Q 1 O)entonces)\A—(6 _3 O)

Propiedades.
Para todo para de nimeros A\, € R y todo para de matrices A, B de
orden m X n se verifica:

s (A4 p)A = M+ pA.
= MA+ B) =AA+ \B.
= A(pd) = (Ap)A.

n 1A =A.
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3.1.4. Multiplicacién de matrices

Sea A = (a;;) una matriz de orden m x k y sea B = (b;;) una matriz de
orden k x n. El producto AB = C se define como la matriz de orden m x n
donde el elemento ¢;; de la fila ¢ y la columna j de AB es:

Cij = Qinbij + ainbaj + ... + aixby;
parat=1,2,...m, j=1,2,....n.

Este producto esté definido si y solo si el nimero de columnas de la matriz
A es igual al nimero de filas de la matriz B.

4
Ejemplo 3.1.5. = (1 2 3)| 5 | =32
6
10 -1 2 é _31 11
= (32 1 -2 s o | =3 9
42 0 3 Lo 7 10
Propiedades.

Sean A, BC' matrices y A € R. Suponiendo que las operaciones siguientes
estan definidas, se verifica:

» Asociativa: (AB)C = A(BC).

Distributiva: A(B+ C) = AB+ ACy (A+ B)C = AC + BC.

No es, en general, conmutativa: AB # BA.

Existe elemento neutro: Al = IA = A.

= \(AB) = (\A)B

Ejercicio 3.1.6. Dar un ejemplo de dos matrices A, B tales que AB # BA.

3.1.5. Matrices especiales

Traspuesta de una matriz.

La transpuesta de una matriz A, A?, es la matriz que resulta de cambiar
en A las filas por las columnas. Es decir, si los coeficientes de A son a;; los
de A" son ay;.
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2 1
Ejemplo 3.1.7. A=| 0 4 Al = ( 201 )
1 -1

Propiedades
Sean A, B, C' matrices y A € R. Suponiendo que las operaciones siguientes
estan definidas, se verifica:

Matrices simétricas y antisimétricas

Una matriz cuadrada es simétrica si es igual a su traspuesta, A' = A, es
decir, a;; = aj; Vi, .

Una matriz cuadrada es antisimétrica si es igual a la opuesta de su trans-
puesta, A" = —A, es decir a;; = —aj; Vi, j. Si A es antisimétrica, en particu-
lar, dado que a; = —a;; entonces 2a; =0y a; =0 V.

Proposiciéon 3.1.8. Toda matriz cuadrada A puede descomponerse como
suma de una matriz simétrica, (A+ A")/2, y una antisimétrica (A — A?)/2.

2 1 3
Ejemplo 3.1.9. s A= 1 4 7 es una matriz simétrica.
3 7 -1
0 1 -3
n A= -1 0 7 es una matriz antisimétrica.
3 =7 0

» AA' es una matriz simétrica: (AA')' = (A" AL = AA.

3.1.6. Inversa de una matriz

En el producto entre niimeros reales, hay un elemento neutro, es decir, un
elemento que multiplicado por cualquier otro niimero real x nos da x. El ele-
mento neutro de los ntimeros reales es el nimero 1. Si consideramos matrices
cuadradas de orden n, como vimos en las propiedades de la multiplicacion,
el elemento neutro es la matriz I,,.
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En la multiplicaciéon de ntmeros reales todo elemento posee un elemento
inverso, esto es, para cualquier niimero existe otro nimero tal que el producto
de ambos es el elemento neutro. Vo € R 32’ € R tal que 2’x = 1 = za’. El
inverso de z se denota 7! y, en el caso de los nimeros reales z=! = %

En el caso de una matriz A, una matriz inversa B debe cumplir que
BA =1 = AB con el producto de matrices. La primera consecuencia de esto

es que la matriz A debe ser cuadrada.

Ejercicio 3.1.10. Explicar por qué una matriz de orden m X n con m # n
no puede tener inversa.

Ademas, no toda matriz cuadrada tiene inversa. Si una matriz cuadrada
A tiene inversa, ésta se denota AL
Propiedades

= Si una matriz admite inversa, ésta es tnica.

A1 tiene inversa. De hecho, (A71)~! = A.

Si Ay B tienen inversa entonces (AB)™' = B7'A7Y(#£ A~'B™!).

Si A tiene inversa entonces (A")~! = (A7)

3.1.7. Algebra de matrices

Podemos operar algebraicamente con las matrices igual que hacemos con
nimeros en una ecuacion. En este caso hay que ser algo mas cuidadosos
porque, como hemos visto, las propiedades no son las mismas.

No hay propiedad conmutativa en el producto entre matrices, por tanto
si tenemos dos expresiones con matrices X,Y donde X = Y y queremos
multiplicar ambos lados de la ecuacion por la matriz A se cumple que AX =
AY o bien XA =Y A pero puede ocurrir que AX # Y A.

A su vez, “algo que esta multiplicando” no puede “pasar dividiendo”. Pri-
mero, no existe la division entre matrices. Lo que se puede hacer es multiplicar
por el inverso en ambos lados, pero jinicamente en el caso de que ya sepamos
que existe inverso!

Por ejemplo si A es invertible y sabemos que XA =Y entonces podemos
multiplicar por el inverso de A jpor la derecha! en ambos lados de la ecuacion
y obtenemos que X =Y A~L.

Ejemplo 3.1.11. Si conocemos las matrices A y B (y suponemos que todos
los produtos e inversas necesarios se pueden hacer), scomo podemos deter-
minar la matriz X en la siguiente ecuacion?

AX=X+B
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Pensemos primero como lo hariamos con numeros. Si la ecuacion fuera
3r = x+4, restariamos x en ambos lados de la ecuacion para obtener 3xr—x =
4, sacariamos factor comin a la x para llegar a (3—1)x = 4 = 2x = 4 (ndtese
que al sacar factor comun a la x ha aparecido un 1 que no era explicito antes,
como si tuviéramos 3x — lx = 4) y finalmente dividiriamos por dos ambos
lados de la ecuacion para llegar a x = 2. ;Como seria entonces el proceso
con matrices?

En primer lugar, restamos X en ambos lados obteniendo AX — X = B.
A continuacion podemos sacar factor comin a la X, dado que también se
cumple la propiedad distributiva. De nuevo, necesitamos hacer explicito qué es
lo que multiplica (por la izquierda) a la matriz X . En este caso, seria la matriz
unidad, I. Llegamos entonces a la expresion (A—1)X = B. Finalmente, dado
que no existe la division en matrices, para despejar la matriz X tenemos que
multiplicar por el inverso de (A — I) por la izquierda en ambos miembros.
Nos queda, por tanto,

(A-DYA-DX=(A-I)"'B=X=(A—I)"'B.

Ejercicio 3.1.12. Si conocemos las matrices A y B (y suponemos que todos
los produtos e inversas necesarios se pueden hacer), scomo podemos deter-
manar la matriz X en la ecuacion

AX =B+ AXB

La resolucion podria ser como sigue:
AX =B+AXB=AX ~-AXB=B=AX-XB)=B=X-XB=A"'B
= X(I-B)=A"'"B=X=A"'B(I-B)"

Es muy importante darse cuenta de que en el caso de matrices no es lo
mismo multiplicar por un lado que por otro (no hay propiedad conmutativa
en el producto) asi que al sacar factor comin o al despejar hay que tener en
cuenta siempre el orden de los productos.

Ejercicio 3.1.13. Asumiendo que conocemos las matrices A y B (y supone-
mos que todos los produtos e inversas necesarios se pueden hacer) despejar
la matriz X en las siguientes ecuaciones:

» XA+ B)l=A"!
« A (A- BX)'=B
s AX — (BA YL =]
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» B'X!'— (AB)' =1
= (BX )" 1-B1=XA

3.1.8. Calculo de la inversa de una matriz por el método
de Gauss-Jordan
Dada una matriz (cuadrada) invertible A queremos calcular su inversa

A~1. Este método consiste en calcularla realizando transformaciones elemen-
tales de filas de A. Estas transformaciones son las siguientes:

19 Intercambiar filas.
29 Multiplicar cada fila por un nimero A € R, X # 0.

3¢ Sumar una fila a otra.

Para calcularla, empezamos escribiendo la matriz A y a su derecha la
matriz unidad I obteniendo una matriz de orden n x 2n, (A : I). Entonces
se realizan las operaciones elementales por filas en la matriz (A : I) hasta
conseguir que A se transforme en [ y entonces I se habra transformando en
AL
Ejemplo 3.1.14.

1 -1 1 1 -1 1:100
A=10 0 1 (A:DH=[0 0 1:010]|
12 1 1 2 1:001
1 -1 1: 1 00 1 -11: 1 0
PR L 001 0 10 |0 3 0: 101 |-
0 3 0:—-101 00 1: 0 1
peoip (17101 1 00 - 101 go%

=P lo o1 0 Lol Rl Lol )
00 1: 0 10 001 : 0 10
100§ —1
Bl o100 <L oo
001: 0 1 0
Asi: ) .
2 -1 =
X i
-1 1
AT =1 =5 0 3
0 1 0
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3.2. Determinantes

3.2.1. Definicidn.

A toda matriz cuadrada A se le asocia un numero real que se llama
determinante de la matriz. Se denota det(A) o |A| (con barras verticales
en lugar de paréntesis).

La definicion general requiere introducir el concepto de permutacion. Pa-
ra simplificar la exposiciéon tomaremos como deficiéon su desarrollo. Veamos
primero como se calculan los determinantes de orden 2 y 3.

s Determinante de orden 2. Si A = ( ¢11 2 ) entonces

A1 Q22
Al = 11 Qi |
’ ‘ = = a11022 — G12G21-
21 G22
11 Qi Q13
s Determinante de orden 3. Si A= | a91 a2 a3 | entonces

az1p azz as3

aix G2 013
|A| = | Q21 Q22 Q23 | = G11Q22033 + Q12023031 + A13A21A32 — A13022031
az1 a3 0ass

—@11023032 — A12021433-
Este desarrollo sera utilizado con frecuencia. La regla de Sarrus, dispo-
nible en cualquier referencia, permite memorizarlo comodamente. Otra

forma es hacer el desarrollo, tal y como se describe a continuacion, a
través de la fila o columna que contenga més ceros.

» Determinante de una matriz A de orden n. Desarrollo de un determi-
nante por los elementos de una linea o columna.

Definicién 3.2.1. Se llama menor complementario del elemento
a;j al determinante de orden n — 1 que se obtiene suprimiendo la fila i
y la columna j. El menor complementario de a;; se denota M,;;.

4 1 2

Ejemplo 3.2.2. Sea A= 0 -1 1 . El menor complementario
3 0 -2

del elemento ag serd por tanto el determinante 3 _22 ‘ =4-(-2)—

3.2=-8-6=—14.
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Definicién 3.2.3. Se llama adjunto del elemento a;; al menor com-
plementario del elemento a;; multiplicado por (=1)"*9. El adjunto de
a;j se denota A;j.

Notese que (—1)"7 es igual a 1 si y solo si i y j son ambos pares o
ambos impares y es igual a -1 si uno de ellos es par y el otro impar.
Dada una matriz de orden n, el determinante de A es igual a la suma

de los elementos de una fila o columna cualquiera por sus adjuntos
correspondientes. Es decir,

n n

Por la fila i: |A| = Z(—l)”’g aix My = Z i Aik-
k=1 k=1

n

Columna j: |A| = Z(—l)k” apj My; = Z pj Ak
k=1

k=1

Ejemplo 3.2.4.

3 7 5 2
45 0 6
4] = 09 -8 1
53 0 3

Vamos a desarrollarlo por los elementos de la tercera columna:

| Al = (=1)"°5 413 + (—1)*"%(—8) A3 = 5(—149) + (—8)91 = —1473.

Az = =149 Ay = =91

Ot O =~
W © ot
W = o
Tt =~ W
w Ot
w O N

Ejercicio 3.2.5. Comprobar que si hacemos el desarrollo de un determinante
de orden 3 a través de cualquier fila o columna obtenemos la expresion que
vimos anteriormente.

Definiciéon 3.2.6. Dada una matriz cuadrada de orden n, se define la traza
de A como el valor de la suma de todos los elementos de la diagonal principal:

tr(A) =30 ay.

Propiedades de los determinantes.

1 El determinante de una matriz y el de su traspuesta es el mismo: |A| =
A"
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2 Si se intercambian entre si dos filas o dos columnas el determinante
cambia de signo.
3 Si la matriz tiene una fila o columna de ceros, el determinante es 0.

4 Si la matriz tiene dos filas o columnas iguales o proporcionales entonces
el determinante es 0.

5 Si se multiplica una sola fila o una sola columna por un nimero ¢
entonces el determinante es multiplicado por t.

a . talj e A1in ai e alj Ce Qi

Ap1 - tan] N Ann, Ap1 anj e A,

6 Si los elementos de la columna j de A se decomponen como una suma,
ar; = bij + cx; para k = 1,2,...,n, el determinante es la suma de los
determinantes, |A| = |B| 4 |C|, donde B y C' son iguales a A excepto
en la columna j que estd formada, respectivamente, por los elementos

bkj Y Ckj-
ay; - blj + Ciy - Qi ayp - blj T Qip
Qpy - bnj + Cpnj *°° Qnp Qp1 - bnj Tt Opn
aip - Ciy ottt Qg
+
Api *** Cpj *++ Opp

7 Si los elementos de la fila ¢ de A se decomponen como una suma,
a;x = by, + ¢ para k = 1,2, ...,n, el determinante es la suma de los
determinantes, |A| = |B| + |C|, donde B y C' son iguales a A excepto
en la fila 7 que estd formada, respectivamente, por los elementos by; y

Clj-
Ejercicio 3.2.7. Expresar la propiedad mediante determinantes como

en el caso anterior.

8 Si a una fila (0 columna) se le suma un miltiplo cualquiera de otra fila
(o columna) el determinante no varfa.
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Ejemplo 3.2.8.

apy e ayyFlay o Qi aip -0 Qi ot Qip

Qp1 - anj + tank R ¢ 7Y Qp1 - anj HR 7Y

9 Si A es una matriz triangular el determinante es el producto de los

elementos de la diagonal: |A| = [T\, a.

10 El determinante del producto es el producto de los determinantes:
|AB| = |A] - [B].

Podemos usar la propiedad 8 para calcular un determinante de forma
sencilla. Operando con las filas o columnas sin variar el valor del determi-
nante podemos hacer que por debajo de la diagonal todo sean ceros. Una vez
obtenida una matriz triangular, calcular el determinante es inmediato por
la propiedad 9. Las operaciones que podemos hacer con la matriz sin que
cambie el determinante se llaman operaciones elementales.

Ejemplo 3.2.9.

1 2 3 1 2 3 1 4 7
n Seq A = 4 5 6 |Al=14 5 6|=]25 8|=0
7 8 9 7 8 9 3 6 9
2 -3 4
s[5 —1 6 |=-86
8 0 2
20 ¢ a a 5%¢ a a a 1 a a a
_a2aaa_5a2aaa_512aaa_
e a 2 al| |5 a 2 a | °%1 a 2 al|”
a a a 2a 5 a a 2a 1 a a 2a
1 a a a
- 00 a 00| 4
—5a00a0—5a.
0 0 0 a
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Ejercicio 3.2.10. Calculamos mediante operaciones elementales

1 2 -1 3 12 -1 3 12 -1 3
’A|_2503_012—3_012—3_
“l-11 2 o/ lo3 1 3| 100 -5 12
0 0 5 —4 00 5 -4 00 5 —4
12 -1 3
01 2 -3
=100 -5 12 |- "%
00 0 8

Ejercicio 3.2.11. Calcular, desarrollando por una fila o columna y mediante

3.2 1 -1
operaciones elementales |A| = g —14 ? _52
1 2 =3 2

3.2.2. Aplicaciones de los determinantes

Calculo de la inversa de una matriz

Llamamos matriz adjunta de A, Adj(A) a la matriz que resulta de sustituir
cada elemento de la matriz A por su respectivo adjunto.

Se verifica que:

A (Adj(A))" = (Adj(A))" - A=A|- 1 (3.1)

Proposicién 3.2.12. Una matriz cuadrada es inversible si y solo si su de-
terminante es distinto de 0. En ese caso,

A—l — (Adj(A))t
4]
Demostracion. Si A es inversible entonces |A| # 0:

Si A es inversible, existe una matriz B tal que AB = BA = I. Enton-
ces, |AB| = |BA| = |I] y, por las propiedades del determinante, |A||B| =
|B||A| = |I| =1, luego |A] # 0 (de lo contrario |B| -0 =0 # 1).

Si |A] # 0 entonces A es inversible:

Por la propiedad de la matriz adjunta, ver 1} A- (AdffllA))t = (Ad‘];g’ﬁ))t A=

luego A=t = —(Ad‘{g‘lq))t. O

!Notese que, para poder dividir por |A| es necesaria la hipotesis de que |A| # 0
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1 2 3
Ejemplo 3.2.13. Dada la matriz A= | 4 5 6 | vamos a calcular A=
2 11
/-1 1 -3
(Adj(A)) —| 8 -5 6
-6 3 -3
L =1 7
Al g oAt wgay [ %3
Al =~ == =3 35 -
25 1 1

Rango de una matriz

Si en una matriz A se toman k filas y k£ columnas, los elementos de la
interseccion de esas filas y columnas forman una submatriz cuyo determinante
se llama menor de orden k. El menor formado por las k£ primeras filas y
las k primeras columnas de A se llama menor principal de orden k.

1 3 =21
Ejemplo 3.2.14. A=| 4 -3 5 3
2 =7 3 5

a) |1| es el menor principal de orden 1.

b) ; _32 es un menor de orden 2.
1 -2 1

¢) |4 5 3| esun menor de orden 3.
2 3 5

Definicion 3.2.15. Se dice que el rango de la matriz A es k, y escribimos
rg(A) = k si existe un menor de orden k no nulo y todos los menores de
orden superior a k son nulos.

Veamos un método para calcular el rango de cualquier matriz A de orden
m x n. Para ello necesitamos introducir el concepto de orlar un menor. Orlar
un menor de orden k consiste en formar un menor anadiendo una fila y una
columna para obtener un menor de orden k + 1.

= Se busca un menor de orden 1 no nulo, es decir, un ntimero distinto de
0 en la matriz.

e Si no existe, entonces rg(A) = 0 y hemos terminado.

e Si existe, entonces rg(A) > 1 y continuamos el proceso.
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= Se calculan los menores de orden 2 que se obtienen orlando el menor
de orden 1 no nulo.

e 5ino existe, o son todos nulos entonces rg(A) = 1 y hemos termi-
nado.
e Si existe, entonces rg(A) > 2 y continuamos el proceso.

= Se calculan los menores de orden 3 que se obtienen orlando el menor
de orden 2 no nulo.

e Sino existe, o son todos nulos entonces rg(A) = 2 y hemos termi-
nado.

e Si existe, entonces rg(A) > 2 y continuamos el proceso.

= Repetimos la operacion hasta que el proceso termina. Notese que el
rango maximo de una matriz de orden m X n es menor o igual que m
y que n.

Nota 3.2.16. Este procedimiento permite hallar el rango calculando menos
determinantes. Si el rango de una matriz A es k, en lugar de calcular todos los
menores de orden k+1 bastard con comprobar los que orlan a un determinado
menor de orden k.

Ejemplo 3.2.17. Calcular el rango de la siguiente matriz:

1 2 =2
4 -1 1
A -2 1 1
-1 -3 0
1 2 =2
rg(A) =3 porser| 4 -1 1 |=-18#0.
-2 1 1

Las operaciones elementales no modifican el valor del rango. Por tanto,
otro método para calcularlo consiste en transformar A en una matriz escalo-
nada (en la que al principio de cada fila hay un cero méas que en la anterior)
mediante operaciones elementales. El rango de A es el namero de filas (o
columnas) no nulas que tiene la matriz escalonada.

Ejemplo 3.2.18. Calcular el rango de la matriz A mediante operaciones
elementales.

1 0 3 1 B o— B F 1 0 3 1
1 -1 7 -1 0 —1 4 =2
~ F3 = F3—2F1 ~ ~
2 1 2 4 o p o sp 0 1 -4 2
5 1 11 7 4 ! 0 1 —4 2
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10 3 1
Fy:=Fy =15 01 —4 2
Rt Bl I
R 00 0 0

Si la matriz contiene algin parametro, el rango puede depender del valor
de éste. Asi, deberemos separar los casos posibles, cuando los haya, en funcién
del parametro.

2 a
Es claro que rg(A) > 1 ya que hay coeficientes distintos de 0. También
es inmediato ver que rg(A) < 2 porque el menor mds grande posible en la
matriz es el de tamano 2. Asi pues, lo dnico que necesitamos ver es si el
determinante de A es o no igual a 0.
Tenemos que |A| = a — 6, luego |A] =0 si y sdlo si a = 6. Por tanto, si
a=06,1g(A)=1ysia+#6, rg(A) =2.

Ejemplo 3.2.19. Calcular el rango de la matriz A = ( 13 )

Ejemplo 3.2.20. Calcular el rango de la matriz B = 13 4 )

2 a 5
De nuevo es claro que rg(A) > 1 yrg(A) < 2. Sin embargo, ahora tenemos
1 4

un menor de tamano 2 dado por las columnas 1 y 3, M = y tal

2 5
que |M| # 0 independientemente del parametro a. Por tanto, rg(B) = 2 para
cualquier valor de a.

Ejemplo 3.2.21. Calcular el rango de la siguiente matriz:

3 -2 a 2
C = 1 -1 1 0
a 2 -2 3

En este caso, el rango de la matriz puede depender del valor del pardmetro
a. EFmpezamos con el elemento a1 = 3 y vamos orlando:

? :? =1 # 0, por lo menos el rango es 2 (independientemente del
valor de a). Orlamos con la tercera fila y la tercera columna:

3 =2 a

1 -1 1 |=—-4+a? Asi, —4+a® =0 si y sdlo si a = £2.

a 2 =2

Orlamos con la tercera fila y la cuarta columna:

3 =2 2

1 -1 0|=2a+1 Asz’,2a+1:Osiysdlosia:—%.

a 2 3
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1

Por tanto, como a no puede ser al mismo tiempo £2 y —5, uno de los

dos determinantes es distinto de 0 y el rango de C' es 3.

3.3. Sistemas de ecuaciones lineales

Una expresion de la forma a;zq + asxs + ... + a,x, = b con x1, 29, ..., 2,
ariables y ay, as, ..., a,, b son nimeros dados, constituye una ecuacion lineal.

Un conjunto de m ecuaciones lineales en las incognitas x1, zo, ..., T, cons-
tituye un sistema.

a1 + a12T9 + -+ ATy = bl
A21T1 + Q22X + * ++ + AopTy = b2 (3 2)

Am1T1 + A2l + - -+ + Gpp Ty = bm

Los x; se denominan incdgnitas, los a;; coeficientes y los b; términos in-
dependientes.

Resolver un sistema de ecuaciones es obtener un conjunto de valores de
las incognitas que satisfacen simultaneamente a todas las ecuaciones, cada
uno de estos conjuntos de valores constituye una solucién.

Un sistema que tiene solucién es compatible. Si la solucion es tnica se
dice que es determinado y si tiene mas de una soluciéon indeterminado. Si el
sistema no tiene solucién es incompatible.

Ejemplo 3.3.1. 1) x+y =0 Compatible indeterminado.

2) tty =0 } Compatible determinado.
z—y = 0
r+y = 0

3) x—y = 0 » Incompatible.
r—2y = 3

Un sistema se puede expresar matricialmente. Sea A la matriz de los
coeficientes de (3.2)), que es una matriz del tipo (m,n) B(m, 1) la matriz de
los coeficientes indeterminados y X (n, 1) es la matriz de las incognitas.

ail Q1o v A1n bl X1

a1 (0% BRI Q9 b2 X9
A= " | B= X =

A1 Qo e Ay, bm Tn

El sistema ([3.2)) lo expresamos por la ecuaciéon matricial:

AX =B (3.3)
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o mediante un sumatorio:

n

E a;jr; = b; parat=1,2...,m.
=1

La matriz de orden m x (n 4+ 1), (A : B) que se obtiene anadiendo a la
matriz A una columna extra a su derecha que es la matriz B, se llama matriz
ampliada.

Dos sistemas son equivalentes si tienen las mismas soluciones.

Proposicion 3.3.2. Un sistema de ecuaciones lineales es equivalente a cual-
quiera de los sistemas que resultan de realizar operaciones elementales en las
filas de su matriz ampliada (A : B).

En los sistemas compatibles es necesario que hallemos métodos de reso-
lucion del sistema AX = B.

3.3.1. Teorema de Rouché-Frobenius
El sistema de AX = B de m ecuaciones con n incognitas es:
» compatible < rg(A) =1g(A: B),

e compatible y determinado < rg(A) =rg(A: B) =n,
e compatible indeterminado < rg(A) =rg(A: B) < n,

» incompatible si rg(A) < rg(A: B).

Ejemplo 3.3.3. Estudiar la compatibilidad del sistema:

r—2y+z = 6
T — 3z = 8
y— 2z = 4
20 -3y =1
1 -2 1 1 -2 1 6
1 0 -3 1 0 -3 8
A= 0o 1 =2 (4:B) = 0 1 =2 4
2 =3 0 2 =3 0 1
Vemos que rg(A) = 2 ya que 1 _02 =2 # 0 y si consideramos los

orlados, comprobaremos que todos ellos tienen determinante 0:
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1 =2 1 1 =2 1
1 0 -3 |=0 1 0 -3 |=0.
0 1 =2 2 -3 0

Para comprobar que el rango es menor que 3 habria que comprobar que
todos los menores de orden 3 tienen determinante 0. Gracias al procedimien-
to de los menores orlados evitamos resolver dos determinantes de orden 3.
¢ Puedes ver cudles serian dichos determinantes?

1 =2 6
Sin embargo, 1g(A: B) =3 yaque |1 0 8 |=6%#0.
0 1 4

Por tanto, rg(A) # rg(A: B) y el sistema es no compatible.

Ejemplo 3.3.4. Estudiar la compatibilidad del sistema:

r—2y+32—2t = -9
y—z+2t = 95
r+2z+1t = 0
1 -2 3 -2 1 -2 3 -2 : -9
A=lo0o 1 -1 2 |, @aB=([0o1 -1 2 : 5
1 0 2 1 1 0 2 1 : 0
Comprobamos que rg(A) = 3 ya que
1 -2 3
0 1 —1|=1+0.
1 0 2

Como el nimero de filas es 3, es inmediato que rg(A : B) < 3. Por tanto,
rg(A) =rg(A: B) = 3 y el sistema es compatible. Por ser el rango menor
que el numero de incignitas, el sistema es indeterminado.

Ejemplo 3.3.5. Discutir en funcion de los pardmetros a y b:
ar +4y = 1
r+ay = b
Para discutir el sistema en funcion de los pardmetros usamos el teorema
de Rouché-Frobenius igual que si se tratara de niimeros. La diferencia estd en
que ahora el rango de la matriz del sistema y de la ampliada dependen de los
valores de a y b. Lo que hacemos es distinguir los casos (cudndo el sistema
es compatible determinado, compatible indeterminado o incompatible) segin
los valores de a y b.
Primero calculamos los rangos (que dependen de los pardmetros).
La matriz del sistema, A, es
a 4
A= 1 a
y la ampliada, (A|b) es
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a 4 1
1 a b

Estd claro que rg(A) > 1 ya que hay al menos un elemento distinto de
0 (el coeficiente a1, por ejemplo). Ahora bien, |A| = a* — 4 y por tanto, el
rango de la matriz depende de a. Sabemos que si |A| = 0 el rango es 1 y si
|A| # 0, el rango serd 2, es decir, si a> —4 =0 el rango es 1 y si a*> —4 # 0
el rango es 2. Hay que distinguir estos dos casos y sequir razonando a partir
de aqui.

Caso 1: a*> —4 = 0, es decir, sia = 2 0 si a = —2 (0jo con perder
soluciones, jsi a = —2 el rango es 1!). Entonces, el rango de la ampliada
depende unicamente de b.

Caso 1-a). Si a = 2 entonces para que el sistema sea compalible tiene que

'zOyb:%.

() = (

2 1
1 b

Por tanto si a = 2 y b = 1, entonces rg(A) = rg(Alb) = 1(< 2) y el
sistema es compatible indeterminado. Si a = 2 y b # %, entonces rg(A) <

rg(A|b) = 2 y el sistema es incompatible.

ocurrir que rg(Alb) = 1, luego ‘

Caso 1-b). Si a = —2, para que el sistema sea compalible tiene que ocurrir
que| =0yb=—3.

Por tanto si a = —2 y b = —31, entonces rg(A) = 1g(Alp) = 1(< 2)
y el sistema es compatible indeterminado. St a = —2 y b # —%, entonces

rg(A) < rg(Alb) = 2 y el sistema es incompatible.

En los casos compatibles, podemos obtener la solucion resolviendo un sis-
tema en el que ya no aparecen a y b. Notese que al ser un sistema compatible
indeterminado, la solucion no serd unica.

Caso 2: a®> —4 # 0, es decir, si a # 2 y a # —2. Entonces, 2 = rg(A) <
rg(Alb) < 3 y, por tanto, rg(A) = rg(Alb) = 2 para cualquier valor de b y
el sistema es compatible determinado. La tinica solucion, que depende de los
valores concretos que tomen a y b, seria x = 22__437 = le’jl. Notese que esta
solucion tiene sentido porque el denominador, a®> — 1 ya sabemos que en este
caso nunca puede ser 0.

3.3.2. Meétodo de Gauss y método de Cramer

Método de Gauss. Consiste en determinar un sistema equivalente a
AX = B de forma que la matriz ampliada (A : B) sea una matriz escalonada.

Ejemplo 3.3.6.
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2r+y—2 = -3
r—2y+2z = 1
2r4+y+z = 5
2 1 -1 -3 x
A=11 =2 2 B = 1 X=1|y
2 1 1 5 z
La matriz ampliada es:
2 1 -1 : =3
(A:B)= 1 -2 2 : 1
2 1 1 5

Se efectian transformaciones elementales:

1 —2 2 Ly e=he2he o
- : [y = [y — 2F -
Ao 1 1. 3 T2 T o 5 o5 =5
2 1 1 5 0 5 -3
122 1 1 -2 2 1
N O TS T I I ) N R PR |
0 5 -3 : 3 0 0 2 8
122
A0 01 -1 2 -1
0 0 1 : 4

Se obtiene una matriz escalonada. Tenemos pues el siguiente sistema es
equivalente:

r—2y+2z = 1
y—z = -1
z = 4

De aqui, es inmediato que z = 4. De ahi, y —4 = —1, es decir, y =3 y
r—6+8=1, es decir, v = —1.

Nota 3.3.7. Si durante el proceso resulta alguna fila de la forma (0,0, ...,0 :
b) con b # 0 el sistema es incompatible.

Ejercicio 3.3.8. Estudiar y resolver por Gauss el sistema:
rT— y+2z = =3
2 — z = 5
20+32z = 3
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La matriz ampliada es:

1 -1 2 : -3
A4:B=[2 0o -1 : 5
0 2 3 : 3

donde rg(A) = 3 = rg(A : B). Por tanto, el sistema es compatible determi-
nado.
Un camino posible para resolver por Gauss seria:

1 -1 2 : =3 [ 1 -1 2 -3

2 0 -1 : 5 i 0 2 =5 11

o 2 3 : 3 0o 2 3 3

TR 1 -1 2 -3

S 0 2 =5 11

0 0 8 -8

obteniendo el sistema equivalente:
rT— y+2z = -3
2y —5z = 11
8 = =8
cuyas soluciones sonn z = —1, y =3, x = 2.

Proposicién 3.3.9. Dada una matriz, hay una unica matriz escalonada re-
ducida equivalente por filas (mediante las operaciones elementales descritas).

Definiciéon 3.3.10. Dada una matriz A, a la tinica matriz escalonada redu-
cida equivalente se la llama forma normal de Hermite de la matriz A.

Proposiciéon 3.3.11. Dos matrices son equivalentes por filas si y solo si
tienen la misma forma normal de Hermite.

Ejercicio 3.3.12. Comprobar que son equivalentes por filas las matrices:

1 -1 2 =3 1 -3 -1 -6
A= 2 0 -1 5 B = 3 —1 1 2
0 2 3 3 1 1 5 0
Sol.
1 0 0 2
H = 01 0 3
001 -1

Proposiciéon 3.3.13. Dos sistemas definidos por matrices equivalentes por
filas tienen las mismas soluciones.
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Sistemas de Cramer: Un sistema lineal de n ecuaciones con n incognitas
en el que la matriz del sistema es regular (|A| # 0) se denomina de Cramer.
Un sistema de Cramer Z?zl a;jz; = b; es compatible determinado, es decir,
tiene solucion dnica.

La solucion viene dada por las formulas de Cramer:

|A]

€T

donde A; es el determinante resultante de sustituir la i-ésima columna por la
columna de coordenadas (by, bs, ..., b,) del segundo miembro.

Ejemplo 3.3.14. Resolvemos usando la formula de Cramer el siguiente sis-
tema.

T —2$2+$3 = 1
3.%’2 — X3 = 2
—x3 = 3
1 -2 1
La matriz de coeficientes es A= 0 3 -1 |,
0 0 -1
1
B=1 2], |A| = —3.
3
1 -2 1 11 1
2 3 -1 0 2 -1
3 0 -1 10 10 0 3 —1 .
T = =3 =3 =3 =" =3,
1 -2 1
0 3 2
0 0 3

El método de Cramer se puede adaptar para resolver también sistemas
compatibles indeterminados que no son tipo Cramer. La idea es que las varia-
bles que “sobran” pueden situarse como parte de los términos independientes
(a la derecha de la igualdad), dejando una matriz tipo Cramer como matriz
del sistema. Una vez hecho esto, se resuelve normalmente por Cramer y el
resultado es que las soluciones van a depender del valor de estas variables
independientes. Veamos un ejemplo.
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Ejemplo 3.3.15. Para la resolucion del ejemplo podemos usar el mé-
todo de Cramer si pasamos las variables dependientes (las que no estin aso-
ciadas al menor no nulo de mdzrimo orden) al término independiente. Asi,
suponiendo rg(A) = rg(A : B) = k obtenemos k ecuaciones con k incdgnitas:

r—2y+32z = —-9+2t
Yy—=z = H—-2
r+2z = —t
1 -2 3 -9+ 2
Ahora la matriz ampliada del sistema es [ 0 1 —1 5—2t
1 0 2 —t
Por tanto:
942t -2 3 1 =942t 3
5—-2t 1 -1 0 5—2t -1
T = t 10 2 =2 — 3, yzl Ti 2 =4—1t,
1 =2 —9+2t
0 1 5-—2t
1 0 —t
z = =—1+t.

1

Ejercicio 3.3.16. FEstudiar y resolver el sistema en funcion del pardmetro
a:
x+ 2z =0
20— y+ 2z =
r— y+az = 1

e}

Solucion: si a = 0, incompatible; si a # 0, compatible determinado con

e 1 . 1 __ 1
solucion v = —2, y=—=, 2= .

Ejercicio 3.3.17. Estudiar y resolver el sistema en funcion del pardametro
a:
r+ (l—a)z = a
r+ az = 1l—a
2v4+ay— 2 = 3

Solucion: st a # 0, %, compatible determinaddo con solucion x =1, y =0,

z = —1; 51 a = 0, compatible indeterminado con solucion x =1, y = o con
aER,z:—l;sia:%,
y=4+4a, z=a con a € R.

compatible indeterminado con solucion r = 1_7"‘,

3.3.3. Sistemas homogéneos

Un sistema se dice que es homogéneo si los términos independientes
b1, ..., b, son todos 0.



3.3. SISTEMAS DE ECUACIONES LINEALES 43

Un sistema homogeneo AX = 0 es siempre compatible pues el rango de la
matriz A coincide con el de la ampliada. De hecho, z; = 0,20 =0, ...,2, =0
es siempre una soluciéon del sistema homogeneo y se denomina solucion trivial.

Sirg(A) = n la solucion trivial es la tnica del sistema.

Sirg(A) < n el sistema tiene infinitas soluciones siendo siempre una de
ellas la solucion trivial.

Ejemplo 3.3.18. Resolver los sistemas:

1)

r+y+2z = 0
3r—y—22 = 0
—r+2y+z = 0
1 1 2
A= 3 -1 =2 |, |Al =12 # 0, rg(A) = 3. Por tanto
-1 2 1

solo hay una solucion que es la trivial: t =0, y=0 z=0.
2)

Tr—6y+ 15z = 0
r+4y+z = 0

3 4 1
el nimero de incognitas, el sistema admite soluciones distintas de la
trivial. Podemos resolverlo por Cramer pasando la variable z al término
independiente. Resolvemos el sistema:

A= ( [ ) rg(A) = 2. Como el rango es menor que

Tr—6y = —152
3r+4y = —z
Resolviendo: A = e |A| = 46.
3 4
r="2a, y=2La, z=a

Ponemos presentar las variables x,y en funcion de z o mejor, como
hacemos aqui, presentar las tres variables en funcion de un parametro
mdependiente a.
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Capitulo 4

Espacios vectoriales

4.1. Definicion y propiedades

Se llama espacio vectorial sobre R a un conjunto E, no vacio, dotado de
dos aplicaciones:

Suma:

+: EXE — EtalqueVz,y, 2z € F se cumplen las siguientes propiedades:

a) Asociativa:  + (y + 2) = (v +y) + 2,

b) Conmutativa: z +y =y + z,

c¢) Existe elemento neutro, Op € E, que verifica que z + 0 = z,
)

d) Todo elemento x € F posee un opuesto, —z, tal que x + (—z) = 0.

Producto (de un niimero por un vector):
x: Rx E — FE tal que Vo,y € E'y VA, § € R se cumple que:

a) Ax(x4+y)=Axz+ Ax*y,

)

b) A+pB)*xx=Axx+ [ *z,
c) A(fxx) = (AB) xx

d) 1

Los elementos de E se denominan vectores y los de R escalares.

Ejemplo 4.1.1. Se puede comprobar que los siguientes espacios con las ope-
raciones indicadas tienen estructura de espacio vectorial.

45
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1) R™ con la suma (ay,...,an) + (b1, ..., 0,) = (a1 + b1,..cian + by) y el
producto A * (ay,...,a,) = (A-ay, ..., A ay).

2) El conjunto M« con la suma entre matrices y el producto entre un
numero y una matriz.

3) El conjunto Rlz] de polinomios en una variable, x, con la suma y el
producto por un nimero: X * (apx™ + -+ + a,) = A-apx™ + -+ X - ay.

4) Las ecuaciones lineales con n variables xq, ..., x,, 121+ -+ ap,x, = b,
con la suma [ayzy + -+ + apz, = bl + [ajzy + -+ + aLx, = V] =
(a1 +a))xr+-- -+ (an +al)z, = (b+V)] y el producto por un nimero
Ak [arzy 4+ apt, =b = (A-an)ry + -+ (A an)z, = (A D).

Propiedades.
Ve,y € E'y VA, S € R las siguientes propiedades se deducen de la defini-
cion:

1) 0xx=0g.

2) (N xx=X*(—2)=—(\x2x).

3) Ak (x—y)=A%xx— A*y.

4) A=F)xx=Axx—f[xz

5) Si A x = Op entonces )\:Oéx:OE.E]

6) Sean xq,xs, ..., T, n vectores del espacio vectorial E. Dados n niimeros
cualesquiera Aq, A9, ..., A, € R, el elemento z = Az + Agxo + -+ +

AL = Z?:l Aiz;, es un elemento de E. Decimos que z es combina-
cién lineal de z,, 7o, ..., 2,

Ejemplo 4.1.2. En el espacio vectorial R?, el vector (—1,6) es combinacion
lineal de los vectores (3,4) y (—2,1) ya que (—1,6) =1-(3,4) +2-(=2,1).

Ejercicio 4.1.3. FEscribir un ejemplo concreto de combinacion lineal con
vectores de R? o R3.

I Nétese que esto significa que A es el nimero 0 6 z es el vector 0, que son cosas diferentes.
2Por abreviar, escribimos \;x; en lugar de \; * x;
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4.2. Dependencia e independencia lineal

Se dice que el conjunto de vectores vy, ...,v, € E es linealmente inde-
pendiente si la relaciéon v, + asvy+ - - - 4+, v, = O se verifica inicamente
cuando oy =y = -+ - = a,, = 0.

En caso contrario, es decir, cuando la relacién anterior se cumple con al-
gln «; no nulo se dice que el conjunto de vectores es linealmente dependiente.
También decimos simplemente que los vectores son linealmente independien-
tes o linealmente dependientes.

Ejemplo 4.2.1. 1) Los vectores (1,0) y (0,1) son linealmente indepen-
dientes: st a1(1,0) + a2(0,1) = (0,0) entonces (a1,0) + (0,a2) =
(a1, a2) = (0,0) y, por tanto, oy = ay = 0.

2) Los vectores (2, —3) y (—4,6) son linealmente dependientes. Planteamos
la ecuacion a1(2,—3) + az(—4,6) = (0,0) y comprobamos que tiene
soluciones distintas de oy = ag = 0.

20{1 — 40&2 =0
—3061 + 60&2 =0

El conjunto de soluciones es ay = 2ap luego no son necesariamente 0.

Ejercicio 4.2.2. Comprobar si los siguientes conjuntos de vectores son li-
nealmente independientes:

1) FEl conjunto de vectores {ey, e, ....,e,} de R™ con e; = (1,0,...,0), es =
(0,1,0,...,0),....en = (0, ...,0,1).

2) Los vectores (1,—2,1), (2,0,1), (0,1,—1) y (1,—1,0) en R3.

Proposicion 4.2.3. St un conjunto de vectores es linealmente independiente
entonces cualquier subconjunto suyo lo es.

4.3. Base de un espacio vectorial

Un conjunto de n vectores vy, vo, ...... ,U, de un espacio vectorial E es un
sistema de generadores o sistema generador de F si todo vector de
es combinacion lineal de vy, vs, ..., v,, es decir, si Vw € F daq, s, ...,a, € R
tales que w = aqv + QoUy + ... + o, v,

En este caso, se dice que los vectores vy, vs, ..., v, generan el espacio vec-
torial F.
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Ejemplo 4.3.1. Los vectores {(1,0),(0,1)} forman un sistema generador
de R2. Comprobamos que, en efecto, para todo vector (x,y) € R? existen
dos niumeros reales, en este caso oy = x, ag = y de forma que (x,y) =

z(1,0) + y(0,1).

Nota 4.3.2. Notese que un espacio vectorial no estd generado de forma
tinica. Por ejemplo los vectores (1,0) y (0,1) forman un sistema generador
de R? como también lo forman los vectores (1,1) y (1,—3) o cualquier otro
par de vectores linealmente independientes.

Pregunta 4.3.3. ;FEs {(2,1),(3,-2),(0,4)} un sistema generador de R*?
Pregunta 4.3.4. ;Es {(3,—1,2),(1,0,—1)} un sistema generador de R*?

Definicién 4.3.5. Un conjunto de vectores {vi,vq,...,v,} es base de un
espacio vectorial E si verifica:

a) {v1,ve,...,v,} es un sistema generador de E,

b) {vi,vq,...,u,} es linealmente independiente.
Ejemplo 4.3.6. 1) {(1,0),(0,1)} es una base de R?,

2) {(1,0),(0,1),(1,1)} no es una base de R? ya que es un sistema gene-
rador pero no linealmente independiente,

3) {(3,-1,2),(1,0,—1)} no es una base de R® ya que es linealmente in-
dependiente pero no un sistema generador.

Pregunta 4.3.7. ;Fs {(1,1,1),(0,1,1),(0,0,1)} un sistema generador de
R3¢

Observacion 4.3.8. En una base, el orden de los vectores importa. Por
ejemplo, {(1,0),(0,1)} v {(0,1),(1,0)} son dos bases distintas de R?.

Teorema 4.3.9 (Existencia de base). Un espacio vectorial E generado por
un numero finito de elementos siempre admite una base.

Notese, sin embargo, que la base no tiene por qué ser tinica. Por ejemplo,
{(1,0),(0,1)} y {(1,2), (3, —1)} son distintas bases de R%. De hecho, cualquier
familia de n vectores linealmente independiente es base de R™.

Teorema 4.3.10 (Unicidad de la expresion). Si {vi, v, ...,v,} es una base
de E entonces cada vector w € E puede expresarse de modo 1inico como
combinacion lineal de los vectores de la base, es decir, existe una unica familia
de numeros oy, g, ..., tal que w ="y o | ;.
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Demostracion. Supongamosw =y . a;v; = » -, f;v;. Entonces, > 7" oy, —
Yoy Biv; = 0. Operando, > | )(a; — B;)v; = 0y por ser {vy, vs, ..., v, } li-
nealmente independiente, o; — 3; = 0 V1, es decir, a; = [; Vi y, por tanto,
la expresion es tnica. O]

Ejercicio 4.3.11. Comprobar que, en efecto, hay un inico modo de expresar
el vector (2,1) como combinacion lineal de los vectores (1,3) y (2, —1).

Dada una base de un espacio vectorial {vy,vs,...,v,} y un vector ex-
presado, de forma tunica, como combinacién lineal de dichos vectores w =
Z?:l a;v;, los escalares oy, ..., o, se llaman coordenadas del vector w en
la base {vy,va, ..., v, }.

Se denota como w = (a1, ..., ) v ,vs,....00} O, Si DO hay ambigiiedad res-
pecto a la base, simplemente (aq, ..., ay,).

Ejemplo 4.3.12. Consideramos en R? un vector v que, como combinacion li-

neal de los vectores (1,0), (0,1) se expresa como v = 2-(1,0)+5-(0,1). As, las

coordenadas del vector v en la base {(1,0),(0,1)} serian v = (2,5)(1,0),0,1)}-
1

Si consideramos otra base de R?, por ejemplo (1,0),(1,1), entonces el
vector v =2-(1,0)+5-(0,1) como combmaczon lineal de (1,0), (1 1) seria
v=—3(1,0) +5(1,1) y, por tanto, las coordenadas son (—3,5)(1,0),1,1)}-

Notese que las coordenadas del mismo vector dependen de la base. Si
no se indica ninguna base, supondremos que se trata de la base canodnica:
€1, €, ..., €y, esto es, (1,0,...,0),(0,1,0,...,0),...,(0,...,0, 1).

Ejercicio 4.3.13. Hallar las coordenadas del vector (3, —2,1)1c, es,e5} TESPEC-

to a la base {(1,1,0),(1,0,1),(0,1,1)}.
Planteamos la combinacion lineal

(37 _27 1) = a1(17 17 O) + @2(]—) 07 1) + 043(0, ]-a ]-)

de donde obtenemos un sistema:

3 = a1+ Q9
-2 = o + a3
1 = Qg + Q3
Resolviendo, obtenemos los valores ay = 0, ag = 3, a3 = —2. FEl vector

es el (0> 3, —2){(1,1,0),(1,0,1),(0,1,1)}-
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4.4. Dimension de un espacio vectorial

Proposicion 4.4.1. Todas las bases de un espacio vectorial tienen el mismo
numero de elementos.

Definiciéon 4.4.2. Se llama dimension de un espacio vectorial E/ al nimero
de elementos n de una de sus bases. Se denota dim(E) = n.

Es facil ver que, segtin esta definicion, la dimension de R” es n.

Pregunta 4.4.3. ;Cudl es la dimension del espacio de las matrices cuadra-
das de orden 27

4.5. Subespacios vectoriales

Definiciéon 4.5.1. Un conjunto F no vacio de un espacio vectorial E es un
subespacio vectorial si verifica las siquientes propiedades:

i) Vow € F,v+w € F.
i) Vvoe F,YAeR \v e F.

0 lo que es equivalente:
i) YVo,we F,YAXER A+ pw € F.

» Dado un espacio vectorial E, si definimos F' = {Og}, F' es un subespacio
vectorial.

» También es inmediato comprobar que F' = E cumple la definicién de
ser subespacio vectorial.

» Sea {vy,...,v,} un conjunto de vectores de un espacio vectorial E. Sea
F ={av + ava + -+ a,v, | a1, ag, ..., a, € R} el conjunto de todas
las combinaciones lineales de dichos vectores, entonces F' es un
subespacio vectorial de E. En este caso, se dice que F' es el subespacio
vectorial de E generado por {vy,...,v,}. Se denota (vy,...,v,) 0
Llvy, ..., vp).

Definiciéon 4.5.2. Se llama rango de un conjunto de vectores a la dimension
del subespacio vectorial que genera.

Proposicién 4.5.3. El rango de un conjunto de vectores es el niumero md-
ximo de vectores linealmente independientes que posee.
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Ejemplo 4.5.4. Determinar el subespacio vectorial F de R® generado por
{(1,0,0),(0,1,0), (1,1,0)}. Podemos aplicar directamente la definicion y con-
siderar el conjunto de todas las combinaciones lineales:

F= {&1(1,0,0) + OéQ(O7 1,0) + Oég(l, 1, 0) ‘ o, 00,08 € R}

Por tanto, F = {(cq + az,as + a3,0) | a1, as, a3 € R} A partir de aqud,
podemos mejorar la presentacion del resultado cambiando los pardmetros
de referencia. Notese que al poder asignar cualquier valor a los pardme-
tros, el valor de uno de ellos, digamos ag, es irrelevante. El espacio seria
F ={(a1,9,0) | a1, 2 € R}.

Calcular el rango de un conjunto de p vectores de un espacio vectorial £
de dimensién n se reduce a calcular el rango de la matriz formada por los p
vectores de n componentes:

Ejemplo 4.5.5. Calculamos el rango del conjunto {(1,0,0),(0,1,0),(1,1,0)}.
Formamos una matriz con estos vectores:

100
A=1010 Es inmediato comprobar que el rango de esta matriz
110

es 2. Por tanto, la dimension del espacio vectorial que generan, F', es 2.
Como hemos wvisto, necesitamos unicamente dos pardmetros para exrpresar
el conjunto F'. El numero de pardmetros necesarios es también igual a la
dimension.

Dado que todo subespacio de R™ debe tener dimension finita, estaré ge-
nerado por una familia finita de vectores. Asi, si F' = Lfvy,...,v,], con
v; = (v, Vi, - .., Vin), tenemos que todos los vectores (x1,xo,...,x,) € F
son de la forma:

(l’l, To, ... ,SL’n> = Oél(’l)ll, V12, - .. ,’l)ln)—f—OéQ('Ugl, V22, ... ,'Ugn)—i-‘ . '+Oém<1)m1, Um2, - - - ,'Umn),

con i, (g, ..., iy, € R.Siexpresamos esta igualdad coordenada a coordenada,
obtenemos

V1101 + V2o + + - - + U104y, = 11

V121 + Va2Qg + + + + + U2 Oty = T2 (41)

VipQ1 + V2p Q2 + -+ + + Uy Qi = Ty

que se denominan ecuactones paramétricas del subespacio. Un subespacio
presentado asi, decimos que esta en forma paramétrica.
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Proposicién 4.5.6. Sea

a1171 + a1y + - - + apr, =0
a91T1 + 99T + -+ Aonly — 0

Am1T1 + AmaTo + -+ + Qpp Ty = 0

un sistema homogéneo compatible de m ecuaciones con n incognitas T, Ta, ..., Tp.

Sea F = {(81, 89, .., Sn) | ¥1 = $1,T9 = S, ..., Ty, = Sp, €s solucion al sistema} C
R™ y sea k el rango del sistema, es decir, el nimero mdximo de ecuaciones
linealmente independientes. Entonces:

» [ es subespacio vectorial,
» dim(F) =n — k.
El reciproco, también es cierto.

Proposicion 4.5.7. Todo subespacio vectorial F' de R™ es solucion de un
sistema lineal homogéneo.

Decimos que un subespacio vectorial F' estd definido en forma implicita
si ' es el conjunto de soluciones de un sistema lineal homogéneo. Estas
ecuaciones se llaman ecuaciones implicitas del subespacio.

Si resovemos un sistema lineal homogéneo que sea compatible indetermi-
nado (en otro caso, la solucion tnica es que todas las variables sean cero y
no necesitamos ningin parametro para el conjunto de soluciones), podemos
obtener su forma paramétrica y dar una base del subespacio.

Ejemplo 4.5.8. Sea F el subespacio dado por las soluciones del sistema

r+y+z+t=0 }

r+y—z—t=0 (42)

Utilizando el método de Gauss, por ejemplo, es inmediato ver que este sistema

es equivalente a
r=—y
=) as

Para expresarlo en forma paramétrica necesitamos tantos pardmetros co-
mo la dimension del subespacio (ndtese que el sistema tiene rango 2 y que
necesitamos 4-2 parametros, ver proposicion , en este caso, dos. Una
forma sencilla (no la inica) de dar una solucion paramétrica a este sistema
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seria suponer y = «, t = [ ya que las otras variables ya las tenemos despe-
jadas en funcion de estas. Por tanto, en forma paramétrica nos quedaria:

F={(—a,a,—0,0) : a, p € R}.

St ahora quisiéramos dar una base para este espacio, una forma sencilla
de hacerlo (por supuesto, hay infinitas bases posibles, esta es solo una de
ellas) es tomar un vector por cada pardmetro haciendo 1 ese pardmetro y 0
el resto. Asi,

F =1][(-1,1,0,0),(0,0,—1,1)].

Al revés, también es sencillo pasar de la base o de la forma paramétrica
a la forma implicita. Para ello, partimos de un sistema en el que expresamos
cada variable a partir de su expresion paramétrica, como vimos en (4.1]).
En este sistema, consideramos que los parametros («;) son las incognitas
y escalonamos por el método de Gauss la matriz correspondiente. Una vez
escalonado, las ecuaciones implicitas del subespacio seran aquellas en las que
no aparezcan ya parametros.

Ejemplo 4.5.9. Tomemos las soluciones del ejemplo Y SUPONGamos
que lo que sabemos es que F' = L[(—1,1,0,0),(0,0,—1,1)]. Por tanto, si
consideramos las combinaciones lineales de estos dos wvectores de su base,
obtenemos que

F={a(-1,1,0,0) + £(0,0,—1,1) : o, 5 € R}.

St expresamos esta igualdad coordenada a coordenada, obtenemos el sis-
tema:

—a==x
A (4.4)
A=t

Aplicamos Gauss a este sistema:

-1 0 x 1 0 Y
1 0 Y | FieR, F3oF, RoF; 0 1 t
0 -1 : z 7 1 0 :z
0 1 t 0 -1 z

10 Y
F§2=F3+F£>i:=F4+F2, 01 : t

00 : x4y

0 0 : z+4t
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Observamos que las filas en las que no aparecen los pardametros o y 3
son las dos iltimas. Por tanto, la forma implicita del subespacio seria como
solucion del sistema:

r+y = 0
24+t = 0 }

Notese que este sistema es equivalente al sistema de partida del ejemplo
[4.5.8 En ambos casos, es inmediato ver que su forma de Hermite es

1 100
0 011

Por ltimo, caber mencionar que el niimero de ecuaciones que nos van a
salir serA n menos el rango de la matriz de este sistema de parametros. Si
dicha matriz tiene rango méaximo (esto es, igual al ntimero de parametros),
en particular, si los parametros vienen de una base del subespacio como en
el ejercicio anterior, entonces el ntimero de ecuaciones en la forma implicita
sera n menos el nimero de parametros (ver proposicion .

Ejercicio 4.5.10. Dar las ecuaciones implicitas del subespacio G = L[(1,0,2), (3,1, 0)]
de R3.
En forma paramétrica obtenemos:
a + 38 = x
B =y
2a = z
Dado que la matriz del sistema tiene rango 2, podemos adelantar que
al escalonar por Gauss nos va a quedar una tunica ecuacion en la que no
aparecen pardametros. Escalonamos por Gauss:

1 3 / 13 z
O 1 : F 3:=F£)F1+6F2 O 1 : y
2 0 : z 0 0 z — 2x + 6y

Por tanto, la ecuacion implicita de G es z — 2x 4+ 6y = 0.

4.6. Interseccién y suma de subespacios vecto-
riales

Dados dos subespacios vectoriales F, G de un espacio vectorial F, se llama
interseccion de F'y GG y se denota F'N G al conjunto:

FNG={veFE|lve FyveG}.
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Proposicion 4.6.1. La interseccion de dos subespacios vectoriales de E es
otro subespacio vectorial de E.

Observaciéon 4.6.2. Si tenemos los subespacios F' y G expresados en forma
implicita por sendos sistemas, los puntos del subespacio FF' NG son exacta-
mente los que satisfacen ambos sistemas. Por tanto, la expresion implicita
del subespacio F N G viene dada por el sistema con todas las ecuaciones de
los dos sistemas.

En cambio, la uniéon de subespacios vectoriales en el sentido conjuntista
no es un subespacio vectorial.

Ejemplo 4.6.3. Sean F y G los subespacios de R? generados por los vec-
tores (1,0) 'y (0,1) respectivamente, es decir, F = {(z,0)|xz € R} y

G ={(0,y) |y € R}.
Si FUG fuera subespacio, el vector (1,0) + (0,1) = (1,1) deberia perte-
necer a F'UG pero (1,1) no pertenece ni a F ni a G.

Dados dos subespacios vectoriales F, G de un espacio vectorial F, se llama
suma de F'y GG y se denota F' + G al conjunto:

F+G={v+wlveFyweG}.
Proposicién 4.6.4. FEl conjunto F'+ G es un subespacio.

Proposicion 4.6.5. Si tenemos dos subespacios F' = Lvy,...,on] y G =
Llwy, ..., wg|, entonces

F+G=Lv,...,0mwy,...,wgl

Teorema 4.6.6. Sean F y G dos subespacios vectoriales de un espacio vec-
torial E. Entonces:

dim(F + G) = dim(F) + dim(G) — dim(F N G).

Ejemplo 4.6.7. Consideramos F = L[(1,0,0)] y G = L[(1,1,0),(0,1,0)].
ES facil comprobar que:

FNG=L[(1,0,0)],

F+G=1L[(1,0,0),(1,1,0),(0,1,0)] = L[(1,1,0),(0,1,0)] = G.
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4.7. Matriz del cambio de base de un espacio
vectorial

Como hemos visto, las coordenadas de un vector dependen de la base
elegida. Fijadas dos bases, B, By, pretendemos calcular una matriz tal que
dado un vector expresado mediante coordenadas respecto a la base By nos
permita calcular de forma automaética las coordenadas del vector respecto a
la base By. Esta matriz es la matriz del cambio de base.

Sea E un espacio vectorial de dimension n. Sea B = {ej e2,...,€,} una
base de E, en la que las coordenadas de un vector x € E son (1 xa,...,Ty)
Sea B' = {€| ¢),..., e}, } otra base de E y sea x = (2, 25,...,2))p.

Los vectores de B puestos en funciéon de los de B’ son:.

/ / /
€1 = 4116 + a21€9 + -+ an1€,
/ / /
€2 = a12€4 + A22€9 + -+ An2€,

!/ /
€n = A1n€q + A2n €9 + - Fappe

que también se puede expresar como:

n
— ! =1
€; = a;;€;, con j = 1,...,n.
=1

Matricialmente, el cambio de base resulta ser:

Ty a1 @12 - Q1 vt Qi T1
/

Ty 21 Q2 -+ Q25 -+ Q2n T2
/ p—

x; Qi1 Qg - Qi 0 Qi Z;
/

T Gpy Gp2 -+ Gpj - Qpp Tn

A = (a;;) es la matriz cambio de base de B a B’. Las columnas de A son
los vectores eq, es, ..., €, expresados en la base B’

Como las columnas de A la forman los vectores de una base, que son
linealmente independientes, el rango de A es maximo luego el determinante
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es no nulo y A es inversible. Asi pues,

To xh
. — Ail -,

/

T x,

Ejemplo 4.7.1. Consideramos el espacio vectorial R? y las bases B = {(1,2),(2,1)}
y B'={(1,0),(0,1)}. Vamos a calcular las coordenadas del vector x = (3,4)p
respecto a la base B'.

Primero, calculamos las coordenadas de los vectores de la base B:

(1,2) = a11(1,0) + a91(0,1) de donde a1; = 1 y ag; = 2.

(2,1) = a12(1,0) + a92(0,1) de donde a12 =2 y ags = 1.

1 2
2 1
La relacion entre las coordenadas viene dada por la expresion:

(1 2)(3)_(xll>
21 )\ 4 )
resultando que (3,4)p = (11,10) 5.

Si, por el contrario, queremos obtener las coordenadas del vector x =
(3,4)p respecto a la base B, podemos hacer otra vez el procedimiento o cal-
cular la inversa de la matriz obtenida o, simplemente, resolver el sistema:

(2 1)(5)=(3)

La matriz cambio de base serd: A=

es decir,
T +2.Z'2 = 3
2%1 + 1o = 4 }
Resolviendo, v = g Y Ty = % Por tanto, el vector x = (3,4)p expresado

en coordenadas respecto de B es x = (2, 3)p.

Ejemplo 4.7.2. Dar la matriz del cambio de base de B = {(0,1,1),(1,1,1),(3,1,0)}
a B"={(1,0,1),(-1,0,2),(0,2,5)}.

(0,1,1) = a11(1,0,1) + a21(—1,0,2) + a3 (0, 2,5)
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(17 17 1) - alQ(]-a 07 1) + a22<_17 07 2) + CL32(07 27 5)

(3, 1, O) = 0,13(1, 0, 1) + a23(—1, O, 2) + a33(0, 2, 5)

De cada linea obtenemos un sistema de tres ecuaciones con tres incognitas
a;1, Gio, ;3. Solucionando los sistemas tenemos que la matriz cambio de base
es:

Ejercicio 4.7.3. Determinar la matriz cambio de base de B = {(—1,2),(3,1)}

a B' = {(1,-1),(0,2)}.
(33)

Solucion:
4.8. Producto escalar y norma

Definiciéon 4.8.1. Sean x = (x1,22,...,2,),y = (Y1, Y2, .-, Yn) dos vectores
de R™. Se denomina producto escalar de x e y, x -y, al nimero real:
Ty =Ty + Tay2 + -+ TpYn.

Definiciéon 4.8.2. Se dice que dos vectores x,y son ortogonales cuando su
producto escalar es 0, x -y = 0.

Definicién 4.8.3. Una base de un espacio vectorial {ej, e, ...,e,} es orto-
gonal sie;-e; =0 Vi j (todos los vectores son ortogonales entre 7).

Ejemplo 4.8.4. La base candnica de R™ es ortogonal.

Definiciéon 4.8.5. Dado un vector v = (x1,xs,...,x,) de R", se denomina
norma o mddulo de x, ||z||, al nimero real no negativo:

loll = +y/a3 + a3+ + a2
Ejercicio 4.8.6. Comprobar que dado un vector x de R™, ||z|| = /z - x.

Dado un vector z no nulo, llamamos normalizar el vector a obtener
un vector de la misma direccién y sentido que z pero con norma 1. Para
normalizar un vector basta dividirlo entre su norma. Es inmediato comprobar
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que para cualquier vector no nulo = = (x1,z,...,x,), si consideramos y =

ﬁ(m,xm o ) = (i, %ﬁ, vy 747), entonces
T Ty T Vi a4+ ||z
Hyr|=\/<—>2+<_>2+...+( i el
[|]] || ||| Tl el

Definicion 4.8.7. Una base de un espacio vectorial {e, e, ...,e,} es orto-
normal si es ortogonal y ademds ||e;|| = 1Vi (esto es, si es ortogonal y todos
los vectores tienen norma 1).

Ejemplo 4.8.8. La base canonica de R"™ es ortonormal.
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Capitulo 5

Aplicaciones lineales

5.1. Definicién y propiedades

Sean E'y F dos espacios vectoriales sobre R. Se llama aplicacién lineal
de E en F' a toda aplicacion f de E en F tal que:

a) Vo,ye B f(z+y) = f(z) + f(y)
b) VAeR f(Ax) = Af(x)
0, lo que es equivalente:
2) Vo,ye E,VApeR - f(Ar +py) = M (x) + pnf(y).
Ejercicio 5.1.1. Comprobar si las siguientes aplicaciones son lineales:
1) f: R — R tal que f(z) = 3.
2) f: R — R tal que f(z) =2z + 3.
3) f:R* = R tal que f(x,y) = 3z — 2y.
4) f:R* = R? tal que f(z,y) = (2%, —y).

Propiedades.
Dada una aplicacion lineal f: £ — F"

61



62 CAPITULO 5. APLICACIONES LINEALES

4) Si el conjunto de vectores de {z1,...,2,} C E es linealmente depen-
diente (l. d.), también lo es el conjunto {f(z1), ..., f(z,)} C F.

Demostracion. Si xq,...,x, son L. d., existe una combinacion lineal
Mx1+ - A2y, = 0p con alglin A; # 0. Entonces, f(Az1+---A\yzy,) =
f(0g) vy, por las propiedades de la aplicacion lineal, f(A\zi+--- A\yxy,) =
Mf(z1)+ - Af(zn) = 0p con \j # 0. Por tanto, {f(z1),..., f(z,)} es
l.d. O

5) Si el conjunto de vectores {f(x1),..., f(z,)} C F es linealmente inde-
pendiente, también lo es el conjunto {x1,...,x,} C FE.

Ejercicio 5.1.2. Tomemos el conjunto de vectores (1,1,0),(2,0,—1),(0,—1,0)
en R3 y la aplicacion lineal f: R — R? tal que flz,y,2) = (sc +y, z). Com-
probar si el conjunto {(1,1,0),(2,0,—1),(0,—1,0)} es linealmente indepen-
diente. Estudiar si el conjunto {f((1,1,0)), f((2,07 1)), £((0,-1,0))} C R?
es linealmente indpendiente. ;Se contradice esto con las propiedades de la
aplicacion lineal?

Definiciéon 5.1.3. Sea f: E — F una aplicacion lineal. Se define la tmagen
de E por [ como Im(f):={y e F|3x € E, f(z) =y}.

Proposiciéon 5.1.4. La imagen de una aplicacion lineal es un subespacio
vectorial de V.

Demostracion. Sean y,,y2 € f(F). Entonces, Jx1,20 € E tales que y; =

f(@1), y2 = f(x2). Ast, VA, pw € R, Ayst+piys = M (z1) +pf (v2) = f(AD1+p12)
y, por tanto, \y; + pys € f(E) como queriamos demostrar. O

Definicién 5.1.5. La dimension del subespacio vectorial Im(f) se llama ran-
go de la aplicacion lineal y se denota rg(f).

Teorema 5.1.6. Sea f una aplicacion lineal de E en F y sea {x1, ..., x,} una
base de E. Entonces, { f(x1), ..., f(x,)} es un sistema generador de subespacio

Im(f) C F.

Definicién 5.1.7. Se llama nucleo de una aplicacion lineal f: E — F,
Ker(f), al conjunto de elementos de E que tienen como imagen el elemento

neutro de F': Ker(f) :={z € E| f(z) =0p}.

Proposicion 5.1.8. El nicleo de una aplicacion lineal f: E — F es un
subespacio vectorial de E.

Demostracion. Sean z,y € Ker(f). Entonces, f(x) =0, f(y) =0y VA pu €
R, fAx+py) = Mf(x)+uf(y) = A0+pu0 = 0 como queriamos demostrar. [
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Teorema 5.1.9. Sea f: E — F una aplicacion lineal. Entonces:
dim Im(f) + dim Ker(f) = dim E.

Proposicion 5.1.10. Una aplicacion lineal f es inyectiva siy sdlo si Ker(f) =
Op.

Demostracion. Sea f inyectiva. Si x € Ker(f), f(z) = 0p = f(0g). Como f
es inyectiva, © = O, luego Ker(f) = {0g}.
Supongamos ahora que Ker(f) = {0Og} y tomemos x,y € E tales que

f(z) = f(y). Entonces, 0 = f(x) — f(y) = f(x —y) y, por tanto, x —y €
Ker(f). Como Ker(f) ={0g}, z =y y f es inyectiva. O

Por definicion, f es sobreyectiva si y solo si Im(f) = F.

5.1.1. Clasificaciéon de las aplicaciones lineales.

Sea f: FF — F una aplicacién lineal. Entonces, f es:
» inyectiva < dim(F) = rg(f),

» sobreyectiva < dim(F') = rg(f),

» biyectiva < dim(£) = rg(f) = dim(F).

Proposicién 5.1.11. Si f: E — F es una aplicacion lineal biyectiva en-
tonces existe una aplicacion inversa f~': F — E tal que f~' o f = Idg,
foft=1Idr y f~' es lineal.

Definiciéon 5.1.12. A una aplicacion lineal biyectiva la llamamos tsomor-
fismo de espacios vectoriales.

Ejemplo 5.1.13. Sea f: R* — R? dada por f(z,y) = 22—y, x+y). Veamos
el nicleo, la imagen y clasifiquemos la aplicacion.

En primer lugar, para calcular el nicleo basta reescribir la definicion para
el caso concreto de la aplicacion f. Asi,

ker f={(z,9) |2z —y,z +y) = (0,0)}.

Esto se traduce en un sistimea lineal:
20—y = 0
r+ vy = 0
y la dnica solucion es (x,y) = (0,0). Por tanto, Ker f = {(0,0)} y por la
proposicion [5.1.10, f es inyectiva.
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Dado que la aplicacion f va de R? en R?, ambas de dimension 2, por
el Teorema dimIm(f) = 2 que coincide con la dimensidn del espacio
de llegada (R?). Por tanto, f es también sobreyectiva vy, al ser ambas cosas,
biyectiva.

Ejercicio 5.1.14. Dadas las siguientes aplicaciones, determinar el nicleo y
clasificar si son inyectivas, sobreyectivas y/o biyectivas.

. f(ﬁ,:y) = (3[L‘-2y,2y,0)7
= g(r,y,2)=(x+y,y—2),

» h(x,y) = 22 —y,ay — x) (en funcién del parametro a).

5.2. Matriz asociada a una aplicacion lineal

Por el teorema sabemos que dada una aplicacién lineal f: £ — F'y
una base de F, la imagen de los elementos de la base es un sistema generador
del subespacio Im(f).

Teorema 5.2.1. Sea {x, zo, ....... ,Tn} una base de E y sea {y1, Y2, ....... Un}
un conjunto cualquiera de n vectores de F'. Entonces, existe una unica apli-
cacion lineal f: E — F tal que f(z;) =y; Vi=1,2,....n.

Asi pues, una aplicacion lineal estd determinada por la imagen de los
elementos de la base.

Sea B = {uj,us,...,u,} una base de E, B" = {vy, vy, ..., v, } una base de
F'y f: E— F una aplicacion lineal.

Sea x € E. Como vimos en el teorema [4.3.10 cualquier vector se puede
expresar (de forma tinica) como combinacion lineal de los vectores de la base:
T = Tyuy+Tous+- - +xu,. Seay = f(x). Si expresamos y como combinacion
lineal de los vectores de B’ tenemos que

Y= y1v1 + Yo2Us + - YU = f(z101 + 2oug + -+ - + 20u,) =

Si expresamos los vectores f(u;) en funciéon de la base B’

flur) = fuvr + farva + - + frvm
f(u) = fiov1 + fava + -+ + finoUm
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f(un) = flnvl + f2nv2 + -+ fmnvm

En forma matricial, si sustituimos estas expresiones en (5.1) tenemos:

n fin fiz e fin X
Y2 _ for foa ceeeeeen fon T2
Y Ffi fma corereen Frm T

Es decir, si (y)p = (y1, Y2, ---, Ym) denota las coordenadas del vector y en
la base B, (x)p = (21, T, ..., x,)p denota las coordenadas del vector x en la
base By M(f) = (fi;) denota la matriz cuyas columnas son las coordenadas
de los vectores f(u;) en la base B’ tenemos que:

(Y)p = M(f)(x)s.

Decimos que M(f), que depende tnicamente de la aplicacion f y de las
bases B y B’ es la matriz de la aplicacion lineal respecto a las bases
By B.

Proposicion 5.2.2. Dada una aplicacion lineal f, el rango de la aplicacion
coincide con el rango de la matriz asociada: rg(M(f)) = rg(f) = dim(Im(f)).

Ejemplo 5.2.3. Calculamos la matriz de la aplicacion f: R® — R? tal que
flz,y,2) = (x +y,y + 2) respecto a las bases candnicas.

Calculamos la imagen de los vectores de la base: f((1,0,0)) = (1,0),
f£(0,1,0) = (1,1), f(0,0,1) = (0,1). Las columnas de la matriz de la apli-
cacion lineal son las coordenadas de estos wvectores respecto a la base que
tomamos en R?, en este caso, la candnica. Asi pues, la expresion matricial

es:
HEGHIE
= 2
Yo 0 11 s
Ejemplo 5.2.4. Sea f: R?* — R? la aplicacion dada por f(x,y) = (3y —

2x,3x + y). Determinar la matriz asociada a f respecto a las bases By =

{(1? 0)7 (17 1)} y By = {(27 1)7 (07 2)}
En primer lugar, calculamos las imdgenes a través de f de los vectores
de la primera base, B:

f(1,0) = (=2,3)
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f(17 1) = (174)

A continuacion, determinamos las coordenadas de los vectores obtenidos
en la sequnda base, By:

x(2,1) +y(0,2) = (—2,3)
2'(2,1) +y'(0,2) = (1,4)

Esto produce dos sistemas lineales cuyas soluciones son: x = —1, y = 2,
= %7 Yy = ;i. Por tanto, la matriz asociada a la aplicacion f respecto a

este par de bases serd:
—1
2

A través de esta matriz podemos calcular la imagen de cualquier vector
expresado en sus coordenadas en By obleniendo la imagen en las coordenadas
en By. Notese que, por ejemplo, que multiplicando por la matriz obtenemos
que la imagen del vector (1,4)p, serd el vector (1,9)p,:

-1 1\ /(1
2 4 ) \9 /)"
Es inmediato comprobar que, efectivamente, (1,4)p, = (5,4) y f(5,4) =
(2,19) = (1,9)p,.

el

RN NI

Ejercicio 5.2.5. Sea f: R* — R3 la aplicacion dada por f(z,y) = (0,2z +
2y,y — x). Determinar la matriz asociada a f respecto a las bases By =
{(21),(1,-1)} y Bo ={(1,0,1),(0,1,-1), (1,1, 1)}.

Solucidn:

5.3. Sobre el conjunto de las aplicaciones linea-
les

Dados dos espacios vectoriales E'y F', el conjunto de todas las aplicaciones
lineales de E en F se denota £ (E, F).
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5.3.1. Composicién de aplicaciones lineales

Sean E, F, G tres espacios vectoriales sobre R. Sea f una aplicacion lineal
de F en F'y g una aplicacion lineal de F' en G. Entonces, se verifica que
(g o f) es una aplicacion lineal de E en G.

gof:FE

S

F

Comprobamos que, efectivamente, cumple la definicion:

a) (gof)(@+y)=glf @+yl=9glf @) +fW]=glf@)]+glf W)=
(gof)(x)+(gof)(y) Va,y€eE.

b) (go f)(Ar) =g [f (M) =g [N (2)] = A(gof)(z) Vee EVAe
R.

Proposicién 5.3.1. M(go f) = M(g) - M(f).

Ejemplo 5.3.2. Dadas las aplicaciones lineales f: R? — R? y g: R? — R?
definidas por:

flx,y) =By —22,3z+y) g g(s,t) = (25 + t,4s)

obtener la composicion h = go f.
En primer lugar, determinamos las matrices asociadas respecto a las bases

vin=(3 1) ma=(7,)

La matriz asociada a la composicion serd
2 1 -2 3 -1 7
M(h)_(zl 0)'( 3 1>_(—8 12)'
El resultado, por tanto, es h(zx,y) = (Ty — z,12y — 8x).

Ejercicio 5.3.3. Dadas las aplicaciones lineales f: R? — R? y g: R® — R?
definidas por:

f(.’lf,y):(Ql'—gy,Qy,O) Yy g(s,t,u)Z(S+2t—u,s+u,2t—u),

obtener la composicion h = go f.
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5.3.2. El conjunto de aplicaciones lineales como espacio
vectorial

Teorema 5.3.4. Dados dos espacios vectoriales E y F', el conjunto de las
aplicaciones lineales de E en F, £(E,F) = {f: E — F|f lineal } con las
operaciones:

» Suma: +: £(E,F) x £L(E,F) — £(E,F) tal que f+g: E — F esla
aplicacion que asocia a cada v € E, (f+g)(z) = f(x)+g(x) Vz € E.

» Producto: x : R x L(E,F) — £L(E,F) tal que Ax f: E — F es la
aplicacion que asocia a cada x € E, (A* f)(z) := A x f(x) Va € E.

es un espacio vectorial.
Teorema 5.3.5. Si dim(EF) = n y dim(F) = m con bases B y B’ respecti-
vamente, entonces:
MB,B’ : Jg(E, F) — Mpxn

tal que a cada aplicacion f le hace corresponder su matriz asociada respecto
a las bases B y B’ es un isomorfismo de espacios vectoriales. En particular,

dim(£(E,F)) =m-n.

5.4. Cambio de base de una aplicacién lineal

Sea f: E — F una aplicacion lineal, By = {ej,es,....,e,} v By =
{e},é,,...;e..} dos bases de E'y Brp = {f1, fo,.., fu} y B ={f1, f}, .-, [1}
dos bases de F. Seaw = f(v) yseanv = (z1,...,2n)p, = 2,0 = (7,...,1;,)p, =

:LJ7 w = (yh s 7yn)BF =Y W= (?Jia ce 7y’;L)B;;~ = y/'
Como vimos en el apartado[5.2] tenemos una matriz Ay = Mg, . (f) que
caracteriza la aplicacion lineal f respecto a las bases Bg v Br,
y = Az (5.2)

Del mismo modo, tenemos una matriz Ay = Mp: g (f) que caracteriza
. . . ’ / I E’ F
la aplicacion lineal f respecto a las bases By, y Bj,

y = A’ (5.3)

Sea P la matriz de cambio de base de By a Bf;. Como vimos en el apartado

4.7

z' = Pu. (5.4)
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Sea () la matriz de cambio de base de Br a BJ. Entonces,

¥ = Qy. (5.5)

Por tanto la relacién entre las matrices que caracterizan la aplicaciéon
lineal respecto a las distintas bases, A; y A,, es como sigue:

_ 1©,3) _ (5,4) _
V=Qu=y=Q0 Dy 4w y-gar: (0
De (5.2)) y (5.6) tenemos que:
Al - QilAQP.

De forma equivalente, o despejando la ecuacion, tenemos también que:

AQ - QAlpil.

Ejemplo 5.4.1. Sea f: R® — R? dada por f(x,y,2) = 3z + 2y — 42,70 —
5y + 3z2).

a) Calcular la matriz asociada a f respecto a las bases candnicas, Bg y
B, de R3 y R2,

b) Calcular la matriz asociada a f cuando las bases son By, = {(1,1,1),(1,1,0),(1,0,0)}
Y By = {(1’ 3)7 (275)}'

Solucion.

a) La matriz viene determinada por las imdgenes de los elementos de la
base Bp respecto a la base Bp.

f(1,0,0) = (3,1) 3 2 —4
f(0,1,0) = (2,—5) » de donde Ay = Mp, 5. (f) = ( 1 —5 3 )
f(0>07 1) - (_47 3)

b) Podemos calcular directemente la matriz de la aplicacion lineal respecto
a las nuevas bases. Calculamos las imdgenes de los elementos de la base
B, primero respecto a la base candnica Bp.

f(Ll,l) = (17_1)BF — (17_1)BF :a11(1,3)+a21(
f(L,1,0) = (5, =4)p, — (5, =4)p, = a12(1,3) + ax(
f(l, 0, O) = (3, 1>BF — (3, 1)BF = CL13<1, 3) + CL23(2,

Y resolviendo los tres sistemas, tenemos que
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—7 —33 —13
AQ:M%B’F:< 4 19 8 )

También podemos calcular Ay = MBE,B%(f) usando las matrices del
cambio de base: Ay = QA P~'. Como vimos en el apartado las
columnas de la matriz cambio de base de B' a B son los vectores de B’
en funcion de B.

111
MB/E,BE:ME;B;E:P*: 110
100

12
?/MB’F7BF:<3 5)

Haciendo los cdlculos, tenemos que

_ 5 2
My, e = Mppy, = Q = ( 3 -1 )

A_<—5 2)(3 2 —4) 11(1) _(—7 —33 —13)
, = —
3 -1 1 -5 3 L0 o 4 19 8

Definiciéon 5.4.2. Dos matrices A1, Ay son equivalentes si existen dos ma-
trices inversibles Py Q tales que Ay = Q7 tA,P.

Proposiciéon 5.4.3. Dos matrices son equivalentes si y solo si son las ma-
trices asociadas a una misma aplicacion lineal en distintas bases.

Definiciéon 5.4.4. Dos matrices A1, Ay son semejantes si existe una matriz
inversible P tal que Ay = P~'A,P.

Ejemplo 5.4.5. Las matrices A; = ( _31 g ) y Ay = ( _51 _63 ) son

semejantes. La matriz de paso es P = ( ; ? )

Comprobar que Ay = P~1AP.

Definiciéon 5.4.6. Una aplicacion lineal de un espacio vectorial en si mismo,
f: E— E, se denomina endomorfismo.

Proposicion 5.4.7. Dos matrices son semejantes si y solo si son las matrices
asociadas a un mismo endomorfismo en distintas bases.
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5.5. Aplicaciones lineales en R? y algunos mo-
vimientos del plano

Si f:R? — R? es una apicacion lineal, entonces M (f) € Maye. Veamos
algunas transformaciones béasicas del plano y como son sus correspondientes
matrices.

» Aplicacion nula: f(z,y) = (0,0), M(f) = ( 8 8 )

» Aplicacion identidad: f(z,y) = (x,y), M(f) = ( (1) (1) )

= Proyeccion sobre los ejes: eje OX, f(z,y) = (x,0) o eje OY, g(x,y) =

() e (2
00 01

» Homotecias centradas en (0,0): f(x,y) = (az,ay), M(f) = ( 8 2 )

» Giros (en el sentido antihorario) con centro (0,0) y angulo a: f(z,y) =
(xcosa — ysen o, xsen a + y cos «)

M(f) = ( cos(a) —sen(a) )

sen(a)  cos(a)

Veamos de donde sale esto. Si consideramos (z,y) como nimero com-
plejo, x + iy, el producto de 1, - (z 4 iy) nos da un giro de angulo « en
sentido antihorario. Si lo escribimos en forma trigonométrica, tenemos
que 1, = cosa + ¢ sen . Por tanto, el producto es

(cosa+isena)(r +1iy) = xcosa —ysena + (rsena + ycosa)i

» Simetria respecto a los ejes: eje OX, f(x,y) = (z,—y) o eje OY,
g($7y) = <_xay)7

vin=(y %) wma=(3 1)

» Simetria respecto a la recta y = max con m = tan(a): f(x,y) =
(z cos(2a) + ysen(2a), zsen(2a) — y cos(2av))

M(f) = ( cos(20) - sen(2a) )

sen(2a) — cos(2a)
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Capitulo 6

Diagonalizacion de matrices

6.1. Definicién y propiedades

Sea E un espacio vectorial sobre R o Cy f: E — E un endomorfismo,
esto es, una aplicacion lineal de un espacio vectorial en si mismo.

Pretendemos expresar la aplicacion lineal en forma matricial respecto a
alguna base B de forma que la matriz sea diagonal. Asi pues, la primera
pregunta que nos hacemos es: ;cuando existe dicha base? Es decir, ;para qué
endomorfismos existe una base B para la que Mg(f) es diagonal?

Propiedad: Si f es un endomorfismo, B = {vy, vy, ..., v, } es una base de
E'y

a1y 0 0
0 a 0
Mp(H) =1 . :22 . 0
0 0 .. ap

es diagonal, entonces para cada v; € B, f(v;) = ayv;.
Tenemos que, en la base B, v; = (0, ...,0,1,0,...,0) 5. Si representamos la
aplicacion lineal en forma matricial:

a1y 0 0 0 0
0 a92 ... 0 . :
0 0 ... apm 0 0

es decir 0vy + Ovg + - - - + Ov;ay + ayv; + 0V + - - - + Ov, = ayv;.

Definicién 6.1.1. Sea f un endomorfismo de un espacio vectorial E sobre
Ro C. Se llama vector propio o autovector de f a un elementov € E que
verifica:

73
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Z) (% 75 OE
ii) Eziste un elemento X € R tal que f(v) = \v.

Si denotamos el endomorfismo identidad por Id, la matriz asociada serd
la matriz unidad, M (Id) = I, para cualquier base. Asi f(v) = Av = (A d)(v)
y, por las propiedades de la aplicacion lineal, (f — Ald)(v) = 0. Asi, las
anteriores propiedades 7),4i) son equivalentes a la condicion:

i) v#0y v e Ker(f — Ald) para algin A € R.

Definicién 6.1.2. Se dice que X es el valor propio o autovalor asociado
al vector propio v si f(v) = A\v.

Es decir, A es un valor propio siy solo si Ker(f — Ald) # 0, o sea, si y
solo si (f — AId) no es inyectiva.

Llamamos vectores propios y valores propios de la matriz cuadrada A a
los vectores propios y valores propios del endomorfismo asociado f respecto
a una base B tal que Mp(f) = A.

La ecuacion f(x) = Az es equivalente a Az = Az < (A— A )x = 0 donde,
si f es un endomorfismo de un espacio vectorial £ de dimension n,

10 .0
e
00 .. 1

nxn

6.2. Calculo de los valores propios

Sea f un endormorfismo en un espacio vectorial F de dimension n, B una
base de E'y A = Mpg(f). Como vimos antes, \ es un valor propio de f siy
solo si Ker(f — AId) # 0 < (f — AId) es no inyectivo < M (f — Ald) es no
inversible < A — AI,, es no inversible < det(A — A1) = 0.

Por tanto, podemos encontrar los valores propios resolviendo los posibles
valores de A en la ecuacion det(A — \,,) = 0, es decir,

(CLH — /\) a12 Q1n
&'21 (CLQQ ‘— )\) a?n _ O
(n1 Ano e (A — N)

Esta ecuaciéon se denomina ecuacién caracteristica.

Su desarrollo nos da un polinomio P(A) de grado n que se denomina
polinomio caracteristico de la matriz A. Los valores propios de la matriz
A son las raices de dicho polinomio.
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Por el teorema fundamental del algebra, todo polinomio de grado n admite
n raices reales o complejas (no necesariamente distintas):

PO = (1" = M)A = ) o (= A
donde ry + 13+ -+ 1 =n.
Definicién 6.2.1. El ndmero de veces que aparece la raiz i, r;, se llama

multiplicidad del valor propio.

Ejemplo 6.2.2. 1) A= ( _62 _92 ) . P(\) = ‘

I-x 1 1 3—X 3-X 3-2)\
PN=| 1 1-Xx 1 |=| 1 1-Xx 1 |=
1 11— 1 I 1-X
11 1 1 1 1
=B-XN[1 1-=Xx 1 |[=B=X][0 =X 0 [=B-M)X=0
1 1 1-X 0 0 -\

Por tanto, (3 —A) A2 =0 — A\, =0 (doble), \y = 3.

6.3. Calculo de los vectores propios

Los vectores propios se obtienen obteniendo soluciones no triviales del
sistema homogéneo: (A — \;1,,) X = 0 para cada valor propio \;:

(CLH — >\z) 12 QA1n T 0
921 (a22 — /\z) A9y, _ T9 _ 0
an1 (2 e (@ — ) Tp 0

es decir,
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(a1 — \i)z1 + Q12T + -+ + a1ty =0
a91T1 + (a22 — /\l)xg —+ o4 Aonly — 0
an11 + Ano®a + -+ + (A — Ni)xn, =0

Notese que este sistema tiene solucion no trivial si y solo si det(A—\;I,) =
0, es decir, si y s6lo si \; es valor propio. Si tiene solucion no trivial, quiere
decir que el sistema es compatible indeterminado.

Como vimos en la proposicién el conjunto de soluciones del sistema
es un espacio vectorial. En particular, si x = (21,9, ...,x,) es una solucion
no trivial, también lo es o - x = (axy, axy, ...,ax,), Va # 0. Al subespacio
vectorial asociado al valor propio A; lo denotamos E),. El conjunto de vectores
propios asociados al valor propio \; es Ey, — {0}.

Ejemplo 6.3.1. Veamos los vectores propios de las matrices del ejemplo
anterior.

1) Los vectores propios asociados a \y = 10 serdn las soluciones no tri-
wviales de la ecuacion:

(A=ML)X =0 donde A= _62 _92 ) y  (A—10L) =
6—-10 -2 (-4 =2
-2 9-10 ) \ -2 -1
de donde obtenemos el sistema: —4z =22, =0 }

Observamos que las dos ecuaciones son proporcionales. Resolviendo:

201+ 290 = 0 = Six; = a,19 = —2a con a € R. Asi, los vectores
propios asociados a \y = 10 son de la forma : (o, —2a) con a # 0.
Dicho de otra manera, E1y = {(a, —2a) |« € R}. Tomando un valor
no nulo cualquiera de o podemos expresar el subespacio E1g a partir de
una base que lo genera: Eyy = L[(1,—2)].

Los vectores propios asociados a Ay = b provienen del sistema:

(=00 5) () =)
z) — 239 =0 }

Esto es, 2wy + Ay = 0

Observamos que son proporcionales (el rango es 1) y que, por tanto,
una de las ecuaciones es redundante. Resolviendo ©1 — 229 = 0 —
St x9 = 3, entonces x1 = 2. Los vectores propios asociados a Ao =5
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son de la forma: (26,8) con  # 0. Es decir, E5 = {(26,0) | o, 8 €
R}. Tomando un valor no nulo cualquiera de [ podemos expresar el
subespacio Es a partir de una base que lo genera: E5 = L[(2,1)].

2) Vectores propios asociados al valor propio Ay =0

1-0 1 1 1 0
(A—O[g): 1 1-0 1 To = 0 < T1+To+
1 1 1-0 T3 0

Los vectores propios son de la forma (o, B, —a— ) con o, 5 # 0. Ey =
{(a, B, —a—PB) |, B € R}. Para dar una base de Ey necesitaremos dos
vectores que obtenemos dando valores a o y 8 de forma que los vectores
resultantes sean linealmente independientes. Por ejemplo, tomando o =
1,=0ya=0,05=1 resulta: Ey = L[(1,0,—1),(0,1,—1)].

Los wvectores propios asociados a XNy = 3, verifican (A — 0l3) =
1-3 1 1 1 0
1 1-3 1 To =( 0 < 11 = 19 = T3. Son,
1 1 1-3 x3 0
por tanto, de la forma (o, a, ) con a # 0. E3 = {(a,a,a) |a € R} =
L[(1,1,1)].

Notese que: dim(Ker(A—01I3)) = 2 siendo 0 una raiz doble del polinomio
caracteristico y dim(Ker(A — 313)) = 1 siendo 3 una raiz simple del
polinomio caracteristico.

Ejercicio 6.3.2. Dada la matriz

—_— O ON=

O O N

OO DO N
(e

determinar sus valores propios y hallar un vector propio asociado al valor
propio —1.

Solucion: Desarrollando el polinomio caracteristico (lo mds fdcil es ha-
cerlo por la 8% fila. Después, desarrollo el determinante 33 de nuevo por
la 3% fila) obtenemos P(A\) = A[(B3 =2+ A) + (-1 = N)(E = N2 -))] =
M1+ N1 - (% — N2 =N)]= 1+ N\ - %)

Los valores propios son 0 (doble), -1 y 2.

El sistema asociado al valor propio —1 es:
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%x —2y+2z2+t =
3y -t =
z fr—
x =0
propio asociado al -1 seria de la forma (0, ,0,3«a) para algin o # 0.

o O O

de donde v = z = 0 y t = 3y. Un vector

6.4. Propiedades de los vectores propios y va-
lores propios

1) Dado un valor propio A, el conjunto E) es un subespacio vectorial de
E.

En efecto, sean v; y vy dos soluciones al sistema (A—AI)X = 0 asociado
al valor propio .

AUl = /\U1 <~ f (?}1) = /\U1
AUQ = Ay & f (Uz) = A\

Va, € R, flavy + pvy) = af (v1) + Bf (v2) = alvy + BAvy =
A (g + fog).

2) La suma de los n valores propios de una matriz es igual a su traza
(a11 + aga + + - - + any). En particular, dos matrices semejantes tienen el
mismo polinomio caracteristico y la misma traza.

3) El producto de los n valores propios de una matriz es igual a su deter-
minante.

Teorema 6.4.1. Un endomorfismo f de E es diagonalizable si y sdlo si
existe una base (vy,ve,...,v,) de E formada por vectores propios de f.

Demostracion. Sea B = {vy,vs,...,v,} una base de vectores propios. Su-
pongamos Ap, g, ..., A, los valores propios asociados: f(v;) = \v; para i =

A0 .00
1,...,n. Como se vi6 en 5.2, Mp(f) = 0 /\.2 8
0 0 ... X\,
Supongamos que f es diagonalizable. Sea B = {vy, vg, ..., v, } una base tal
aiy 0 0
i 0 axp .. 0
que Mp(f) es diagonal: Mp(f) = b 0

0 0 ... ap,
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Es inmediato comprobar que si expresamos los vectores vy, v, ..., v, €n
la base B se cumple que Mpg(f)(v;)p = a;v;. Por tanto, los v; son vectores
propios. O

Teorema 6.4.2. Dado un endomorfismo f: E — FE con dim(E) = n y
autovalores \1, \o, ..., \i, con multiplicidades oy, ao, ..., o, f es diagonalizable
siy solo sioqg + -+ ap =n ydim(E),) = ;.

Observacién 6.4.3. Ndtese que, por el teorema fundamental del dlgebra, si
E es un espacio vectorial sobre C, entonces la primera condicion del teorema

(aq + -+ ap =n), se da siempre.

Proposicion 6.4.4. Si un endomorfismo f: E — E con dim(E) = n posee n
autovalores reales diferentes A1, A, ..., A\, € R, entonces [ es diagonalizable.

6.5. Diagonalizacién de una matriz

Sea f un endormorfismo dado por la matriz A = Mp(f) y supongamos
que es diagonalizable. Para calcular la matriz equivalente diagonal primero
obtenemos los autovalores, posiblemente repetidos, Ai, Ag, ..., A,. Entonces,
la matriz diagonal

A O 0
o a0
D= R
0 0 .. M\,

es equivalente a A. Notese que si tomamos los autovalores en un orden distinto
obtenemos otra matriz diagonal equivalente a A.

Veamos ahora como obtener una matriz de paso P tal que D = P tAP.

Calculamos para cada valor \; el espacio vectorial asociado F),. Si la
matriz es diagonalizable, como vimos en el teorema la dimension de
E), coincide con la multiplicidad de \;, c;. Dicho espacio estara generado por
a; vectores que, como vimos, son vectores propios. Los vectores que forman
las bases de los espacios E), serdn las columnas de la matriz P en el mismo
orden en el que aparecen los autovalores en D.

6 —2
-2 9
tores propios son \;y = 10 y \; = 5. Por tanto

10 0
p=(05)

Ejemplo 6.5.1. 1) Dada la matriz A = ) vimos que los vec-
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Los subespacios asociados son F1g = L[(1,—-2)] y Es = L[(2,1)]. Ast:
s 12
-2 1

Efectivamente, P~ = 1 ( 1 -2 ) y

2 1
100)_1/1 -2 6 —2 1 2
0 5) 5\2 1 -2 9 -2 1
1 11
2) Dada la matriz A= | 1 1 1 vimos que los vectores proptos eran
1 11
A1 =0, con multiplicidad 2 y Ay = 3.
0 00
La matriz diagonal sera: D=1 0 0 0
0 0 3

Los subespacios asociados, como vimos en el ejemplo anterior, son
Ey = L[(1,0,-1),(0,1,-1)], E5 = L[(1,1,1)]. La matriz de paso que
obtenemos es:

1 0 1
P = 0o 1 1
-1 -1 1
Notese que la matriz diagonal depende del orden en el que tomamos los
autovalores. La matriz P depende de dicho orden y de la eleccion que
hemos hecho de los vectores de las bases de los subespacios El,.

Ejercicio 6.5.2. Diagonizar las siguientes matrices calculando la matriz de
paso P:

1 -1 0 3 -2 0 2 4 2
A=| -1 1 O B = 0O 1 0 C=112 -1
0 0 0 -4 8 -1 0 0 4

6.6. Bases ortonormales y método de Gram-
Schmidt

Definicién 6.6.1. Una base de un espacio vectorial {ey,es,...,e,} es orto-
normal si:
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i) e;-e; =0VYi#j (son ortogonales entre si).
i) |ler|]| = |le2|| = -+ =|lenl| = 1 (todos tienen norma 1).
Ejemplo 6.6.2. La base canonica de R"™ es ortonormal.

Dada una base cualquiera de E, podemos construir una base ortonormal
mediante el método de Gram-Schmidt.

Sea {eq, ey, ..., e, } una base de E.

Primero, normalizamos €] =

lleall”
Después, para cada k = 2,3, ..., n, suponiendo €/, ..., ¢}, definidos y or-

tonormales entre si, hacemos

k—1

T = ep — Z(ek, eyer.

i=1

Notese que entonces xj, es ortogonal a €}, ..., e, _,. Primero, como
e, ..., e,_, son ortonormales entre si, Vi, j < k (x;,x;) = 1sii=j
Y (zi,z5) = 0sii # j. Asipues, Vj = Lk — 1 (x4, ¢)) = (ex —
k—1 NS\ / k—1 N/ PN /
Zi:l <6ka6i>€ia€j> = <ek7€j> - Zi:l <€k”ei><€iaej> = <€ka€j> -
(ex,€;) = 0. Ademds, por ser los vectores linealmente indepen-
dientes, x; siempre es distinto de cero y se puede normalizar.

Finalmente, normalizamos €, = Z&.
/

Asi, {€], €}, ...,e. } es una base ortonormal.

Ejemplo 6.6.3. Sea B = {(1,0,—1),(0,1,—1),(1,1,1)} una base de R>.

e _M:(l 0, =)

0 7)

T2 = €3 — (ea,€)el = (0,1, —1) — (0, 1, —1), (—=, 0, —2))(—=, 0, —1) =

2 — €2 2,61/61 — D) y 4y 7\/577\/5 \/577\/5—

11 -1 1 -1 ~1 -1

=(0,1,-1) — —=(—=,0,—) = (0,1, =1) — (5,0, —) = (—, 1, —).

(77 ) 2( 77\/5) (77 ) (2772> (2772)
o — (’71»177”_1(;11;1)_(7_11;1)
27 Tlaall v = w2 b)) =% e v



82 CAPITULO 6. DIAGONALIZACION DE MATRICES

1 —1 2 -1, -1 2 -1
(ﬁ/()?ﬁ)_«Lla )(\/67\/67\/6»(%7%’%):
1 —1 -1 2 -1

= (1,1,1) = 0(—=,0, —=) — 0(—=, —=, —=) = (1, 1, 1).

6.7. Diagonalizacion de matrices simétricas

Teorema 6.7.1. Si una matriz A con coeficientes reales es simétrica, enton-
ces:

a) Los valores propios son nimeros reales.

b) Si A1, Ay son dos valores propios distintos de A entonces los vectores
propios asociados vy, vy Son ortogonales.

¢) La matriz es diagonalizable. De hecho, existe una matriz P ortogonal
tal que D = P71AP = P'AP.

Corolario 6.7.2. Si los valores propios de una matriz simétrica A, A\, Aa, ..., An,
s0M todos distintos y vy, v, ..., v, Son sus vectores propios asociados, entonces

{73 sy 21 es una base ortonormal.
[Tk |Iv2|| [lvnl]

Proposicion 6.7.3. Si vy, vq,...,v, es una base ortonormal de vectores pro-

Y ) ) n
pios de una matriz simétrica A y P es la matriz cuyas columnas son vy, va, ..., Uy,
entonces P es ortogonal y D = P'AP.

4 0 -1
Ejemplo 6.7.4. Sea A = 0 3 0
-1 0 4
4— A 0 —1
FEl polinomio caracteristico es P(A\) = |[A=X|=| 0 3—-X 0 =

-1 0 4-—A
(4=XNB=XN)A=X)—(3=X) ==X+ 11)\% — 39\ + 45.

Los valores propios son las raices de este polinomio. Para calcularlas po-
demos factorizar el polinomio usando la regla de Ruffini. Obtenemos asi que
P(A) = —(A—=3)%(\ —5) y los autovalores son A =3 y A = 5.

Calculamos el espacio vectorial asociado a X\ = 3, Es3. Serd el conjunto de
soluciones del sistema homogéneo:
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4—3 0 —1 T 0
0 3—3 0 y | =10
—1 0 4—-3 z 0
El sistema resultante es:
r —z=0
—r +z2=0

de donde x = z.

Por tanto, F3 = {(a, B,a) | o, 5 € R}

Buscamos una base Es. E3 tiene dimension 2. Asignando valores a los
pardmetros «, 8 obtenemos dicha base. Haciendo o« = 1, § = 0 tenemos
el vector propio (1,0,1), Haciendo o = 0, = 1 tenemos el vector pro-
pio (0,1,0). Ambos son linalmente independientes y forman una base: F3 =
L[(1,0,1),(0,1,0)].

Calculamos el espacio vectorial asociado a X =5, Es5. Serd el conjunto de
soluctones del sistema homogéneo:

4—5 0 -1 T 0
0 3—5 0 y =120
-1 0 4—-5 z 0
El sistema resultante es:
—x —z=0
—2y =0
—x —z=0

de dondey =0, yr = —z.

Por tanto, F5 = {(a,0, —a) | € R}.

Buscamos una base E5. Dando un valor cualquiera al inico pardmetro «
obtenemos dicha base. Haciendo o = 1, tenemos que (1,0,—1) es un vector
propio tal que E5 = L[(1,0,—1)].

La matriz de cambio tendria por columnas los vectores propios.

1 0 1
P=101 0
1 0 -1
300
Ast, la matriz diagonal serd D= | 0 3 0 y D= P lAP.
0 05

Para encontrar la matriz de paso ortogonal debemos usar el método de
Gram-Schmidt.

[
61_

1

)

2y = €5 — {es,€l)e} = (0,1,0) — ((0,1,0),( LA

3 =

5l-
5l

1
707
V2
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=(0,1,0) — 0(%,0, \_/—;) = (0,1,0).

eh = %2 = (0,1,0).

1 1
x5 = e3 — (e3,€))e] — (e, eh)eh = (1,0, —1) — ((1,0,—-1), (—=,0, —
3 =e3— (e3, ey)e) — (3, e5)e5 = ( ) —(( ><\/§ \/5»
(2,0, 22) = (1,0, =1), (0, 1,0))(0,1,0) = (1,0, 1) = 0(—=., 0, )
\/57 7\/§ ) 9 ) ) ) ) ) ) ) \/57 7\/§
~0(0,1,0) = (1,0, —1).
_(1,0,-1) _ /1 —1
ey = 73 —(7570,75)'
La matriz de paso seria
1 1
s 0y
o= 0 1 0
1 =1
V2 V2
Asi, D = QUAQ.

6.8. Calculo de potencias de matrices

Sea A una matriz diagonalizable y sea P la matriz de paso. Asi, D =
P7'AP y A= PDP~!. Entonces

(n veces)

A = A- A - -A = (PDP™Y) - (PDP™)

PD(P~YP)D(P~'P)---(P7'P)DP~!' = PD"P~L.
Por tanto, para caldular A" basta calcular P, P~y D",
Si

(n veces)

. (PDP7Y) =

A O 0
Lo o 0
D= : 0
0 O An

entonces es inmediato comprobar que

A0 0

N Y 0
D" = C 0
0 0 .. A"
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4 0 -1
Ejemplo 6.8.1. Sea A = 0 3 0
-1 0 4
Como vimos en el ejemplo D = Q'AQ] con:
3 00
D=10 30
0 05
L 1
V2 V2
Q= 0 1 0
1 0 =L
V2 V2
3" 0 0
Es inmediato ver que D™ = 0 3" 0
o 0 5"
Por tanto,
L L n L
7z 72 3 0 0 7z
A" =QD"Q™t =QD"Q! = 0 1 0 0 3" 0 0 1
- 0 = 0 0 5" =
V2 V2 V2
145" () 8"—5"
2 2
o 3 0
st 8

'Podemos hacerlo con cualquier matriz de paso. En este caso, lo hacemos con @ y no
con P porque al ser ortogonal el calculo de la inversa es trivial

SIL =%
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