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Capítulo 1

Conceptos preliminares

1.1. La base de las matemáticas.

Vamos a empezar por introducir algunos de los términos básicos del len-
guaje matemático.

Lo primero que necesitamos son las de�niciones. No se pueden hacer
matemáticas si existe ambigüedad en el lenguaje.

De�nicion: Es un enunciado o proposición que expone un concepto o
determina un objeto de forma única y precisa.

Por ejemplo, vamos a suponer que ya conocemos la de�nición de triángulo
y la de�nición de ángulo recto. Entonces podríamos de�nir a partir de éstas
un objeto nuevo:

De�nición 1.1.1. Se llama triángulo rectángulo a aquel en el que uno de
sus ángulos es recto.

Una vez de�nido (y �jado) este concepto podemos seguir construyendo
a partir de ahí: podemos de�nir lo que son los catetos, la hipotenusa y así
construir, sin ninguna ambigüedad, todos los conceptos que vamos a necesi-
tar.

Una vez que tenemos los conceptos podemos empezar a construir mate-
máticas con ellos. Lo primero que necesitamos es un punto de partida, unas
piezas básicas que van a ser nuestras �verdades iniciales� y se llaman axio-

mas. Es el único momento en matemáticas en el que vamos a asumir algo
como �cierto� sin más.

Axioma: Es una proposición verdadera que se admite sin demostración.
Los axiomas siempre son lo más simples e intuitivamente evidentes que

sea posible y siempre se trata de tener el menor número posible de ellos. El
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2 CAPÍTULO 1. CONCEPTOS PRELIMINARES

objetivo en matemáticas es construir todo el conocimiento sacando conclu-
siones a partir de los axiomas.

Un ejemplo de axioma sería:

Ejemplo 1.1.2. Dados dos puntos diferentes se puede trazar una única línea
recta que los une.

Este tipo de a�rmaciones son la base sobre la que se sustentan todas las
matemáticas. No vamos a entrar en esto por ser un tema algo más complejo
pero debemos decir que no son verdades absolutas: si cambiamos los axiomas
tenemos otras teorías igual de válidas, sólo son un punto de partida que
aceptamos por acuerdo.

Ya tenemos los conceptos y un punto de partida a partir del cual empezar
a extraer conclusiones. Veamos cuál es el proceso.

1.2. Implicación, teorema y demostración.

Implicación: Es una proposición que establece que si la proposición A
es verdadera entonces la proposición B también lo es. Se denota A ⇒ B.
Suele expresarse con una expresión del tipo �Si A, entonces B�. En este caso
diremos que A es una condición su�ciente para B (porque es su�ciente que se
veri�que A para saber que se veri�ca B) y que B es una condición necesaria
para A (porque no puede veri�carse A si no se veri�ca B porque A ⇒ B y
habría una contradicción).

Ejemplo 1.2.1. Si un número n es múltiplo de 4 entonces n es múltiplo de
2. Dicho de otro modo: n es múltiplo de 4 ⇒ n es múltiplo de 2.

Si la implicación no es verdadera se denota A ̸⇒ B.

Ejemplo 1.2.2. n es múltiplo de 2 ̸⇒ n es múltiplo de 4.

Es importante notar que para que una implicación no sea verdadera basta
con que exista una única excepción.

Si A ⇒ B y B ⇒ A decimos que �A es condición necesaria y su�ciente
para B� o �A si y sólo si B�. Se denota A ⇔ B.

Observación 1.2.3. Dada una implicación A ⇒ B, si no se cumple B,
entonces no se puede cumplir A. Por ejemplo, en la frase: si llueve, entonces
la acera se moja, si la acera está seca, signi�ca que no ha llovido. Nótese,
sin embargo, que el que la acera está mojada, no implica necesariamente que
haya llovido. Puede haberse mojado de cualquier otra manera y la implicación
sigue siendo cierta.
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Ejercicio 1.2.4. En la expresión: Yo iré al cine sólo si tú vas, ¾cuál es la
implicación? Nótese que esta expresión no es equivalente a: �si tú vas, yo
voy�.

Una proposición o un teorema son enunciados de la forma A ⇒ B
donde la proposición A se llama hipótesis y la proposición B se llama tesis.

Por ejemplo, y ya que conocemos las de�niciones de triángulo rectángulo,
catetos e hipotenusa, podemos enunciar el Teorema de Pitágoras.

Teorema 1.2.5. Si un triángulo es rectángulo entonces la suma de los cua-
drados de los catetos es igual al cuadrado de la hipotenusa.

En este caso, la hipótesis es que el triángulo es rectángulo y la tesis que la
suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa.

Por supuesto, en matemáticas cualquier a�rmación, cualquier enunciado
que no sea un axioma, debe ser demostrado.

Una demostración es una sucesión de pasos lógicos de forma que, to-
mando como verdadera una hipótesis, aseguran la veracidad de una tesis.

Por ejemplo:

Proposición 1.2.6. Dado un número elevado al cuadrado si lo dividimos
por 4 el resto sólo puede ser 0 ó 1.

Demostración. Consideramos un número n. Si n es par entonces n = 2k para
algún número k. Si n es impar entonces n = 2k+1 para algún k. En el primer
caso, n2 = (2k)2 = 22k2 = 4k2. Si dividimos 4k2/4 = k2 y el resto es 0. En
el segundo caso, n2 = (2k + 1)2 = (2k)2 + 4k + 1 = 4k2 + 4k + 1. Al dividir
(4k2 + 4k + 1)/4 el cociente es k2 + k y el resto es 1.

Siguiendo el razonamiento paso a paso podemos tener la certeza de que el
enunciado es cierto. Éste es el modo de proceder en matemáticas. Ahora bien,
debemos tener mucho cuidado a la hora de hacer las implicaciones porque a
partir de una implicación falsa, podemos demostrar cualquier cosa.

Ejemplo 1.2.7. La siguiente cadena de implicaciones contiene en realidad
dos errores. ¾Cuáles?

Sean a, b dos números reales tales que a = b. Entonces, a = b ⇒ a2 =
ab ⇒ a2 − b2 = ab − b2 ⇒ (a + b)(a − b) = b(a − b) ⇒ a + b = b ⇒ b + b =
b ⇒ 2b = b ⇒ 2 = 1 ½lo cual es una contradicción!
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1.3. Conjuntos y operaciones con conjuntos.

La de�nición de conjunto es bastante técnica así que nos conformare-
mos con una idea intuitiva. Entendemos como conjunto, �una colección de
elementos�.

Veamos algunos ejemplos:

A = {a, b, c} es un conjunto con tres elementos: a, b y c.

N es el conjunto de los números naturales: 1, 2, 3...

Z es el conjunto de los números enteros: ... -3, -2, -1, 0, 1, 2, 3...

R es el conjunto de los números reales.

∅ es el conjunto vacío, es decir, el conjunto que no contiene ningún
elemento.

Podemos de�nir el conjunto a través de una propiedad como �el con-
junto de todos los números pares�.

1.4. Lenguaje matemático

. Una de sus características fundamentales es la precisión: no puede haber
ambiegüedad alguna en matemáticas. La otra, es que se escribe con la ayuda
de una serie de símbolos (cuanti�cadores, símbolos de relación...) para que
las expresiones sean concisas, rápidas de leer y escribir y claras de interpre-
tar. Por supuesto, requiere algún tiempo (y práctica) acostumbrarse a dicho
lenguaje. El dominio de este lenguaje es indispensable para leer matemáticas
en cualquier libro o tratado y para trabajar con ellas.

Un elemento a que pertenece a un conjunto A se denota a ∈ A. Normal-
mente se utilizan letras minúsculas para los alementos y mayúsculas para los
conjuntos. Por ejemplo, −3 ∈ Z. Esto, que literalmente dice �-3 pertenece al
conjunto de los enteros�, habría que leerlo como �-3 es un número entero�.
Si queremos escribir: �tomamos un número real cualquiera�, la forma de es-
cribir esto en lenguaje matemático sería: �sea a ∈ R� (o cualquier otra letra
minúscula en lugar de a).

Si un elemento a no pertenece a un conjunto A se denota a ̸∈ A. Por
ejemplo, −3 /∈ N.

Si hablamos de relaciones entre conjuntos A y B, decimos que A está
incluído en B si todo elemento de A está en B. Se denota A ⊂ B. Así, por
ejemplo, N ⊂ Z ⊂ R.
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La intersección de A y B, denotado A ∩ B es el conjunto de elementos
que pertenecen simultáneamente a A y B.

La unión de A y B, denotado A ∪ B es el conjunto de elementos que
pertenecen a A o a B. Por ejemplo, si A = {a, b, c} y B = {b, c, d} entonces
A ∩B = {b, c} y A ∪B = {a, b, c, d}.

Pregunta 1.4.1. Si A son los números naturales múltiplos de 2 y B son los
números naturales múltiplos de 3, ¾quiénes serán A ∩B y A ∪B?

Símbolos de orden: menor que �<�, menor o igual que �≤�, mayor que �>�
y mayor o igual que �≥�.

Cuanti�cadores: Se trata de unos símbolos básicos para el razonamiento
lógico y, en particular, matemático. Vamos a usar tres:

Existe. Se denota: ∃. Una expresión del tipo �∃x...� quiere decir que
�existe al menos un elemento x...�

Para todo. Se denota: ∀. Una expresión como �∀x, y...� quiere decir que
�para todo x, y...�

Tal que. Se denota |. Una expresión como �∀x ∃ y | y > x� se leería
�para todo x existe y tal que y es mayor que x�.

Ejemplo 1.4.2. Escribir matemáticamente usando cuanti�cadores la siguien-
te proposición: Para todo número natural, existe un entero tal que la suma
de ambos es 0.

Solución: ∀n ∈ N, ∃z ∈ Z |n+ z = 0.

Ejercicio 1.4.3. Sea P el conjunto de números pares e I el de números
impares. Traducir de lenguaje matemático a lenguaje humano las siguientes
proposiciones y decidir si son ciertas of falsas:

∀ a, b ∈ I, a+ b ∈ P y ab ∈ I.

∀ a ∈ P y ∀b ∈ I, ab+ a ∈ P .

∀ a, b ∈ I con a < b, ∃c ∈ P | a < c < b.

∀ a, b ∈ I con a < b y ∀c ∈ P , a < c < b.

∀ a, b ∈ N, ∃c ∈ I | a2 < c < b2.

∀ a, b ∈ N, ∃c ∈ N | a2 + b2 = c2.

Ejemplo 1.4.4. Traducir de lenguaje matemático a lenguaje humano, o al
revés, las siguientes expresiones:
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Para todo número natural, hay un número natural mayor. ∀n ∈ N,∃m ∈
N |m > n.

Para todo número par, existe un número impar mayor que él. ∀n =
2k, ∃m = 2k′ + 1 |m > n.

∀x ∈ R, x < x2 ⇔ x < 0 ó x > 1. Solución: un número real es menor
que su cuadrado si y sólo si el número es negativo o mayor que 1.

∀ r1, r2 ∈ R | r1 < r2, ∃q ∈ Q | r1 < q < r2. Solución: dados dos nú-
meros reales cualesquiera (con uno mayor que otro), existe un número
racional entre ambos.

Ejercicio 1.4.5. Supongamos que denotamos por L un conjunto de locos,
P un conjunto de periódicos y D un conjunto de días. Un loco se denotaría
l ∈ L, un periódico, p ∈ P y un día sería d ∈ D. Para escribir que el loco d
lee el periódico p el día d escribiríamos: �l lee p en d�. Traducir a lenguaje
matemático las siguientes expresiones:

Algún loco habrá que cada día lea todos los periódicos.

Algún loco habrá cada día que lea todos los periódicos.

Cada loco lee algún periódico cada día.

Cada día hay algún periódico que todo los locos leen.

Todos los días habrá algún loco que lea algún periódico.

Todos los locos leen todos los periódicos cada día.

Hubo un día en el que algún loco leyó algún periódico.

El lenguaje matemático tiene la ventaja de que es preciso y no caben
distintas interpretaciones. En cambio, el lenguaje común depende muchas
veces de sobreentendidos. Al traducir el lenguaje común a lenguaje mate-
mático hay que tener siempre mucho cuidado para capturar el signi�cado
exacto. El siguiente ejemplo muestra la di�cultad que puede tener entender
una implicación expresada en lenguaje común.

Ejemplo 1.4.6. La siguiente proposición �Yo voy sólo si tú vas� es equiva-
lente (matemáticamente hablando, es decir, es equivalente como proposición
lógica) a una de las siguientes. ¾Sabrías decir a cuál?

si vas tú, voy yo,
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si voy yo, es que tú vas,

tú vas y yo no,

no vas y no voy,

voy y tú no vas,

o vamos los dos o ninguno.

El producto cartesiano de dos conjuntos A y B, se denota A×B, y es
el conjunto de pares (x, y) con x ∈ A, y ∈ B.

También se puede considerar el producto cartesiano de n conjuntos X1,
X2, ..., Xn, X1×X2×· · ·×Xn que será el conjunto de n-tuplas (x1, x2, ..., xn)
con xi ∈ Xi para cada i = 1, 2, ..., n. El ejemplo que más vamos a usar va
a ser el espacio usual de 3 dimensiones R3 ó R × R × R donde los puntos o
elementos del conjunto vienen dados por tres números reales: (a, b, c).

Sean A y B conjuntos. Una aplicación f de A en B es una correspon-
dencia en la que a cada elemento de A le corresponde un (y sólo un) elemento
de B. Se denota

f : A → B

a 7→ f(a) = b

Ejemplo 1.4.7.

f : R → R

x 7→ x3

de�nida en R. Esta aplicación toma un número x y le asocia otro nú-
mero que es x3.

f : R\{3} → R

x 7→ 3x+ 1

x− 3

de�nida en R\{3}, es decir, todos los números reales menos el 3 (que
haría 0 el denominador).

De�nición 1.4.8. Una aplicación f : A → B se dice que es inyectiva si
dados dos elementos distintos de A sus imágenes por f son distintas, es
decir, si a1 ̸= a2 entonces f(a1) ̸= f(a2).

Esto es lo mismo que decir que f es inyectiva si f(a1) = f(a2) implica
que a1 = a2.
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De�nición 1.4.9. Una aplicación f : A → B se dice que es sobreyectiva o
suprayectiva si todo elemento de B es imagen de algún elemento de A, es
decir, si ∀ b ∈ B ∃ a ∈ A tal que f(a) = b.

Por último, si tenemos tres conjuntos A,B,C y aplicaciones f : A → B y
g : B → C, la composición h = g ◦ f es una aplicación que va de A en C y
a cada elemento x ∈ A le asocia h(x) = g(f(x)). Por ejemplo, supongamos
f : R → R y g : R → R tales que f(x) = cos x y g(y) = y2. Entonces h = g◦f
es la aplicación h(x) = cos2 x (es decir, h(x) = (cos x)2, primero hacemos el
coseno, que sería aplicar f y después elevamos lo que haya salido al cuadrado,
que sería aplicar g).



Capítulo 2

Variable compleja

2.1. Números complejos y operaciones

2.1.1. De�nición

El conjunto más elemental de números es el de los naturales, N = {1, 2, 3, ...}.
Podemos sumarlos, pero cuando tratamos de restarlos, nos encontramos con
que no podemos calcular n −m si n ≤ m sin salirnos de N, así que necesi-
tamos de�nir más números: los enteros Z. Ahora podemos sumar, restar y
multiplicar sin problemas, pero cuanto intentamos dividir, podemos calcular
algunas divisiones como 6/3 pero si intentamos dividir 7/3 nos vuelven a
faltar números. Entonces de�nimos los racionales. Y cuando estos se quedan
cortos, añadimos los irracionales, como

√
2 o π para formar el conjunto de

los reales. Pero, una vez más, cuando intentamos calcular las raíces de un
polinomio, a veces podemos, como en x2 − 3x+2 = 0, y a veces no, como en
x2+1 = 0. Para poder encontrar soluciones a cualquier polinomio, de�nimos
un nuevo conjunto de números, los números complejos.

De�nimios la unidad imaginaria i tal que i2 = −1. Esto nos permite resol-
ver cualquier raíz cuadrada negativa ya que

√
−4 =

√
4 · (−1) =

√
4
√
−1 =

2i.
Un número complejo es una expresión de la forma

a+ bi

con a, b ∈ R. Esta expresión se denomina forma binómica del número com-
plejo (veremos otras formas de expresarlos más adelante). El valor a se llama
parte real y el valor b se llama parte imaginaria. Así, si z = a+ bi denotamos
Re(z) = a e Im(z) = b.

El conjunto de los números complejos se denota por

C = {a+ bi : a, b ∈ R}.

9
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Este conjunto se puede identi�car con R2 donde al número complejo a + bi
le corresponde el punto (a, b). Así, el eje horizontal se denomina eje real y el
vertical, eje imaginario.

Observación 2.1.1. Igual que los naturales son los enteros positivos, los
números reales, son los complejos cuya parte imaginaria es 0. Si la parte real
es 0, decimos que el número es imaginario puro.

2.1.2. Suma y resta

La suma y la resta de números complejos se hacen operando la parte real
y la parte imaginaria por separado.

(3 + 2i) + (5− 4i) = (3 + 5) + (2i− 4i) = 8− 2i.

(3 + 2i)− (5− 4i) = (3− 5) + (2i− (−4i)) = −2 + 6i.

En general, dados dos números complejos cualesquiera (a+ bi) y (c+ di),
su suma se de�ne como

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

Del mismo modo, la resta se de�ne como

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

Es inmediato ver que la suma de números complejos cumple las propie-
dades deseables en cualquier operación. Si

asociativa: (z1 + z2) + z3 = z1 + (z2 + z3) ∀z1, z2, z3 ∈ C,

conmutativa: z1 + z2 = z2 + z1 ∀z1, z2 ∈ C,

tiene elemento neutro: 0 + 0i,

tiene elemento opuesto: −(a+ bi) = −a− bi.

Ejercicio 2.1.2. Probar las propiedades anteriores para la suma de comple-
jos.
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2.2. Conjugado, módulo y argumento

Se de�ne el conjugado de un número complejo z = a+ bi al número:

z = a− bi,

cambiando de signo la parte imaginaria.

Por ejemplo, 2 + 3i = 2− 3i, o 2− 3i = 2 + 3i.

Ejercicio 2.2.1. Demostrar las siguientes propiedades del conjugado:

z = z

z = z si y solo si z ∈ R

z1 + z2 = z1 + z2

−z = −z

Se de�ne el módulo de un número complejo z = a+ bi al número:

|z| =
√
a2 + b2.

Ejercicio 2.2.2. Demostrar las siguientes propiedades del módulo

|z| representa la distancia del punto z al 0

|z| = |z|

|Re(z)| ≤ |z|

|z1 + z2| ≤ |z1|+ |z2|

|z1 − z2| representa la distancia entre z1 z2

|z − z0| = R representa la circunferencia de centro z0 y radio R

Se de�ne el argumento de un número complejo z = a+bi, arg(z), al ángu-
lo θ que forma el vector (a, b) con el eje real positivo en sentido antihorario.
Nótese que θ + 2πk es igual al ángulo θ para todo k ∈ Z. Elegiremos repre-
sentar el argumento por un ángulo entre 0 y 2π radianes (otra posibilidad
natural sería considerar el ángulo entre −π y π).

Si a + bi tiene argumeto θ y a ̸= 0 es fácil ver que tg(θ) = b
a
. Nótese

también que dado un ángulo θ, tg(θ) = tg(θ + π). Si utilizamos una calcula-
dora, al calcular el arcotangente de un número, nos va a dar un ángulo entre
−π/2 y π/2. Para determinar el argumento del número complejo, debemos
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saber primero en qué cuadrante está y ajustar el ángulo que nos devuelve la
calculadora. Si el ángulo está en el tercer cuadrante, habrá que sumarle π. Si
está en el cuarto cuadrante, la calculadora nos dará un número negativo así
que, para obtener un número entre 0 y 2π habrá que sumarle 2π. Por último,
si está en el segundo cuadrante, nos saldrá un número negativo en el cuarto
cuadrante y, por tanto, habrá que sumarle π. En resumen:

arg(z) = θ =



arc tg( b
a
), si z está en el 1er cuadrante,

π
2

si a = 0 y b > 0,

arc tg( b
a
) + π, si z está en el 2º o 3er cuadrante,

−π
2

si a = 0 y b < 0,

arc tg( b
a
) + 2π, si z está en el 4 cuadrante

Ejemplo 2.2.3. Ver el caso de 1 + i,−1− i, 1− i,−1 + i.

Si z = −
√
3+ i, |z| = 2 y θ = arc tg

(
1

−
√
3

)
+π = −π

6
+π = 5π

6
, ya que

−
√
3 + i está en el segundo cuadrante.

2.2.1. Producto y división

Para multiplicar dos números complejos, simplemente desarrollamos el
paréntesis multiplicando término a término:

(3 + 2i) · (5− 4i) = 15− 8i2 − 12i+ 10i = 15 + 8− 2i = 23− 2i.

En general, el producto de números complejos se de�ne como

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Es inmediato ver que el producto de números complejos cumple las si-
guientes propiedades:

asociativa: (z1 · z2) · z3 = z1 · (z2 · z3) ∀z1, z2, z3 ∈ C,

conmutativa: z1 · z2 = z2 · z1 ∀z1, z2 ∈ C,

tiene elemento neutro: (1 + 0i)

es distributivo respecto a la suma: z1 · (z2 + z3) = z1 · z2 + z1 · z3.
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Ejercicio 2.2.4. Probar las propiedades mencionadas para el producto de
complejos.

Podemos de�nir la división como sigue, multiplicando numerador y de-
nominador por el conjugado del denominador:

2+i
1−i

= (2+i)(1+i)
(1−i)(1+i)

= 2+i2+2i+i
1−i2+i−i

= 1+3i
2

= 1
2
+ 3

2
i.

En general, se de�ne como

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i.

Observación 2.2.5. El producto de números complejos tiene elemento ele-
mento inverso para todo z = a+ bi distinto del 0:

(a+ bi)−1 =
1

a+ bi
=

a

a2 + b2
− b

a2 + b2
i.

Por ejemplo:

(3 + 4i)−1 =
3

32 + 42
− 4

32 + 42
i =

3

25
− 4

25
i.

Ejercicio 2.2.6. Demostrar las siguientes propiedades del conjugado y el
módulo:

z1z2 = z1z2

z−1 = z−1, si z ̸= 0

z1z2 = z1z2

z−1 = z−1, si z ̸= 0

Re(z) = z+z
2

Im(z) = z−z
2i

|z|2 = zz

|z1z2| = |z1||z2|

si z2 ̸= 0,
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2|

Ejercicio 2.2.7. Probar que si z1z2 = 0 entonces z1 = 0 o z2 = 0.

Ejercicio 2.2.8. Demostrar las siguientes propiedades:
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si z3 ̸= 0, z1+z2
z3

= z1
z3
+ z2

z3

si z2 ̸= 0, z1
z2

= z1
1
z2

si z1, z2 ̸= 0, 1
z1z2

= (z1z2)
−1 = z−1

1 z−1
2 = 1

z1
1
z2

(z1 + z2)
2 = z21 + 2z1z2 + z22

(z1 + z2)
n =

∑n
0

(
n
k

)
zn−k
1 zk2

2.3. Forma trigonométrica, polar y exponencial

Forma trigonométrica:

Dados el módulo ρ y el argumento θ de un número complejo z = a + bi,
por trigonometía elemental, tenemos que

a = ρ cos θ, b = ρ sen θ.

Por tanto, podemos expresar el número complejo como

z = ρ(cos θ + i sen θ),

lo que se conoce como forma trigonométrica de z.
Dos números complejos son iguales si tienen el mismo módulo y sus ar-

gumentos se diferencian en 2kπ para algún k ∈ Z.
Dados dos números complejos en forma trigonométrica, el producto y el

cociente se expresan del siguiente modo:

Si z = ρ
(
cos(θ) + i sen(θ)

)
, z′ = ρ′

(
cos(θ′) + i sen(θ′)

)
zz′ =ρ

(
cos(θ) + i sen(θ)

)
ρ′
(
cos(θ′) + i sen(θ′)

)
=ρρ′[cos(θ + θ′) + i sen(θ + θ′)]

(para demostrarlo, basta hacer los productos uno a uno y usar las
fórmulas del coseno y el seno de la suma de ángulos).

z
z′
= ρ

ρ′
(cos(θ − θ′) + i sen(θ − θ′))

(basta ver que z′ ρ
ρ′

(
cos(θ − θ′) + i sen(θ − θ′)

)
= z).

Ejercicio 2.3.1. Comprobar que si tomamos los números complejos 1 + i =√
2(cos(π/4)+i sen(π/4)) y −2+2i =

√
8(cos(3π/4)+i sen(3π/4)) obtenemos

el mismo resultado:
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multiplicándolos en forma binómica o en forma trigonométrica, es de-
cir, veamos que

(1 + i)(−2 + 2i) = −4 = 4 cos(π)

=
√
2
(
cos(π/4) + i sen(π/4)

)√
8
(
cos(3π/4) + i sen(3π/4)

)
.

dividiéndolos en forma binómica o en forma trigonométrica, es decir,
veamos que

−2 + 2i

1 + i
= 2i = 2 sen(π/2) =

√
8
(
cos(3π/4) + i sen(3π/4)

)
√
2
(
cos(π/4) + i sen(π/4)

) .

Forma polar:

Ya hemos visto cómo un número complejo queda determinado por su mó-
dulo y su argumento. Dado un número complejo z con módulo ρ y argumento
θ, se denota en forma polar como

z = ρθ.

Por ejemplo, 1+i =
√
2(cos(π/4)+i sen(π/4)) se podría denotar en forma

polar como
√
2π/4.

Así, denotado en forma polar, tenemos que

zz′ = ρθρ
′
θ′ = (ρρ′)θ+θ′ y

z

z′
=

ρθ
ρ′θ′

=
( ρ

ρ′

)
θ−θ′

.

Forma exponencial:

Por último, usando la fórmula de Euler, eiθ = cos(θ) + i sen(θ) pode-
mos expresar el número complejo z con módulo ρ y argumento θ en forma
exponencial simplemente como

z = ρeiθ

Por ejemplo, 1+i =
√
2(cos(π/4)+i sen(π/4)) se podría denotar en forma

exponencial como
√
2ei

π
4 .

Denotado en forma exponencial, tenemos que

zz′ = ρeiθρ′eiθ
′
= (ρρ′)ei(θ+θ′) y

z

z′
=

ρeiθ

ρ′eiθ′
=

ρ

ρ′
ei(θ−θ′).
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Ejercicio 2.3.2. Escribir en forma trigonométrica, polar y exponencial el
número z = −1−

√
3i.

ρ = 2, θ = arctg
(

−
√
3

−1

)
+ π = π

3
+ π = 4π

3
. Por tanto,

z = 2
(
cos

(4π
3

)
+ i sen

(4π
3

))
= 2 4π

3
= 2ei

4π
3 .

Conviene recordar que:

1π/6 =

√
3

2
+

1

2
i, 1π/4 =

√
2

2
+

√
2

2
i, 1π/3 =

1

2
+

√
3

2
i.

A partir de estos, podemos calcular de forma inmediata los puntos 1kπ/6
y 1jπ/4 para cualquier j, k ∈ N.

2.4. Potencias de números complejos

Primero notamos que i2 = −1, i3 = −i, i4 = 1 y, a partir de ahí, para
todo 4 < k ∈ N, ik = ij siendo j el resto de dividir k entre 4.

Teorema 2.4.1 (Fórmula de De Moivre). Para cualquier número complejo
z = ρ(cos θ + i sen θ) y n ∈ N, se veri�ca que

zn = ρn(cos(nθ) + i sen(nθ)).

Ejercicio 2.4.2. Demostrar, por inducción, la fórmula de De Moivre.

En forma polar con z = ρθ, tenemos que

zn = ρnnθ.

En forma exponencial con z = ρeiθ, tenemos que

zn = (ρeiθ)n = ρneinθ.

Ejercicio 2.4.3. Ver que (1− i)8 = 16 (nótese que arg(1− i) = 7π
4
).

2.5. Raíces de números complejos

Dado un número complejo z se dice que w ∈ C es una raíz n-ésima de z
si wn = z.
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Teorema 2.5.1. Todo número complejo z = ρ(cos θ + i sen θ) distinto de 0
tiene exactamente n raíces n-ésimas distintas, dadas por

wk = n
√
ρ
(
cos

θ + 2kπ

n
+ i sen

θ + 2kπ

n

)
.

Ejemplo 2.5.2. Las raíces n-ésimas de la unidad, 1 = 1(cos 0 + i sen 0) son

wk = cos
2kπ

n
+ i sen

2kπ

n
.

En particular, las raíces cúbicas de la unidad serían w0 = 1, w1 = cos 2π
3
+

i sen 2π
3
= −1

2
+

√
3
2
i y w2 = cos 4π

3
+ i sen 4π

3
= −1

2
−

√
3
2
i

Ejercicio 2.5.3. Calcular las raíces cuartas de z = 16(cosπ + i sen π).

Al igual que con los números reales, dado un polinomio P (z) con coe�-
cientes complejos y un número α ∈ C tenemos que

P (α) = 0 si y solo si z − α divide a P (z).

Nota: Esto nos permite aplicar el método de Ru�ni para calcular raíces de
polinomios también en C.

Ejercicio 2.5.4. Factorizar el polinomio z4 − 1.

Teorema 2.5.5 (fundamental del álgebra). Un polinomio de grado n ≥ 1 con
coe�cientes en C tiene exactamente n raíces en C (contando multiplicidades).

Proposición 2.5.6. Dado un polinomio P (z) con coe�cientes reales, si α ∈
C es una raíz, entonces α ∈ C.

Ejercicio 2.5.7. Demostrar la proposición anterior usando las propiedades
del conjugado.
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Capítulo 3

Elementos básicos del álgebra
lineal

3.1. Matrices

3.1.1. De�nición

Una matriz real no es más que un conjunto de números reales dispuestos
de cierta manera.

Se llamamatriz real de orden m×n (o dem �las y n columnas) al conjunto
de m · n números reales dispuestos de la forma

A =


a11 a12 · · · · · · · · · a1n
a21 a22 · · · · · · · · · a2n
· · · · · · · · · · · · · · · · · ·
am1 am2 · · · · · · · · · amn


Se representan por A, (aij) o (aij)m×n. El elemento aij se llama coe�ciente,

el índice i corresponde a la �la y el j a la columna. El conjunto de todas las
matrices de orden m× n se denota Mm×n.

Dos matrices A y B de orden m × n son iguales si sus coe�cientes aij y
bij son iguales para i = 1, 2, ...,m, j = 1, 2..., n.

Ejemplo 3.1.1. (
1 2 3
4 5 6

)
̸=

 1 4
2 5
3 6


Hay algunos tipos de matrices que son importantes y les damos un nom-

bre:

19
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Una matriz de orden m× 1 es una matriz columna.

Una matriz de orden 1× n es una matriz �la.

Si m = n la matriz es una matriz cuadrada.

Si en una matriz cuadrada todos los elementos fuera de la diagonal son
0 (aij = 0∀ i ̸= j) decimos que la matriz es diagonal.

In denota la matriz cuadrada de orden n cuyos elementos de la diagonal
principal son 1 y los restantes 0 (aii = 1 ∀ i y aij = 0 ∀ i ̸= j). Si no
hay ambigüedad en el orden, la denotaremos símplemente como I.

Si en una matriz cuadrada todos los elementos por encima o por debajo
de la diagonal son 0 (aij = 0∀ i > j o aij = 0∀ i < j) decimos que la
matriz es triangular.

Una matriz se llama escalonada por renglones o simplemente escalonada
si cumple con las siguientes propiedades:

1. Todas las �las cero están en la parte inferior de la matriz.

2. El primer elemento diferente de cero (o pivote) de cada �la está a
la derecha del primer elemento diferente de cero (o pivote) de la
�la anterior.

Una matriz escalonada se llama reducida si todos los pivotes son 1 y
todos los coe�cientes encima del pivote son 0.

Ejemplo 3.1.2. Triangular superior. Si i > j entonces aij = 0: 4 2 3
0 1 −2
0 0 2


Triangular inferior. Si i < j entonces aij = 0: 4 0 0

2 1 0
3 −2 2


Diagonal. Si i ̸= j entonces aij = 0: 2 0 0

0 1 0
0 0 3


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3.1.2. Suma

Dadas dos matrices A y B de orden m × n de�nimos la matriz suma
C = A+B como la matriz cuyos coe�cientes son de la forma: cij = aij + bij
para todo i, j.

Nótese que la suma de matrices sólo está de�nida entre matrices que
tengan el mismo orden.

Ejemplo 3.1.3.(
−1 2 3
1 0 2

)
+

(
2 0 −1
3 1 1

)
=

(
1 2 2
4 1 3

)
(

4 0 1
1 2 3

)
+

(
3 1
−2 0

)
no está de�nida.

Propiedades.

Dadas las matrices A,B,C de orden m× n se veri�ca:

Asociativa: (A+B) + C = A+ (B + C).

Existe elemento neutro (representamos como 0 a la matriz tal que aij =
0 para todo i, j): A+ 0 = 0 + A = A.

Existe elemento opuesto (representamos como (−A) a la matriz de
coe�cientes −aij): A+ (−A) = (−A) + A = 0.

Conmutativa: A+B = B + A.

3.1.3. Multiplicación de una matriz por un número

Dado λ ∈ R, la matriz λA se de�ne como la matriz cuyos coe�cientes son
λaij.

Ejemplo 3.1.4. Si λ = 3 y A =

(
1 2 3
2 −1 0

)
entonces λA =

(
3 6 9
6 −3 0

)
Propiedades.

Para todo para de números λ, µ ∈ R y todo para de matrices A,B de
orden m× n se veri�ca:

(λ+ µ)A = λA+ µA.

λ(A+B) = λA+ λB.

λ(µA) = (λµ)A.

1A = A.
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3.1.4. Multiplicación de matrices

Sea A = (aij) una matriz de orden m× k y sea B = (bij) una matriz de
orden k × n. El producto AB = C se de�ne como la matriz de orden m× n
donde el elemento cij de la �la i y la columna j de AB es:

cij = ai1b1j + ai2b2j + ...+ aikbkj

para i = 1, 2, ...,m, j = 1, 2, ..., n.
Este producto está de�nido si y solo si el número de columnas de la matriz

A es igual al número de �las de la matriz B.

Ejemplo 3.1.5.
(
1 2 3

) 4
5
6

 = 32

 1 0 −1 2
3 2 1 −2
4 2 0 3




1 3
0 −1
2 2
1 0

 =

 1 1
3 9
7 10


Propiedades.

Sean A,BC matrices y λ ∈ R. Suponiendo que las operaciones siguientes
están de�nidas, se veri�ca:

Asociativa: (AB)C = A(BC).

Distributiva: A(B + C) = AB + AC y (A+B)C = AC +BC.

No es, en general, conmutativa: AB ̸= BA.

Existe elemento neutro: AI = IA = A.

λ(AB) = (λA)B

Ejercicio 3.1.6. Dar un ejemplo de dos matrices A,B tales que AB ̸= BA.

3.1.5. Matrices especiales

Traspuesta de una matriz.

La transpuesta de una matriz A, At, es la matriz que resulta de cambiar
en A las �las por las columnas. Es decir, si los coe�cientes de A son aij los
de At son aji.
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Ejemplo 3.1.7. A =

 2 1
0 4
1 −1

 At =

(
2 0 1
1 4 −1

)
Propiedades

Sean A,B,C matrices y λ ∈ R. Suponiendo que las operaciones siguientes
están de�nidas, se veri�ca:

(At)t = A.

(A+B)t = At +Bt.

(λA)t = λAt.

(AB)t = BtAt.

Matrices simétricas y antisimétricas

Una matriz cuadrada es simétrica si es igual a su traspuesta, At = A, es
decir, aij = aji ∀ i, j.

Una matriz cuadrada es antisimétrica si es igual a la opuesta de su trans-
puesta, At = −A, es decir aij = −aji ∀ i, j. Si A es antisimétrica, en particu-
lar, dado que aii = −aii entonces 2aii = 0 y aii = 0 ∀ i.

Proposición 3.1.8. Toda matriz cuadrada A puede descomponerse como
suma de una matriz simétrica, (A+ At)/2, y una antisimétrica (A− At)/2.

Ejemplo 3.1.9. A =

 2 1 3
1 4 7
3 7 −1

 es una matriz simétrica.

A =

 0 1 −3
−1 0 7
3 −7 0

 es una matriz antisimétrica.

AAt es una matriz simétrica: (AAt)t = (At)tAt = AAt.

3.1.6. Inversa de una matriz

En el producto entre números reales, hay un elemento neutro, es decir, un
elemento que multiplicado por cualquier otro número real x nos da x. El ele-
mento neutro de los números reales es el número 1. Si consideramos matrices
cuadradas de orden n, como vimos en las propiedades de la multiplicación,
el elemento neutro es la matriz In.
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En la multiplicación de números reales todo elemento posee un elemento
inverso, esto es, para cualquier número existe otro número tal que el producto
de ambos es el elemento neutro. ∀x ∈ R ∃x′ ∈ R tal que x′x = 1 = xx′. El
inverso de x se denota x−1 y, en el caso de los números reales x−1 = 1

x
.

En el caso de una matriz A, una matriz inversa B debe cumplir que
BA = I = AB con el producto de matrices. La primera consecuencia de esto
es que la matriz A debe ser cuadrada.

Ejercicio 3.1.10. Explicar por qué una matriz de orden m × n con m ̸= n
no puede tener inversa.

Además, no toda matriz cuadrada tiene inversa. Si una matriz cuadrada
A tiene inversa, ésta se denota A−1.

Propiedades

Si una matriz admite inversa, ésta es única.

A−1 tiene inversa. De hecho, (A−1)−1 = A.

Si A y B tienen inversa entonces (AB)−1 = B−1A−1( ̸= A−1B−1).

Si A tiene inversa entonces (At)−1 = (A−1)t.

3.1.7. Álgebra de matrices

Podemos operar algebraicamente con las matrices igual que hacemos con
números en una ecuación. En este caso hay que ser algo más cuidadosos
porque, como hemos visto, las propiedades no son las mismas.

No hay propiedad conmutativa en el producto entre matrices, por tanto
si tenemos dos expresiones con matrices X, Y donde X = Y y queremos
multiplicar ambos lados de la ecuación por la matriz A se cumple que AX =
AY o bien XA = Y A pero puede ocurrir que AX ̸= Y A.

A su vez, �algo que está multiplicando� no puede �pasar dividiendo�. Pri-
mero, no existe la división entre matrices. Lo que se puede hacer es multiplicar
por el inverso en ambos lados, pero ½únicamente en el caso de que ya sepamos
que existe inverso!

Por ejemplo si A es invertible y sabemos que XA = Y entonces podemos
multiplicar por el inverso de A ½por la derecha! en ambos lados de la ecuación
y obtenemos que X = Y A−1.

Ejemplo 3.1.11. Si conocemos las matrices A y B (y suponemos que todos
los produtos e inversas necesarios se pueden hacer), ¾cómo podemos deter-
minar la matriz X en la siguiente ecuación?

AX = X +B
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Pensemos primero cómo lo haríamos con números. Si la ecuación fuera
3x = x+4, restaríamos x en ambos lados de la ecuación para obtener 3x−x =
4, sacaríamos factor común a la x para llegar a (3−1)x = 4 ⇒ 2x = 4 (nótese
que al sacar factor común a la x ha aparecido un 1 que no era explícito antes,
como si tuviéramos 3x − 1x = 4) y �nalmente dividiríamos por dos ambos
lados de la ecuación para llegar a x = 2. ¾Cómo sería entonces el proceso
con matrices?

En primer lugar, restamos X en ambos lados obteniendo AX −X = B.
A continuación podemos sacar factor común a la X, dado que también se
cumple la propiedad distributiva. De nuevo, necesitamos hacer explícito qué es
lo que multiplica (por la izquierda) a la matriz X. En este caso, sería la matriz
unidad, I. Llegamos entonces a la expresión (A−I)X = B. Finalmente, dado
que no existe la división en matrices, para despejar la matriz X tenemos que
multiplicar por el inverso de (A − I) por la izquierda en ambos miembros.
Nos queda, por tanto,

(A− I)−1(A− I)X = (A− I)−1B ⇒ X = (A− I)−1B.

Ejercicio 3.1.12. Si conocemos las matrices A y B (y suponemos que todos
los produtos e inversas necesarios se pueden hacer), ¾cómo podemos deter-
minar la matriz X en la ecuación

AX = B + AXB

?
La resolución podría ser como sigue:

AX = B + AXB ⇒ AX − AXB = B ⇒ A(X −XB) = B ⇒ X −XB = A−1B

⇒ X(I −B) = A−1B ⇒ X = A−1B(I −B)−1.

Es muy importante darse cuenta de que en el caso de matrices no es lo
mismo multiplicar por un lado que por otro (no hay propiedad conmutativa
en el producto) así que al sacar factor común o al despejar hay que tener en
cuenta siempre el orden de los productos.

Ejercicio 3.1.13. Asumiendo que conocemos las matrices A y B (y supone-
mos que todos los produtos e inversas necesarios se pueden hacer) despejar
la matriz X en las siguientes ecuaciones:

X−1(A+B)−1 = A−1

A−1(A−BX)t = B

AX − (B−1A−1)−1 = I
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B−1X t − (AB)−1 = I

(X − I)A = X +B

(BX−1)−1 −B−1 = XA

3.1.8. Cálculo de la inversa de una matriz por el método
de Gauss-Jordan

Dada una matriz (cuadrada) invertible A queremos calcular su inversa
A−1. Este método consiste en calcularla realizando transformaciones elemen-
tales de �las de A. Estas transformaciones son las siguientes:

1º Intercambiar �las.

2º Multiplicar cada �la por un número λ ∈ R, λ ̸= 0.

3º Sumar una �la a otra.

Para calcularla, empezamos escribiendo la matriz A y a su derecha la
matriz unidad I obteniendo una matriz de orden n × 2n, (A : I). Entonces
se realizan las operaciones elementales por �las en la matriz (A : I) hasta
conseguir que A se transforme en I y entonces I se habrá transformando en
A−1.

Ejemplo 3.1.14.

A =

 1 −1 1
0 0 1
1 2 1

 (A : I) =

 1 −1 1 : 1 0 0
0 0 1 : 0 1 0
1 2 1 : 0 0 1

 →

F3:=F3−F1−→

 1 −1 1 : 1 0 0
0 0 1 : 0 1 0
0 3 0 : −1 0 1

 F2↔F3−→

 1 −1 1 : 1 0 0
0 3 0 : −1 0 1
0 0 1 : 0 1 0

 →

F2:=
1
3
F2−→

 1 −1 1 : 1 0 0
0 1 0 : −1

3
0 1

3

0 0 1 : 0 1 0

 F1:=F1+F2−→

 1 0 1 : 2
3

0 1
3

0 1 0 : −1
3

0 1
3

0 0 1 : 0 1 0

 →

F1:=F1−F3−→

 1 0 0 : 2
3

−1 1
3

0 1 0 : −1
3

0 1
3

0 0 1 : 0 1 0


Así:

A−1 =

 2
3

−1 1
3

−1
3

0 1
3

0 1 0


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3.2. Determinantes

3.2.1. De�nición.

A toda matriz cuadrada A se le asocia un número real que se llama
determinante de la matriz. Se denota det(A) o |A| (con barras verticales
en lugar de paréntesis).

La de�nición general requiere introducir el concepto de permutación. Pa-
ra simpli�car la exposición tomaremos como de�ción su desarrollo. Veamos
primero cómo se calculan los determinantes de orden 2 y 3.

Determinante de orden 2. Si A =

(
a11 a12
a21 a22

)
entonces

|A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

Determinante de orden 3. Si A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 entonces

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31

−a11a23a32 − a12a21a33.

Este desarrollo será utilizado con frecuencia. La regla de Sarrus, dispo-
nible en cualquier referencia, permite memorizarlo cómodamente. Otra
forma es hacer el desarrollo, tal y como se describe a continuación, a
través de la �la o columna que contenga más ceros.

Determinante de una matriz A de orden n. Desarrollo de un determi-
nante por los elementos de una línea o columna.

De�nición 3.2.1. Se llama menor complementario del elemento
aij al determinante de orden n− 1 que se obtiene suprimiendo la �la i
y la columna j. El menor complementario de aij se denota Mij.

Ejemplo 3.2.2. Sea A =

 4 1 2
0 −1 1
3 0 −2

. El menor complementario

del elemento a22 será por tanto el determinante

∣∣∣∣ 4 2
3 −2

∣∣∣∣ = 4 · (−2)−
3 · 2 = −8− 6 = −14.



28 CAPÍTULO 3. ELEMENTOS BÁSICOS DEL ÁLGEBRA LINEAL

De�nición 3.2.3. Se llama adjunto del elemento aij al menor com-
plementario del elemento aij multiplicado por (−1)i+j. El adjunto de
aij se denota Aij.

Nótese que (−1)i+j es igual a 1 si y sólo si i y j son ambos pares o
ambos impares y es igual a -1 si uno de ellos es par y el otro impar.

Dada una matriz de orden n, el determinante de A es igual a la suma
de los elementos de una �la o columna cualquiera por sus adjuntos
correspondientes. Es decir,

Por la �la i: |A| =
n∑

k=1

(−1)i+k aik Mik =
n∑

k=1

aik Aik.

Columna j: |A| =
n∑

k=1

(−1)k+j akj Mkj =
n∑

k=1

akj Akj.

Ejemplo 3.2.4.

|A| =

∣∣∣∣∣∣∣∣
3 7 5 2
4 5 0 6
0 9 −8 1
5 3 0 3

∣∣∣∣∣∣∣∣
Vamos a desarrollarlo por los elementos de la tercera columna:

|A| = (−1)1+35A13 + (−1)3+3(−8)A33 = 5(−149) + (−8)91 = −1473.

A13 =

∣∣∣∣∣∣
4 5 6
0 9 1
5 3 3

∣∣∣∣∣∣ = −149 A33 =

∣∣∣∣∣∣
3 7 2
4 5 6
5 3 3

∣∣∣∣∣∣ = 91

Ejercicio 3.2.5. Comprobar que si hacemos el desarrollo de un determinante
de orden 3 a través de cualquier �la o columna obtenemos la expresión que
vimos anteriormente.

De�nición 3.2.6. Dada una matriz cuadrada de orden n, se de�ne la traza

de A como el valor de la suma de todos los elementos de la diagonal principal:
tr(A) :=

∑n
i=1 aii.

Propiedades de los determinantes.

1 El determinante de una matriz y el de su traspuesta es el mismo: |A| =
|At|.
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2 Si se intercambian entre sí dos �las o dos columnas el determinante
cambia de signo.

3 Si la matriz tiene una �la o columna de ceros, el determinante es 0.

4 Si la matriz tiene dos �las o columnas iguales o proporcionales entonces
el determinante es 0.

5 Si se multiplica una sola �la o una sola columna por un número t
entonces el determinante es multiplicado por t.∣∣∣∣∣∣∣∣

a11 · · · ta1j · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · tanj · · · ann

∣∣∣∣∣∣∣∣ = t ·

∣∣∣∣∣∣∣∣
a11 · · · a1j · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣
6 Si los elementos de la columna j de A se decomponen como una suma,
akj = bkj + ckj para k = 1, 2, ..., n, el determinante es la suma de los
determinantes, |A| = |B| + |C|, donde B y C son iguales a A excepto
en la columna j que está formada, respectivamente, por los elementos
bkj y ckj.

∣∣∣∣∣∣∣∣
a11 · · · b1j + c1j · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · bnj + cnj · · · ann

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
a11 · · · b1j · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · bnj · · · ann

∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣∣
a11 · · · c1j · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · cnj · · · ann

∣∣∣∣∣∣∣∣
7 Si los elementos de la �la i de A se decomponen como una suma,
aik = bik + cik para k = 1, 2, ..., n, el determinante es la suma de los
determinantes, |A| = |B| + |C|, donde B y C son iguales a A excepto
en la �la i que está formada, respectivamente, por los elementos bkj y
ckj.

Ejercicio 3.2.7. Expresar la propiedad mediante determinantes como
en el caso anterior.

8 Si a una �la (o columna) se le suma un múltiplo cualquiera de otra �la
(o columna) el determinante no varía.
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Ejemplo 3.2.8.∣∣∣∣∣∣∣∣
a11 · · · a1j + ta1k · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · anj + tank · · · ann

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
a11 · · · a1j · · · a1n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣
9 Si A es una matriz triangular el determinante es el producto de los
elementos de la diagonal: |A| =

∏n
i=1 aii.

10 El determinante del producto es el producto de los determinantes:
|AB| = |A| · |B|.

Podemos usar la propiedad 8 para calcular un determinante de forma
sencilla. Operando con las �las o columnas sin variar el valor del determi-
nante podemos hacer que por debajo de la diagonal todo sean ceros. Una vez
obtenida una matriz triangular, calcular el determinante es inmediato por
la propiedad 9. Las operaciones que podemos hacer con la matriz sin que
cambie el determinante se llaman operaciones elementales.

Ejemplo 3.2.9.

Sea A =

 1 2 3
4 5 6
7 8 9

 |A| =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
2 −3 4
5 −1 6
8 0 2

∣∣∣∣∣∣ = −86.

∣∣∣∣∣∣∣∣
2a a a a
a 2a a a
a a 2a a
a a a 2a

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
5a a a a
5a 2a a a
5a a 2a a
5a a a 2a

∣∣∣∣∣∣∣∣ = 5a

∣∣∣∣∣∣∣∣
1 a a a
1 2a a a
1 a 2a a
1 a a 2a

∣∣∣∣∣∣∣∣ =

= 5a

∣∣∣∣∣∣∣∣
1 a a a
0 a 0 0
0 0 a 0
0 0 0 a

∣∣∣∣∣∣∣∣ = 5a4.
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Ejercicio 3.2.10. Calculamos mediante operaciones elementales

|A| =

∣∣∣∣∣∣∣∣
1 2 −1 3
2 5 0 3
−1 1 2 0
0 0 5 −4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 2 −3
0 3 1 3
0 0 5 −4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 2 −3
0 0 −5 12
0 0 5 −4

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 2 −3
0 0 −5 12
0 0 0 8

∣∣∣∣∣∣∣∣ = −40.

Ejercicio 3.2.11. Calcular, desarrollando por una �la o columna y mediante

operaciones elementales |A| =

∣∣∣∣∣∣∣∣
3 2 1 −1
2 1 0 −2
3 −4 1 5
1 2 −3 2

∣∣∣∣∣∣∣∣
3.2.2. Aplicaciones de los determinantes

Cálculo de la inversa de una matriz

Llamamos matriz adjunta deA,Adj(A) a la matriz que resulta de sustituir
cada elemento de la matriz A por su respectivo adjunto.

Se veri�ca que:

A · (Adj(A))t = (Adj(A))t · A = |A| · I (3.1)

Proposición 3.2.12. Una matriz cuadrada es inversible si y sólo si su de-
terminante es distinto de 0. En ese caso,

A−1 =
(Adj(A))t

|A|
.

Demostración. Si A es inversible entonces |A| ≠ 0:
Si A es inversible, existe una matriz B tal que AB = BA = I. Enton-

ces, |AB| = |BA| = |I| y, por las propiedades del determinante, |A||B| =
|B||A| = |I| = 1, luego |A| ≠ 0 (de lo contrario |B| · 0 = 0 ̸= 1).

Si |A| ≠ 0 entonces A es inversible:

Por la propiedad de la matriz adjunta, ver (3.1),A· (Adj(A))t

|A| = (Adj(A))t

|A| ·A =

I1 luego A−1 = (Adj(A))t

|A| .

1Nótese que, para poder dividir por |A| es necesaria la hipótesis de que |A| ≠ 0
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Ejemplo 3.2.13. Dada la matriz A =

 1 2 3
4 5 6
2 1 1

 vamos a calcular A−1.

(
Adj(A)

)t

=

 −1 1 −3
8 −5 6
−6 3 −3


|A| = −3 A−1 = (Adj(A))t

|A| =

 1
3

−1
3

1
−8
3

5
3

−2
2 −1 1


Rango de una matriz

Si en una matriz A se toman k �las y k columnas, los elementos de la
intersección de esas �las y columnas forman una submatriz cuyo determinante
se llama menor de orden k. El menor formado por las k primeras �las y
las k primeras columnas de A se llama menor principal de orden k.

Ejemplo 3.2.14. A =

 1 3 −2 1
4 −3 5 3
2 −7 3 5


a) |1| es el menor principal de orden 1.

b)

∣∣∣∣ 1 −2
2 3

∣∣∣∣ es un menor de orden 2.

c)

∣∣∣∣∣∣
1 −2 1
4 5 3
2 3 5

∣∣∣∣∣∣ es un menor de orden 3.

De�nición 3.2.15. Se dice que el rango de la matriz A es k, y escribimos
rg(A) = k si existe un menor de orden k no nulo y todos los menores de
orden superior a k son nulos.

Veamos un método para calcular el rango de cualquier matriz A de orden
m×n. Para ello necesitamos introducir el concepto de orlar un menor. Orlar
un menor de orden k consiste en formar un menor añadiendo una �la y una
columna para obtener un menor de orden k + 1.

Se busca un menor de orden 1 no nulo, es decir, un número distinto de
0 en la matriz.

� Si no existe, entonces rg(A) = 0 y hemos terminado.

� Si existe, entonces rg(A) ≥ 1 y continuamos el proceso.
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Se calculan los menores de orden 2 que se obtienen orlando el menor
de orden 1 no nulo.

� Si no existe, o son todos nulos entonces rg(A) = 1 y hemos termi-
nado.

� Si existe, entonces rg(A) ≥ 2 y continuamos el proceso.

Se calculan los menores de orden 3 que se obtienen orlando el menor
de orden 2 no nulo.

� Si no existe, o son todos nulos entonces rg(A) = 2 y hemos termi-
nado.

� Si existe, entonces rg(A) ≥ 2 y continuamos el proceso.

Repetimos la operación hasta que el proceso termina. Nótese que el
rango máximo de una matriz de orden m × n es menor o igual que m
y que n.

Nota 3.2.16. Este procedimiento permite hallar el rango calculando menos
determinantes. Si el rango de una matriz A es k, en lugar de calcular todos los
menores de orden k+1 bastará con comprobar los que orlan a un determinado
menor de orden k.

Ejemplo 3.2.17. Calcular el rango de la siguiente matriz:

A =


1 2 −2
4 −1 1
−2 1 1
−1 −3 0


rg(A) = 3 por ser

∣∣∣∣∣∣
1 2 −2
4 −1 1
−2 1 1

∣∣∣∣∣∣ = −18 ̸= 0.

Las operaciones elementales no modi�can el valor del rango. Por tanto,
otro método para calcularlo consiste en transformar A en una matriz escalo-
nada (en la que al principio de cada �la hay un cero más que en la anterior)
mediante operaciones elementales. El rango de A es el número de �las (o
columnas) no nulas que tiene la matriz escalonada.

Ejemplo 3.2.18. Calcular el rango de la matriz A mediante operaciones
elementales.

1 0 3 1
1 −1 7 −1
2 1 2 4
5 1 11 7

 ∼
F2 := F2 − F1

F3 := F3 − 2F1

F4 := F4 − 5F1

∼


1 0 3 1
0 −1 4 −2
0 1 −4 2
0 1 −4 2

 ∼
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∼
F3 := F3 − F2

F4 := F4 − F2

F2 := −F2

∼


1 0 3 1
0 1 −4 2
0 0 0 0
0 0 0 0


Si la matriz contiene algún parámetro, el rango puede depender del valor

de éste. Así, deberemos separar los casos posibles, cuando los haya, en función
del parámetro.

Ejemplo 3.2.19. Calcular el rango de la matriz A =

(
1 3
2 a

)
Es claro que rg(A) ≥ 1 ya que hay coe�cientes distintos de 0. También

es inmediato ver que rg(A) ≤ 2 porque el menor más grande posible en la
matriz es el de tamaño 2. Así pues, lo único que necesitamos ver es si el
determinante de A es o no igual a 0.

Tenemos que |A| = a− 6, luego |A| = 0 si y sólo si a = 6. Por tanto, si
a = 6, rg(A) = 1 y si a ̸= 6, rg(A) = 2.

Ejemplo 3.2.20. Calcular el rango de la matriz B =

(
1 3 4
2 a 5

)
De nuevo es claro que rg(A) ≥ 1 y rg(A) ≤ 2. Sin embargo, ahora tenemos

un menor de tamaño 2 dado por las columnas 1 y 3, M =

(
1 4
2 5

)
y tal

que |M | ≠ 0 independientemente del parámetro a. Por tanto, rg(B) = 2 para
cualquier valor de a.

Ejemplo 3.2.21. Calcular el rango de la siguiente matriz:

C =

 3 −2 a 2
1 −1 1 0
a 2 −2 3

 .

En este caso, el rango de la matriz puede depender del valor del parámetro
a. Empezamos con el elemento a11 = 3 y vamos orlando:∣∣∣∣ 3 −2

1 −1

∣∣∣∣ = 1 ̸= 0, por lo menos el rango es 2 (independientemente del

valor de a). Orlamos con la tercera �la y la tercera columna:∣∣∣∣∣∣
3 −2 a
1 −1 1
a 2 −2

∣∣∣∣∣∣ = −4 + a2 Así, −4 + a2 = 0 si y sólo si a = ±2.

Orlamos con la tercera �la y la cuarta columna:∣∣∣∣∣∣
3 −2 2
1 −1 0
a 2 3

∣∣∣∣∣∣ = 2a+ 1 Así, 2a+ 1 = 0 si y sólo si a = −1
2
.
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Por tanto, como a no puede ser al mismo tiempo ±2 y −1
2
, uno de los

dos determinantes es distinto de 0 y el rango de C es 3.

3.3. Sistemas de ecuaciones lineales

Una expresión de la forma a1x1 + a2x2 + ... + anxn = b con x1, x2, ..., xn

ariables y a1, a2, ..., an, b son números dados, constituye una ecuación lineal.
Un conjunto de m ecuaciones lineales en las incognitas x1, x2, ..., xn cons-

tituye un sistema.

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

.......................................................
am1x1 + am2x2 + · · ·+ amnxn = bm

 (3.2)

Los xi se denominan incógnitas, los aij coe�cientes y los bi términos in-
dependientes.

Resolver un sistema de ecuaciones es obtener un conjunto de valores de
las incognitas que satisfacen simultaneamente a todas las ecuaciones, cada
uno de estos conjuntos de valores constituye una solución.

Un sistema que tiene solución es compatible. Si la solución es única se
dice que es determinado y si tiene más de una solución indeterminado. Si el
sistema no tiene solución es incompatible.

Ejemplo 3.3.1. 1) x+ y = 0 Compatible indeterminado.

2)
x+ y = 0
x− y = 0

}
Compatible determinado.

3)
x+ y = 0
x− y = 0
x− 2y = 3

 Incompatible.

Un sistema se puede expresar matricialmente. Sea A la matriz de los
coe�cientes de (3.2), que es una matriz del tipo (m,n) B(m, 1) la matriz de
los coe�cientes indeterminados y X(n, 1) es la matriz de las incognitas.

A =


a11 a12 · · · · · · · · · a1n
a21 a22 · · · · · · · · · a2n
· · · · · · · · · · · · · · · · · ·
am1 am2 · · · · · · · · · amn

B =


b1
b2
· · ·
bm

X =


x1

x2

· · ·
xn


El sistema (3.2) lo expresamos por la ecuación matricial:

AX = B (3.3)
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o mediante un sumatorio:

n∑
j=1

aijxj = bi para i = 1, 2...,m.

La matriz de orden m × (n + 1), (A : B) que se obtiene añadiendo a la
matriz A una columna extra a su derecha que es la matriz B, se llama matriz
ampliada.

Dos sistemas son equivalentes si tienen las mismas soluciones.

Proposición 3.3.2. Un sistema de ecuaciones lineales es equivalente a cual-
quiera de los sistemas que resultan de realizar operaciones elementales en las
�las de su matriz ampliada (A : B).

En los sistemas compatibles es necesario que hallemos métodos de reso-
lución del sistema AX = B.

3.3.1. Teorema de Rouché-Frobenius

El sistema de AX = B de m ecuaciones con n incognitas es:

compatible ⇔ rg(A) = rg(A : B),

� compatible y determinado ⇔ rg(A) = rg(A : B) = n,

� compatible indeterminado ⇔ rg(A) = rg(A : B) < n,

incompatible si rg(A) < rg(A : B).

Ejemplo 3.3.3. Estudiar la compatibilidad del sistema:

x− 2y + z = 6
x− 3z = 8
y − 2z = 4
2x− 3y = 1


A =


1 −2 1
1 0 −3
0 1 −2
2 −3 0

, (A : B) =


1 −2 1 : 6
1 0 −3 : 8
0 1 −2 : 4
2 −3 0 : 1


Vemos que rg(A) = 2 ya que

∣∣∣∣ 1 −2
1 0

∣∣∣∣ = 2 ̸= 0 y si consideramos los

orlados, comprobaremos que todos ellos tienen determinante 0:
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1 −2 1
1 0 −3
0 1 −2

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
1 −2 1
1 0 −3
2 −3 0

∣∣∣∣∣∣ = 0.

Para comprobar que el rango es menor que 3 habría que comprobar que
todos los menores de orden 3 tienen determinante 0. Gracias al procedimien-
to de los menores orlados evitamos resolver dos determinantes de orden 3.
¾Puedes ver cuáles serían dichos determinantes?

Sin embargo, rg(A : B) = 3 ya que

∣∣∣∣∣∣
1 −2 6
1 0 8
0 1 4

∣∣∣∣∣∣ = 6 ̸= 0.

Por tanto, rg(A) ̸= rg(A : B) y el sistema es no compatible.

Ejemplo 3.3.4. Estudiar la compatibilidad del sistema:

x− 2y + 3z − 2t = −9
y − z + 2t = 5
x+ 2z + t = 0


A =

 1 −2 3 −2
0 1 −1 2
1 0 2 1

, (A : B) =

 1 −2 3 −2 : −9
0 1 −1 2 : 5
1 0 2 1 : 0


Comprobamos que rg(A) = 3 ya que∣∣∣∣∣∣
1 −2 3
0 1 −1
1 0 2

∣∣∣∣∣∣ = 1 ̸= 0.

Como el número de �las es 3, es inmediato que rg(A : B) ≤ 3. Por tanto,
rg(A) = rg(A : B) = 3 y el sistema es compatible. Por ser el rango menor
que el número de incógnitas, el sistema es indeterminado.

Ejemplo 3.3.5. Discutir en función de los parámetros a y b:
ax+ 4y = 1
x+ ay = b

}
Para discutir el sistema en función de los parámetros usamos el teorema

de Rouché-Frobenius igual que si se tratara de números. La diferencia está en
que ahora el rango de la matriz del sistema y de la ampliada dependen de los
valores de a y b. Lo que hacemos es distinguir los casos (cuándo el sistema
es compatible determinado, compatible indeterminado o incompatible) según
los valores de a y b.

Primero calculamos los rangos (que dependen de los parámetros).
La matriz del sistema, A, es

A =

(
a 4
1 a

)
y la ampliada, (A|b) es
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(A|b) =
(

a 4 1
1 a b

)
.

Está claro que rg(A) ≥ 1 ya que hay al menos un elemento distinto de
0 (el coe�ciente a12, por ejemplo). Ahora bien, |A| = a2 − 4 y por tanto, el
rango de la matriz depende de a. Sabemos que si |A| = 0 el rango es 1 y si
|A| ≠ 0, el rango será 2, es decir, si a2 − 4 = 0 el rango es 1 y si a2 − 4 ̸= 0
el rango es 2. Hay que distinguir estos dos casos y seguir razonando a partir
de aquí.

Caso 1: a2 − 4 = 0, es decir, si a = 2 o si a = −2 (ojo con perder
soluciones, ½si a = −2 el rango es 1!). Entonces, el rango de la ampliada
depende únicamente de b.

Caso 1-a). Si a = 2 entonces para que el sistema sea compatible tiene que

ocurrir que rg(A|b) = 1, luego

∣∣∣∣ 2 1
1 b

∣∣∣∣ = 0 y b = 1
2
.

Por tanto si a = 2 y b = 1
2
, entonces rg(A) = rg(A|b) = 1(< 2) y el

sistema es compatible indeterminado. Si a = 2 y b ̸= 1
2
, entonces rg(A) <

rg(A|b) = 2 y el sistema es incompatible.
Caso 1-b). Si a = −2, para que el sistema sea compatible tiene que ocurrir

que

∣∣∣∣ −2 1
1 b

∣∣∣∣ = 0 y b = −1
2
.

Por tanto si a = −2 y b = −1
2
, entonces rg(A) = rg(A|b) = 1(< 2)

y el sistema es compatible indeterminado. Si a = −2 y b ̸= −1
2
, entonces

rg(A) < rg(A|b) = 2 y el sistema es incompatible.
En los casos compatibles, podemos obtener la solución resolviendo un sis-

tema en el que ya no aparecen a y b. Nótese que al ser un sistema compatible
indeterminado, la solución no será única.

Caso 2: a2 − 4 ̸= 0, es decir, si a ̸= 2 y a ̸= −2. Entonces, 2 = rg(A) ≤
rg(A|b) < 3 y, por tanto, rg(A) = rg(A|b) = 2 para cualquier valor de b y
el sistema es compatible determinado. La única solución, que depende de los
valores concretos que tomen a y b, sería x = a−4b

a2−4
, y = ab−1

a2−4
. Nótese que esta

solución tiene sentido porque el denominador, a2 − 1 ya sabemos que en este
caso nunca puede ser 0.

3.3.2. Método de Gauss y método de Cramer

Método de Gauss. Consiste en determinar un sistema equivalente a
AX = B de forma que la matriz ampliada (A : B) sea una matriz escalonada.

Ejemplo 3.3.6.
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2x+ y − z = −3
x− 2y + 2z = 1
2x+ y + z = 5


A =

 2 1 −1
1 −2 2
2 1 1

 B =

 −3
1
5

 X =

 x
y
z


La matriz ampliada es:

(A : B) =

 2 1 −1 : −3
1 −2 2 : 1
2 1 1 : 5


Se efectúan transformaciones elementales:

(A : B)
F1↔F2−→

 1 −2 2 : 1
2 1 −1 : −3
2 1 1 : 5

 F2 := F2 − 2F1

F3 := F2 − 2F1
−→

 1 −2 2 : 1
0 5 −5 : −5
0 5 −3 : 3



F2:=
1
5
F2−→

 1 −2 2 : 1
0 1 −1 : −1
0 5 −3 : 3

 F3:=F3−2F2−→

 1 −2 2 : 1
0 1 −1 : −1
0 0 2 : 8


F3:=

1
2
F3−→

 1 −2 2 : 1
0 1 −1 : −1
0 0 1 : 4


Se obtiene una matriz escalonada. Tenemos pues el siguiente sistema es

equivalente:

x− 2y + 2z = 1
y − z = −1

z = 4


De aquí, es inmediato que z = 4. De ahí, y − 4 = −1, es decir, y = 3 y

x− 6 + 8 = 1, es decir, x = −1.

Nota 3.3.7. Si durante el proceso resulta alguna �la de la forma (0, 0, ..., 0 :
b) con b ̸= 0 el sistema es incompatible.

Ejercicio 3.3.8. Estudiar y resolver por Gauss el sistema:

x− y + 2z = −3
2x − z = 5

2y + 3z = 3


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La matriz ampliada es:

(A : B) =

 1 −1 2 : −3
2 0 −1 : 5
0 2 3 : 3


donde rg(A) = 3 = rg(A : B). Por tanto, el sistema es compatible determi-
nado.

Un camino posible para resolver por Gauss sería: 1 −1 2 : −3
2 0 −1 : 5
0 2 3 : 3

 F ′
2:=F2−2F1−→

 1 −1 2 : −3
0 2 −5 : 11
0 2 3 : 3


F ′
3:=F3−F2−→

 1 −1 2 : −3
0 2 −5 : 11
0 0 8 : −8


obteniendo el sistema equivalente:

x− y + 2z = −3
2y − 5z = 11

8z = −8


cuyas soluciones sonn z = −1, y = 3, x = 2.

Proposición 3.3.9. Dada una matriz, hay una única matriz escalonada re-
ducida equivalente por �las (mediante las operaciones elementales descritas).

De�nición 3.3.10. Dada una matriz A, a la única matriz escalonada redu-
cida equivalente se la llama forma normal de Hermite de la matriz A.

Proposición 3.3.11. Dos matrices son equivalentes por �las si y solo si
tienen la misma forma normal de Hermite.

Ejercicio 3.3.12. Comprobar que son equivalentes por �las las matrices:

A =

 1 −1 2 −3
2 0 −1 5
0 2 3 3

 B =

 1 −3 −1 −6
3 −1 1 2
1 1 5 0


Sol.

H =

 1 0 0 2
0 1 0 3
0 0 1 −1


Proposición 3.3.13. Dos sistemas de�nidos por matrices equivalentes por
�las tienen las mismas soluciones.
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Sistemas de Cramer: Un sistema lineal de n ecuaciones con n incognitas
en el que la matriz del sistema es regular (|A| ̸= 0) se denomina de Cramer.
Un sistema de Cramer

∑n
j=1 aijxj = bi es compatible determinado, es decir,

tiene solución única.
La solución viene dada por las fórmulas de Cramer:

xi =
Ai

|A|

donde Ai es el determinante resultante de sustituir la i-ésima columna por la
columna de coordenadas (b1, b2, ..., bn) del segundo miembro.

Ejemplo 3.3.14. Resolvemos usando la fórmula de Cramer el siguiente sis-
tema.

x1 − 2x2 + x3 = 1
3x2 − x3 = 2

−x3 = 3


La matriz de coe�cientes es A =

 1 −2 1
0 3 −1
0 0 −1

,

B =

 1
2
3

, |A| = −3.

x1 =

∣∣∣∣∣∣∣∣∣
1 −2 1
2 3 −1
3 0 −1

∣∣∣∣∣∣∣∣∣
−3

= −10
−3

= 10
3
, x2 =

∣∣∣∣∣∣∣∣∣
1 1 1
0 2 −1
0 3 −1

∣∣∣∣∣∣∣∣∣
−3

= −1
3
,

x3 =

∣∣∣∣∣∣∣∣∣
1 −2 1
0 3 2
0 0 3

∣∣∣∣∣∣∣∣∣
−3

= 9
−3

= −3.

El método de Cramer se puede adaptar para resolver también sistemas
compatibles indeterminados que no son tipo Cramer. La idea es que las varia-
bles que �sobran� pueden situarse como parte de los términos independientes
(a la derecha de la igualdad), dejando una matriz tipo Cramer como matriz
del sistema. Una vez hecho esto, se resuelve normalmente por Cramer y el
resultado es que las soluciones van a depender del valor de estas variables
independientes. Veamos un ejemplo.



42 CAPÍTULO 3. ELEMENTOS BÁSICOS DEL ÁLGEBRA LINEAL

Ejemplo 3.3.15. Para la resolución del ejemplo 3.3.4, podemos usar el mé-
todo de Cramer si pasamos las variables dependientes (las que no están aso-
ciadas al menor no nulo de máximo orden) al término independiente. Así,
suponiendo rg(A) = rg(A : B) = k obtenemos k ecuaciones con k incógnitas:

x− 2y + 3z = −9 + 2t
y − z = 5− 2t
x+ 2z = −t


Ahora la matriz ampliada del sistema es

 1 −2 3 : −9 + 2t
0 1 −1 : 5− 2t
1 0 2 : −t

.

Por tanto:

x =

∣∣∣∣∣∣∣∣∣
−9 + 2t −2 3
5− 2t 1 −1
−t 0 2

∣∣∣∣∣∣∣∣∣
1

= 2− 3t, y =

∣∣∣∣∣∣∣∣∣
1 −9 + 2t 3
0 5− 2t −1
1 −t 2

∣∣∣∣∣∣∣∣∣
1

= 4− t,

z =

∣∣∣∣∣∣∣∣∣
1 −2 −9 + 2t
0 1 5− 2t
1 0 −t

∣∣∣∣∣∣∣∣∣
1

= −1 + t.

Ejercicio 3.3.16. Estudiar y resolver el sistema en función del parámetro
a:

x+ z = 0
2x− y + z = 0
x− y + az = 1


Solución: si a = 0, incompatible; si a ̸= 0, compatible determinado con

solución x = − 1
a
, y = − 1

a
, z = 1

a
.

Ejercicio 3.3.17. Estudiar y resolver el sistema en función del parámetro
a:

x+ (1− a)z = a
x+ az = 1− a

2x+ ay − z = 3


Solución: si a ̸= 0, 1

2
, compatible determinaddo con solución x = 1, y = 0,

z = −1; si a = 0, compatible indeterminado con solución x = 1, y = α con
α ∈ R, z = −1; si a = 1

2
, compatible indeterminado con solución x = 1−α

2
,

y = 4 + 4α, z = α con α ∈ R.

3.3.3. Sistemas homogéneos

Un sistema se dice que es homogéneo si los términos independientes
b1, ..., bn son todos 0.
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Un sistema homogeneo AX = 0 es siempre compatible pues el rango de la
matriz A coincide con el de la ampliada. De hecho, x1 = 0, x2 = 0, ..., xn = 0
es siempre una solución del sistema homogeneo y se denomina solución trivial.

Si rg(A) = n la solución trivial es la única del sistema.
Si rg(A) < n el sistema tiene in�nitas soluciones siendo siempre una de

ellas la solución trivial.

Ejemplo 3.3.18. Resolver los sistemas:

1)
x+ y + 2z = 0
3x− y − 2z = 0
−x+ 2y + z = 0


A =

 1 1 2
3 −1 −2
−1 2 1

 , |A| = 12 ̸= 0, rg(A) = 3. Por tanto

sólo hay una solución que es la trivial: x = 0, y = 0 z = 0.

2)
7x− 6y + 15z = 0
3x+ 4y + z = 0

}

A =

(
7 −6 15
3 4 1

)
rg(A) = 2. Como el rango es menor que

el número de incógnitas, el sistema admite soluciones distintas de la
trivial. Podemos resolverlo por Cramer pasando la variable z al término
independiente. Resolvemos el sistema:

7x− 6y = −15z
3x+ 4y = −z

}

Resolviendo: A =

(
7 −6
3 4

)
|A| = 46.

x = −66
46

α, y = 38
46
α, z = α.

Ponemos presentar las variables x, y en función de z o mejor, como
hacemos aquí, presentar las tres variables en función de un parámetro
independiente α.
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Capítulo 4

Espacios vectoriales

4.1. De�nición y propiedades

Se llama espacio vectorial sobre R a un conjunto E, no vacío, dotado de
dos aplicaciones:

Suma:
+: E×E → E tal que ∀x, y, z ∈ E se cumplen las siguientes propiedades:

a) Asociativa: x+ (y + z) = (x+ y) + z,

b) Conmutativa: x+ y = y + x,

c) Existe elemento neutro, 0E ∈ E, que veri�ca que x+ 0E = x,

d) Todo elemento x ∈ E posee un opuesto, −x, tal que x+ (−x) = 0.

Producto (de un número por un vector):
∗ : R× E → E tal que ∀x, y ∈ E y ∀λ, β ∈ R se cumple que:

a) λ ∗ (x+ y) = λ ∗ x+ λ ∗ y,

b) (λ+ β) ∗ x = λ ∗ x+ β ∗ x,

c) λ(β ∗ x) = (λβ) ∗ x,

d) 1 ∗ x = x.

Los elementos de E se denominan vectores y los de R escalares.

Ejemplo 4.1.1. Se puede comprobar que los siguientes espacios con las ope-
raciones indicadas tienen estructura de espacio vectorial.

45
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1) Rn con la suma (a1, ..., an) + (b1, ..., bn) = (a1 + b1, ..., an + bn) y el
producto λ ∗ (a1, ..., an) = (λ · a1, ..., λ · an).

2) El conjunto Mm×n con la suma entre matrices y el producto entre un
número y una matriz.

3) El conjunto R[x] de polinomios en una variable, x, con la suma y el
producto por un número: λ ∗ (a0xn + · · ·+ an) = λ · a0xn + · · ·+ λ · an.

4) Las ecuaciones lineales con n variables x1, ..., xn, a1x1+ · · ·+anxn = b,
con la suma [a1x1 + · · · + anxn = b] + [a′1x1 + · · · + a′nxn = b′] =
[(a1 + a′1)x1 + · · ·+ (an + a′n)xn = (b+ b′)] y el producto por un número
λ ∗ [a1x1 + · · ·+ anxn = b] = (λ · a1)x1 + · · ·+ (λ · an)xn = (λ · b).

Propiedades.

∀x, y ∈ E y ∀λ, β ∈ R las siguientes propiedades se deducen de la de�ni-
ción:

1) 0 ∗ x = 0E.

2) (−λ) ∗ x = λ ∗ (−x) = −(λ ∗ x).

3) λ ∗ (x− y) = λ ∗ x− λ ∗ y.

4) (λ− β) ∗ x = λ ∗ x− β ∗ x

5) Si λ ∗ x = 0E entonces λ = 0 ó x = 0E.1

6) Sean x1, x2, ..., xn n vectores del espacio vectorial E. Dados n números
cualesquiera λ1, λ2, ..., λn ∈ R, el elemento x = λ1x1 + λ2x2 + · · · +
λnxn =

∑n
i=1 λixi, es un elemento de E. Decimos que x es combina-

ción lineal de x1, x2, ..., xn.2

Ejemplo 4.1.2. En el espacio vectorial R2, el vector (−1, 6) es combinación
lineal de los vectores (3, 4) y (−2, 1) ya que (−1, 6) = 1 · (3, 4) + 2 · (−2, 1).

Ejercicio 4.1.3. Escribir un ejemplo concreto de combinación lineal con
vectores de R2 o R3.

1Nótese que esto signi�ca que λ es el número 0 ó x es el vector 0, que son cosas diferentes.
2Por abreviar, escribimos λixi en lugar de λi ∗ xi
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4.2. Dependencia e independencia lineal

Se dice que el conjunto de vectores v1, ..., vn ∈ E es linealmente inde-

pendiente si la relación α1v1+α2v2+ · · ·+αnvn = 0E se veri�ca únicamente
cuando α1 = α2 = · · · = αn = 0.

En caso contrario, es decir, cuando la relación anterior se cumple con al-
gún αi no nulo se dice que el conjunto de vectores es linealmente dependiente.
También decimos simplemente que los vectores son linealmente independien-
tes o linealmente dependientes.

Ejemplo 4.2.1. 1) Los vectores (1, 0) y (0, 1) son linealmente indepen-
dientes: si α1(1, 0) + α2(0, 1) = (0, 0) entonces (α1, 0) + (0, α2) =
(α1, α2) = (0, 0) y, por tanto, α1 = α2 = 0.

2) Los vectores (2,−3) y (−4, 6) son linealmente dependientes. Planteamos
la ecuación α1(2,−3) + α2(−4, 6) = (0, 0) y comprobamos que tiene
soluciones distintas de α1 = α2 = 0.

2α1 − 4α2 = 0
−3α1 + 6α2 = 0

}
El conjunto de soluciones es α1 = 2α2 luego no son necesariamente 0.

Ejercicio 4.2.2. Comprobar si los siguientes conjuntos de vectores son li-
nealmente independientes:

1) El conjunto de vectores {e1, e2, ..., en} de Rn con e1 = (1, 0, ..., 0), e2 =
(0, 1, 0, ..., 0),...,en = (0, ..., 0, 1).

2) Los vectores (1,−2, 1), (2, 0, 1), (0, 1,−1) y (1,−1, 0) en R3.

Proposición 4.2.3. Si un conjunto de vectores es linealmente independiente
entonces cualquier subconjunto suyo lo es.

4.3. Base de un espacio vectorial

Un conjunto de n vectores v1, v2, ......, vn de un espacio vectorial E es un
sistema de generadores o sistema generador de E si todo vector de E
es combinación lineal de v1, v2, ..., vn, es decir, si ∀w ∈ E ∃α1, α2, ..., αn ∈ R
tales que w = α1v1 + α2v2 + ...........+ αnvn.

En este caso, se dice que los vectores v1, v2, ..., vn generan el espacio vec-
torial E.
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Ejemplo 4.3.1. Los vectores {(1, 0), (0, 1)} forman un sistema generador
de R2. Comprobamos que, en efecto, para todo vector (x, y) ∈ R2 existen
dos números reales, en este caso α1 = x, α2 = y de forma que (x, y) =
x(1, 0) + y(0, 1).

Nota 4.3.2. Nótese que un espacio vectorial no está generado de forma
única. Por ejemplo los vectores (1, 0) y (0, 1) forman un sistema generador
de R2 como también lo forman los vectores (1, 1) y (1,−3) o cualquier otro
par de vectores linealmente independientes.

Pregunta 4.3.3. ¾Es {(2, 1), (3,−2), (0, 4)} un sistema generador de R2?

Pregunta 4.3.4. ¾Es {(3,−1, 2), (1, 0,−1)} un sistema generador de R3?

De�nición 4.3.5. Un conjunto de vectores {v1, v2, ..., vn} es base de un
espacio vectorial E si veri�ca:

a) {v1, v2, ..., vn} es un sistema generador de E,

b) {v1, v2, ..., vn} es linealmente independiente.

Ejemplo 4.3.6. 1) {(1, 0), (0, 1)} es una base de R2,

2) {(1, 0), (0, 1), (1, 1)} no es una base de R2 ya que es un sistema gene-
rador pero no linealmente independiente,

3) {(3,−1, 2), (1, 0,−1)} no es una base de R3 ya que es linealmente in-
dependiente pero no un sistema generador.

Pregunta 4.3.7. ¾Es {(1, 1, 1), (0, 1, 1), (0, 0, 1)} un sistema generador de
R3?

Observación 4.3.8. En una base, el orden de los vectores importa. Por
ejemplo, {(1, 0), (0, 1)} y {(0, 1), (1, 0)} son dos bases distintas de R2.

Teorema 4.3.9 (Existencia de base). Un espacio vectorial E generado por
un número �nito de elementos siempre admite una base.

Nótese, sin embargo, que la base no tiene por qué ser única. Por ejemplo,
{(1, 0), (0, 1)} y {(1, 2), (3,−1)} son distintas bases de R2. De hecho, cualquier
familia de n vectores linealmente independiente es base de Rn.

Teorema 4.3.10 (Unicidad de la expresión). Si {v1, v2, ..., vn} es una base
de E entonces cada vector w ∈ E puede expresarse de modo único como
combinación lineal de los vectores de la base, es decir, existe una única familia
de números α1, α2, ..., αn tal que w =

∑n
i=1 αivi.
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Demostración. Supongamos w =
∑n

i=1 αivi =
∑n

i=1 βivi. Entonces,
∑n

i=1 αivi−∑n
i=1 βivi = 0. Operando,

∑n
i=1)(αi − βi)vi = 0 y por ser {v1, v2, ..., vn} li-

nealmente independiente, αi − βi = 0 ∀ i, es decir, αi = βi ∀ i y, por tanto,
la expresión es única.

Ejercicio 4.3.11. Comprobar que, en efecto, hay un único modo de expresar
el vector (2, 1) como combinación lineal de los vectores (1, 3) y (2,−1).

Dada una base de un espacio vectorial {v1, v2, ..., vn} y un vector ex-
presado, de forma única, como combinación lineal de dichos vectores w =∑n

i=1 αivi, los escalares α1, ..., αn se llaman coordenadas del vector w en

la base {v1, v2, ..., vn}.
Se denota como w = (α1, ..., αn){v1,v2,...,vn} o, si no hay ambigüedad res-

pecto a la base, simplemente (α1, ..., αn).

Ejemplo 4.3.12. Consideramos en R2 un vector v que, como combinación li-
neal de los vectores (1, 0), (0, 1) se expresa como v = 2·(1, 0)+5·(0, 1). Así, las
coordenadas del vector v en la base {(1, 0), (0, 1)} serían v = (2, 5){(1,0),(0,1)}.

Si consideramos otra base de R2, por ejemplo (1, 0), (1, 1), entonces el
vector v = 2 · (1, 0) + 5 · (0, 1) como combinación lineal de (1, 0), (1, 1) sería
v = −3(1, 0) + 5(1, 1) y, por tanto, las coordenadas son (−3, 5){(1,0),(1,1)}.

Nótese que las coordenadas del mismo vector dependen de la base. Si
no se indica ninguna base, supondremos que se trata de la base canónica:
e1, e2, ..., en, esto es, (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1).

Ejercicio 4.3.13. Hallar las coordenadas del vector (3,−2, 1){e1,e2,e3} respec-
to a la base {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Planteamos la combinación lineal

(3,−2, 1) = α1(1, 1, 0) + α2(1, 0, 1) + α3(0, 1, 1)

de donde obtenemos un sistema:

3 = α1 + α2

−2 = α1 + α3

1 = α2 + α3


Resolviendo, obtenemos los valores α1 = 0, α2 = 3, α3 = −2. El vector

es el (0, 3,−2){(1,1,0),(1,0,1),(0,1,1)}.
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4.4. Dimensión de un espacio vectorial

Proposición 4.4.1. Todas las bases de un espacio vectorial tienen el mismo
número de elementos.

De�nición 4.4.2. Se llama dimensión de un espacio vectorial E al número
de elementos n de una de sus bases. Se denota dim(E) = n.

Es fácil ver que, según esta de�nición, la dimensión de Rn es n.

Pregunta 4.4.3. ¾Cuál es la dimensión del espacio de las matrices cuadra-
das de orden 2?

4.5. Subespacios vectoriales

De�nición 4.5.1. Un conjunto F no vacío de un espacio vectorial E es un
subespacio vectorial si veri�ca las siguientes propiedades:

i) ∀ v, w ∈ F, v + w ∈ F.

ii) ∀ v ∈ F, ∀λ ∈ R λv ∈ F.

ó lo que es equivalente:

i') ∀ v, w ∈ F, ∀λ ∈ R λv + µw ∈ F.

Dado un espacio vectorial E, si de�nimos F = {0E}, F es un subespacio
vectorial.

También es inmediato comprobar que F = E cumple la de�nición de
ser subespacio vectorial.

Sea {v1, ..., vp} un conjunto de vectores de un espacio vectorial E. Sea
F = {α1v1 + α2v2 + · · ·+ αpvp |α1, α2, ..., αp ∈ R} el conjunto de todas
las combinaciones lineales de dichos vectores, entonces F es un
subespacio vectorial de E. En este caso, se dice que F es el subespacio
vectorial de E generado por {v1, ..., vp}. Se denota ⟨v1, . . . , vp⟩ o
L[v1, . . . , vp].

De�nición 4.5.2. Se llama rango de un conjunto de vectores a la dimensión
del subespacio vectorial que genera.

Proposición 4.5.3. El rango de un conjunto de vectores es el número má-
ximo de vectores linealmente independientes que posee.
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Ejemplo 4.5.4. Determinar el subespacio vectorial F de R3 generado por
{(1, 0, 0), (0, 1, 0), (1, 1, 0)}. Podemos aplicar directamente la de�nición y con-
siderar el conjunto de todas las combinaciones lineales:

F = {α1(1, 0, 0) + α2(0, 1, 0) + α3(1, 1, 0) |α1, α2, α3 ∈ R}.

Por tanto, F = {(α1 + α3, α2 + α3, 0) |α1, α2, α3 ∈ R}. A partir de aquí,
podemos mejorar la presentación del resultado cambiando los parámetros
de referencia. Nótese que al poder asignar cualquier valor a los paráme-
tros, el valor de uno de ellos, digamos α3, es irrelevante. El espacio sería
F = {(α1, α2, 0) |α1, α2 ∈ R}.

Calcular el rango de un conjunto de p vectores de un espacio vectorial E
de dimensión n se reduce a calcular el rango de la matriz formada por los p
vectores de n componentes:

Ejemplo 4.5.5. Calculamos el rango del conjunto {(1, 0, 0), (0, 1, 0), (1, 1, 0)}.
Formamos una matriz con estos vectores:

A =

 1 0 0
0 1 0
1 1 0

 Es inmediato comprobar que el rango de esta matriz

es 2. Por tanto, la dimensión del espacio vectorial que generan, F , es 2.
Como hemos visto, necesitamos únicamente dos parámetros para expresar
el conjunto F . El número de parámetros necesarios es también igual a la
dimensión.

Dado que todo subespacio de Rn debe tener dimensión �nita, estará ge-
nerado por una familia �nita de vectores. Así, si F = L[v1, . . . , vm], con
vi = (vi1, vi2, . . . , vin), tenemos que todos los vectores (x1, x2, . . . , xn) ∈ F
son de la forma:

(x1, x2, . . . , xn) = α1(v11, v12, . . . , v1n)+α2(v21, v22, . . . , v2n)+· · ·+αm(vm1, vm2, . . . , vmn),

con α1, α2, ..., αm ∈ R. Si expresamos esta igualdad coordenada a coordenada,
obtenemos

v11α1 + v22α2 + · · ·+ vm1αm = x1

v12α1 + v22α2 + · · ·+ vm2αm = x2

...................................................
v1nα1 + v2nα2 + · · ·+ vmnαm = xn

 (4.1)

que se denominan ecuaciones paramétricas del subespacio. Un subespacio
presentado así, decimos que está en forma paramétrica.
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Proposición 4.5.6. Sea

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0
.................................................
am1x1 + am2x2 + · · ·+ amnxn = 0


un sistema homogéneo compatible dem ecuaciones con n incógnitas x1, x2, ..., xn.

Sea F = {(s1, s2, ..., sn) |x1 = s1, x2 = s2, ..., xn = sn es solución al sistema} ⊂
Rn y sea k el rango del sistema, es decir, el número máximo de ecuaciones
linealmente independientes. Entonces:

F es subespacio vectorial,

dim(F ) = n− k.

El recíproco, también es cierto.

Proposición 4.5.7. Todo subespacio vectorial F de Rn es solución de un
sistema lineal homogéneo.

Decimos que un subespacio vectorial F está de�nido en forma implícita
si F es el conjunto de soluciones de un sistema lineal homogéneo. Estas
ecuaciones se llaman ecuaciones implícitas del subespacio.

Si resovemos un sistema lineal homogéneo que sea compatible indetermi-
nado (en otro caso, la solución única es que todas las variables sean cero y
no necesitamos ningún parámetro para el conjunto de soluciones), podemos
obtener su forma paramétrica y dar una base del subespacio.

Ejemplo 4.5.8. Sea F el subespacio dado por las soluciones del sistema

x+ y + z + t = 0
x+ y − z − t = 0

}
(4.2)

Utilizando el método de Gauss, por ejemplo, es inmediato ver que este sistema
es equivalente a

x = −y
z = −t

}
(4.3)

Para expresarlo en forma paramétrica necesitamos tantos parámetros co-
mo la dimensión del subespacio (nótese que el sistema tiene rango 2 y que
necesitamos 4-2 parámetros, ver proposición 4.5.6), en este caso, dos. Una
forma sencilla (no la única) de dar una solución paramétrica a este sistema
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sería suponer y = α, t = β ya que las otras variables ya las tenemos despe-
jadas en función de estas. Por tanto, en forma paramétrica nos quedaría:

F = {(−α, α,−β, β) : α, β ∈ R}.

Si ahora quisiéramos dar una base para este espacio, una forma sencilla
de hacerlo (por supuesto, hay in�nitas bases posibles, esta es solo una de
ellas) es tomar un vector por cada parámetro haciendo 1 ese parámetro y 0
el resto. Así,

F = L[(−1, 1, 0, 0), (0, 0,−1, 1)].

Al revés, también es sencillo pasar de la base o de la forma paramétrica
a la forma implícita. Para ello, partimos de un sistema en el que expresamos
cada variable a partir de su expresión paramétrica, como vimos en (4.1).
En este sistema, consideramos que los parámetros (αi) son las incógnitas
y escalonamos por el método de Gauss la matriz correspondiente. Una vez
escalonado, las ecuaciones implícitas del subespacio serán aquellas en las que
no aparezcan ya parámetros.

Ejemplo 4.5.9. Tomemos las soluciones del ejemplo 4.5.8 y supongamos
que lo que sabemos es que F = L[(−1, 1, 0, 0), (0, 0,−1, 1)]. Por tanto, si
consideramos las combinaciones lineales de estos dos vectores de su base,
obtenemos que

F = {α(−1, 1, 0, 0) + β(0, 0,−1, 1) : α, β ∈ R}.

Si expresamos esta igualdad coordenada a coordenada, obtenemos el sis-
tema:

−α = x
α = y
−β = z
β = t

 (4.4)

Aplicamos Gauss a este sistema:


−1 0 : x
1 0 : y
0 −1 : z
0 1 : t

 F1↔F2, F3↔F4, F2↔F3−→


1 0 : y
0 1 : t
−1 0 : x
0 −1 : z


F ′
3:=F3+F1, F ′

4:=F4+F2,−→


1 0 : y
0 1 : t
0 0 : x+ y
0 0 : z + t


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Observamos que las �las en las que no aparecen los parámetros α y β
son las dos últimas. Por tanto, la forma implícita del subespacio sería como
solución del sistema:

x+ y = 0
z + t = 0

}
Nótese que este sistema es equivalente al sistema de partida del ejemplo

4.5.8. En ambos casos, es inmediato ver que su forma de Hermite es(
1 1 0 0
0 0 1 1

)
Por último, caber mencionar que el número de ecuaciones que nos van a

salir será n menos el rango de la matriz de este sistema de parámetros. Si
dicha matriz tiene rango máximo (esto es, igual al número de parámetros),
en particular, si los parámetros vienen de una base del subespacio como en
el ejercicio anterior, entonces el número de ecuaciones en la forma implícita
será n menos el número de parámetros (ver proposición 4.5.6).

Ejercicio 4.5.10. Dar las ecuaciones implícitas del subespacio G = L[(1, 0, 2), (3, 1, 0)]
de R3.

En forma paramétrica obtenemos:

α + 3β = x
β = y

2α = z


Dado que la matriz del sistema tiene rango 2, podemos adelantar que

al escalonar por Gauss nos va a quedar una única ecuación en la que no
aparecen parámetros. Escalonamos por Gauss: 1 3 : x

0 1 : y
2 0 : z

 F ′3:=F3−2F1+6F2−→

 1 3 : x
0 1 : y
0 0 : z − 2x+ 6y


Por tanto, la ecuación implícita de G es z − 2x+ 6y = 0.

4.6. Intersección y suma de subespacios vecto-
riales

Dados dos subespacios vectoriales F,G de un espacio vectorial E, se llama
intersección de F y G y se denota F ∩G al conjunto:

F ∩G = {v ∈ E | v ∈ F y v ∈ G} .
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Proposición 4.6.1. La intersección de dos subespacios vectoriales de E es
otro subespacio vectorial de E.

Observación 4.6.2. Si tenemos los subespacios F y G expresados en forma
implícita por sendos sistemas, los puntos del subespacio F ∩ G son exacta-
mente los que satisfacen ambos sistemas. Por tanto, la expresión implícita
del subespacio F ∩ G viene dada por el sistema con todas las ecuaciones de
los dos sistemas.

En cambio, la unión de subespacios vectoriales en el sentido conjuntista
no es un subespacio vectorial.

Ejemplo 4.6.3. Sean F y G los subespacios de R2 generados por los vec-
tores (1, 0) y (0, 1) respectivamente, es decir, F = {(x, 0) |x ∈ R} y
G = {(0, y) | y ∈ R}.

Si F ∪G fuera subespacio, el vector (1, 0) + (0, 1) = (1, 1) debería perte-
necer a F ∪G pero (1, 1) no pertenece ni a F ni a G.

Dados dos subespacios vectoriales F,G de un espacio vectorial E, se llama
suma de F y G y se denota F +G al conjunto:

F +G = {v + w | v ∈ F y w ∈ G} .

Proposición 4.6.4. El conjunto F +G es un subespacio.

Proposición 4.6.5. Si tenemos dos subespacios F = L[v1, . . . , vm] y G =
L[w1, . . . , wk], entonces

F +G = L[v1, . . . , vm, w1, . . . , wk].

Teorema 4.6.6. Sean F y G dos subespacios vectoriales de un espacio vec-
torial E. Entonces:

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G).

Ejemplo 4.6.7. Consideramos F = L[(1, 0, 0)] y G = L[(1, 1, 0), (0, 1, 0)].

ES fácil comprobar que:

F ∩G = L[(1, 0, 0)],

F +G = L[(1, 0, 0), (1, 1, 0), (0, 1, 0)] = L[(1, 1, 0), (0, 1, 0)] = G.
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4.7. Matriz del cambio de base de un espacio
vectorial

Como hemos visto, las coordenadas de un vector dependen de la base
elegida. Fijadas dos bases, B1, B2, pretendemos calcular una matriz tal que
dado un vector expresado mediante coordenadas respecto a la base B1 nos
permita calcular de forma automática las coordenadas del vector respecto a
la base B2. Esta matriz es la matriz del cambio de base.

Sea E un espacio vectorial de dimensión n. Sea B = {e1,e2, . . . , en} una
base de E, en la que las coordenadas de un vector x ∈ E son (x1,x2, . . . , xn)
.

Sea B′ =
{
e′1,e

′
2, . . . , e

′
n

}
otra base de E y sea x = (x′

1, x
′
2, . . . , x

′
n)B′ .

Los vectores de B puestos en función de los de B′ son:.

e1 = a11e
′
1 + a21e

′
2 + · · ·+ an1e

′
n

e2 = a12e
′
1 + a22e

′
2 + · · ·+ an2e

′
n

.................................................

en = a1ne
′
1 + a2ne

′
2 + · · ·+ anne

′
n

que también se puede expresar como:

ej =
n∑

i=1

aije
′
i con j = 1, . . . , n.

Matricialmente, el cambio de base resulta ser:
x′
1

x′
2

:
x′
i

:
x′
n

 =


a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n

· · · · · · · · ·
ai1 ai2 · · · aij · · · ain

· · · · · · · · ·
an1 an2 · · · anj · · · ann




x1

x2

:
xi

:
xn


A = (aij) es la matriz cambio de base de B a B′. Las columnas de A son

los vectores e1, e2, ..., en expresados en la base B′.
Como las columnas de A la forman los vectores de una base, que son

linealmente independientes, el rango de A es máximo luego el determinante
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es no nulo y A es inversible. Así pues,
x1

x2

:
xi

:
xn

 = A−1


x′
1

x′
2

:
x′
i

:
x′
n


Ejemplo 4.7.1. Consideramos el espacio vectorial R2 y las bases B = {(1, 2), (2, 1)}
y B′ = {(1, 0), (0, 1)}. Vamos a calcular las coordenadas del vector x = (3, 4)B
respecto a la base B′.

Primero, calculamos las coordenadas de los vectores de la base B:

(1, 2) = a11(1, 0) + a21(0, 1) de donde a11 = 1 y a21 = 2.

(2, 1) = a12(1, 0) + a22(0, 1) de donde a12 = 2 y a22 = 1.

La matriz cambio de base será: A =

(
1 2
2 1

)
La relación entre las coordenadas viene dada por la expresión:(

1 2
2 1

)(
3
4

)
=

(
x′
1

x′
2

)
resultando que (3, 4)B = (11, 10)B′.

Si, por el contrario, queremos obtener las coordenadas del vector x =
(3, 4)B′ respecto a la base B, podemos hacer otra vez el procedimiento o cal-
cular la inversa de la matriz obtenida o, simplemente, resolver el sistema:(

1 2
2 1

)(
x1

x2

)
=

(
3
4

)
es decir,

x1 + 2x2 = 3
2x1 + x2 = 4

}
Resolviendo, x1 =

5
3
y x2 =

2
3
. Por tanto, el vector x = (3, 4)B′ expresado

en coordenadas respecto de B es x = (5
3
, 1
2
)B.

Ejemplo 4.7.2. Dar la matriz del cambio de base de B = {(0, 1, 1), (1, 1, 1), (3, 1, 0)}
a B′ = {(1, 0, 1), (−1, 0, 2), (0, 2, 5)}.

(0, 1, 1) = a11(1, 0, 1) + a21(−1, 0, 2) + a31(0, 2, 5)
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(1, 1, 1) = a12(1, 0, 1) + a22(−1, 0, 2) + a32(0, 2, 5)

(3, 1, 0) = a13(1, 0, 1) + a23(−1, 0, 2) + a33(0, 2, 5)

De cada línea obtenemos un sistema de tres ecuaciones con tres incógnitas
ai1, ai2, ai3. Solucionando los sistemas tenemos que la matriz cambio de base
es:

A =

 −1
2

1
6

7
6

−1
2

−5
6

−11
6

1
2

1
2

1
2


Ejercicio 4.7.3. Determinar la matriz cambio de base de B = {(−1, 2), (3, 1)}
a B′ = {(1,−1), (0, 2)}.

Solución: (
−1 3
1
2

2

)

4.8. Producto escalar y norma

De�nición 4.8.1. Sean x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) dos vectores
de Rn. Se denomina producto escalar de x e y, x · y, al número real:
x · y = x1y1 + x2y2 + · · ·+ xnyn.

De�nición 4.8.2. Se dice que dos vectores x, y son ortogonales cuando su
producto escalar es 0, x · y = 0.

De�nición 4.8.3. Una base de un espacio vectorial {e1, e2, ..., en} es orto-
gonal si ei · ej = 0 ∀ i ̸= j (todos los vectores son ortogonales entre sí).

Ejemplo 4.8.4. La base canónica de Rn es ortogonal.

De�nición 4.8.5. Dado un vector x = (x1, x2, ..., xn) de Rn, se denomina
norma o módulo de x, ||x||, al número real no negativo:

||x|| = +
√

x2
1 + x2

2 + · · ·+ x2
n.

Ejercicio 4.8.6. Comprobar que dado un vector x de Rn, ||x|| =
√
x · x.

Dado un vector x no nulo, llamamos normalizar el vector a obtener
un vector de la misma dirección y sentido que x pero con norma 1. Para
normalizar un vector basta dividirlo entre su norma. Es inmediato comprobar
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que para cualquier vector no nulo x = (x1, x2, ..., xn), si consideramos y =
1

||x||(x1, x2, ..., xn) = ( x1

||x|| ,
x12
||x|| , ...,

xn

||x||), entonces

||y|| =
√

(
x1

||x||
)2 + (

x2

||x||
)2 + · · ·+ (

xn

||x||
)2 =

√
x2
1 + x2

2 + · · ·+ x2
n

||x||
=

||x||
||x||

= 1.

De�nición 4.8.7. Una base de un espacio vectorial {e1, e2, ..., en} es orto-
normal si es ortogonal y además ||ei|| = 1∀i (esto es, si es ortogonal y todos
los vectores tienen norma 1).

Ejemplo 4.8.8. La base canónica de Rn es ortonormal.
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Capítulo 5

Aplicaciones lineales

5.1. De�nición y propiedades

Sean E y F dos espacios vectoriales sobre R. Se llama aplicación lineal

de E en F a toda aplicación f de E en F tal que:

a) ∀x, y ∈ E f(x+ y) = f(x) + f(y)

b) ∀λ ∈ R f(λx) = λf(x)

o, lo que es equivalente:

a') ∀x, y ∈ E, ∀λ, µ ∈ R f(λx+ µy) = λf(x) + µf(y).

Ejercicio 5.1.1. Comprobar si las siguientes aplicaciones son lineales:

1) f : R → R tal que f(x) = 3x.

2) f : R → R tal que f(x) = 2x+ 3.

3) f : R2 → R tal que f(x, y) = 3x− 2y.

4) f : R2 → R2 tal que f(x, y) = (x2, x− y).

Propiedades.

Dada una aplicación lineal f : E → F :

1) f(0E) = 0F

2) f(−x) = −f(x).

3) f(x− y) = f(x)− f(y).

61
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4) Si el conjunto de vectores de {x1, ..., xn} ⊂ E es linealmente depen-
diente (l. d.), también lo es el conjunto {f(x1), ..., f(xn)} ⊂ F .

Demostración. Si x1, ..., xn son l. d., existe una combinación lineal
λ1x1+ · · ·λnxn = 0E con algún λj ̸= 0. Entonces, f(λ1x1+ · · ·λnxn) =
f(0E) y, por las propiedades de la aplicación lineal, f(λ1x1+· · ·λnxn) =
λ1f(x1)+ · · ·λnf(xn) = 0F con λj ̸= 0. Por tanto, {f(x1), ..., f(xn)} es
l.d.

5) Si el conjunto de vectores {f(x1), ..., f(xn)} ⊂ F es linealmente inde-
pendiente, también lo es el conjunto {x1, ..., xn} ⊂ E.

Ejercicio 5.1.2. Tomemos el conjunto de vectores (1, 1, 0), (2, 0,−1), (0,−1, 0)
en R3 y la aplicación lineal f : R3 → R2 tal que f(x, y, z) = (x+ y, z). Com-
probar si el conjunto {(1, 1, 0), (2, 0,−1), (0,−1, 0)} es linealmente indepen-
diente. Estudiar si el conjunto {f((1, 1, 0)), f((2, 0,−1)), f((0,−1, 0))} ⊂ R2

es linealmente indpendiente. ¾Se contradice esto con las propiedades de la
aplicación lineal?

De�nición 5.1.3. Sea f : E → F una aplicación lineal. Se de�ne la imagen

de E por f como Im(f) := {y ∈ F | ∃x ∈ E, f(x) = y}.

Proposición 5.1.4. La imagen de una aplicación lineal es un subespacio
vectorial de V .

Demostración. Sean y1, y2 ∈ f(E). Entonces, ∃x1, x2 ∈ E tales que y1 =
f(x1), y2 = f(x2). Así, ∀λ, µ ∈ R, λy1+µy2 = λf(x1)+µf(x2) = f(λx1+µx2)
y, por tanto, λy1 + µy2 ∈ f(E) como queríamos demostrar.

De�nición 5.1.5. La dimensión del subespacio vectorial Im(f) se llama ran-
go de la aplicación lineal y se denota rg(f).

Teorema 5.1.6. Sea f una aplicación lineal de E en F y sea {x1, ..., xn} una
base de E. Entonces, {f(x1), ..., f(xn)} es un sistema generador de subespacio
Im(f) ⊂ F .

De�nición 5.1.7. Se llama núcleo de una aplicación lineal f : E → F ,
Ker(f), al conjunto de elementos de E que tienen como imagen el elemento
neutro de F : Ker(f) := {x ∈ E | f(x) = 0F}.

Proposición 5.1.8. El núcleo de una aplicación lineal f : E → F es un
subespacio vectorial de E.

Demostración. Sean x, y ∈ Ker(f). Entonces, f(x) = 0, f(y) = 0 y ∀λ, µ ∈
R, f(λx+µy) = λf(x)+µf(y) = λ0+µ0 = 0 como queríamos demostrar.
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Teorema 5.1.9. Sea f : E → F una aplicación lineal. Entonces:

dim Im(f) + dimKer(f) = dimE.

Proposición 5.1.10. Una aplicación lineal f es inyectiva si y sólo si Ker(f) =
0E.

Demostración. Sea f inyectiva. Si x ∈ Ker(f), f(x) = 0F = f(0E). Como f
es inyectiva, x = 0E, luego Ker(f) = {0E}.

Supongamos ahora que Ker(f) = {0E} y tomemos x, y ∈ E tales que
f(x) = f(y). Entonces, 0F = f(x) − f(y) = f(x − y) y, por tanto, x − y ∈
Ker(f). Como Ker(f) = {0E}, x = y y f es inyectiva.

Por de�nición, f es sobreyectiva si y sólo si Im(f) = F .

5.1.1. Clasi�cación de las aplicaciones lineales.

Sea f : E → F una aplicación lineal. Entonces, f es:

inyectiva ⇔ dim(E) = rg(f),

sobreyectiva ⇔ dim(F ) = rg(f),

biyectiva ⇔ dim(E) = rg(f) = dim(F ).

Proposición 5.1.11. Si f : E → F es una aplicación lineal biyectiva en-
tonces existe una aplicación inversa f−1 : F → E tal que f−1 ◦ f = IdE,
f ◦ f−1 = IdF y f−1 es lineal.

De�nición 5.1.12. A una aplicación lineal biyectiva la llamamos isomor-

�smo de espacios vectoriales.

Ejemplo 5.1.13. Sea f : R2 → R2 dada por f(x, y) = (2x−y, x+y). Veamos
el núcleo, la imagen y clasi�quemos la aplicación.

En primer lugar, para calcular el núcleo basta reescribir la de�nición para
el caso concreto de la aplicación f . Así,

ker f = {(x, y) | (2x− y, x+ y) = (0, 0)}.

Esto se traduce en un sistimea lineal:
2x− y = 0
x+ y = 0

}
y la única solución es (x, y) = (0, 0). Por tanto, Ker f = {(0, 0)} y por la

proposición 5.1.10, f es inyectiva.
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Dado que la aplicación f va de R2 en R2, ambas de dimensión 2, por
el Teorema 5.1.9, dim Im(f) = 2 que coincide con la dimensión del espacio
de llegada (R2). Por tanto, f es también sobreyectiva y, al ser ambas cosas,
biyectiva.

Ejercicio 5.1.14. Dadas las siguientes aplicaciones, determinar el núcleo y
clasi�car si son inyectivas, sobreyectivas y/o biyectivas.

f (x, y) = (3x− 2y, 2y, 0),

g (x, y, z) = (x+ y, y − z),

h (x, y) = (2x− y, ay − x) (en función del parámetro a).

5.2. Matriz asociada a una aplicación lineal

Por el teorema 5.1.6, sabemos que dada una aplicación lineal f : E → F y
una base de E, la imagen de los elementos de la base es un sistema generador
del subespacio Im(f).

Teorema 5.2.1. Sea {x1, x2, ......., xn} una base de E y sea {y1, y2, ......., yn}
un conjunto cualquiera de n vectores de F . Entonces, existe una única apli-
cación lineal f : E → F tal que f(xi) = yi ∀i = 1, 2, .....n.

Asi pues, una aplicación lineal está determinada por la imagen de los
elementos de la base.

Sea B = {u1, u2, ..., un} una base de E, B′ = {v1, v2, ..., vm} una base de
F y f : E → F una aplicación lineal.

Sea x ∈ E. Como vimos en el teorema 4.3.10, cualquier vector se puede
expresar (de forma única) como combinación lineal de los vectores de la base:
x = x1u1+x2u2+· · ·+xnun. Sea y = f(x). Si expresamos y como combinación
lineal de los vectores de B′ tenemos que

y = y1v1 + y2v2 + · · · ymvm = f(x1u1 + x2u2 + · · ·+ xnun) =

= x1f(u1) + x2f(u2) + · · ·+ xnf(un). (5.1)

Si expresamos los vectores f(ui) en función de la base B′:

f(u1) = f11v1 + f21v2 + · · ·+ fm1vm

f(u2) = f12v1 + f22v2 + · · ·+ fm2vm
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...................................................

f(un) = f1nv1 + f2nv2 + · · ·+ fmnvm

En forma matricial, si sustituimos estas expresiones en (5.1) tenemos:
y1
y2
:
ym

 =


f11 f12 · · · · · · · · · f1n
f21 f22 · · · · · · · · · f2n
· · · · · · · · · · · · · · · · · ·
fm1 fm2 · · · · · · · · · fmn




x1

x2

:
xn


Es decir, si (y)B′ = (y1, y2, ..., ym) denota las coordenadas del vector y en

la base B′, (x)B = (x1, x2, ..., xn)B denota las coordenadas del vector x en la
base B y M(f) = (fij) denota la matriz cuyas columnas son las coordenadas
de los vectores f(uj) en la base B′ tenemos que:

(y)B′ = M(f)(x)B.

Decimos que M(f), que depende únicamente de la aplicación f y de las
bases B y B′ es la matriz de la aplicación lineal respecto a las bases

B y B′.

Proposición 5.2.2. Dada una aplicación lineal f , el rango de la aplicación
coincide con el rango de la matriz asociada: rg(M(f)) = rg(f) = dim(Im(f)).

Ejemplo 5.2.3. Calculamos la matriz de la aplicación f : R3 → R2 tal que
f(x, y, z) = (x+ y, y + z) respecto a las bases canónicas.

Calculamos la imagen de los vectores de la base: f((1, 0, 0)) = (1, 0),
f(0, 1, 0) = (1, 1), f(0, 0, 1) = (0, 1). Las columnas de la matriz de la apli-
cación lineal son las coordenadas de estos vectores respecto a la base que
tomamos en R2, en este caso, la canónica. Así pues, la expresión matricial
es:

(
y1
y2

)
=

(
1 1 0
0 1 1

) x1

x2

x3


Ejemplo 5.2.4. Sea f : R2 → R2 la aplicación dada por f(x, y) = (3y −
2x, 3x + y). Determinar la matriz asociada a f respecto a las bases B1 =
{(1, 0), (1, 1)} y B2 = {(2, 1), (0, 2)}.

En primer lugar, calculamos las imágenes a través de f de los vectores
de la primera base, B1:

f(1, 0) = (−2, 3)
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f(1, 1) = (1, 4)

A continuación, determinamos las coordenadas de los vectores obtenidos
en la segunda base, B2:

x(2, 1) + y(0, 2) = (−2, 3)

x′(2, 1) + y′(0, 2) = (1, 4)

Esto produce dos sistemas lineales cuyas soluciones son: x = −1, y = 2,
x′ = 1

2
, y′ = 7

4
. Por tanto, la matriz asociada a la aplicación f respecto a

este par de bases será: (
−1 1

2

2 7
4

)
A través de esta matriz podemos calcular la imagen de cualquier vector

expresado en sus coordenadas en B1 obteniendo la imagen en las coordenadas
en B2. Nótese que, por ejemplo, que multiplicando por la matriz obtenemos
que la imagen del vector (1, 4)B1 será el vector (1, 9)B2:(

−1 1
2

2 7
4

)(
1
4

)
=

(
1
9

)
.

Es inmediato comprobar que, efectivamente, (1, 4)B1 = (5, 4) y f(5, 4) =
(2, 19) = (1, 9)B2.

Ejercicio 5.2.5. Sea f : R2 → R3 la aplicación dada por f(x, y) = (0, 2x +
2y, y − x). Determinar la matriz asociada a f respecto a las bases B1 =
{(2, 1), (1,−1)} y B2 = {(1, 0, 1), (0, 1,−1), (1, 1, 1)}.

Solución:  −5 2
1 2
5 −2



5.3. Sobre el conjunto de las aplicaciones linea-
les

Dados dos espacios vectoriales E y F , el conjunto de todas las aplicaciones
lineales de E en F se denota £ (E,F ).
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5.3.1. Composición de aplicaciones lineales

Sean E,F,G tres espacios vectoriales sobre R. Sea f una aplicación lineal
de E en F y g una aplicación lineal de F en G. Entonces, se veri�ca que
(g ◦ f) es una aplicación lineal de E en G.

g ◦ f : E

f
%%

// G

F

g
==

Comprobamos que, efectivamente, cumple la de�nición:

a) (g ◦ f) (x+ y) = g [f (x+ y)] = g [f (x) + f (y)] = g [f (x)]+g [f (y)] =
(g ◦ f) (x) + (g ◦ f) (y) ∀ x, y ∈ E.

b) (g ◦ f) (λx) = g [f (λx)] = g [λf (x)] = λ (g ◦ f) (x) ∀ x ∈ E ∀λ ∈
R.

Proposición 5.3.1. M(g ◦ f) = M(g) ·M(f).

Ejemplo 5.3.2. Dadas las aplicaciones lineales f : R2 → R2 y g : R2 → R2

de�nidas por:

f(x, y) = (3y − 2x, 3x+ y) y g(s, t) = (2s+ t, 4s)

obtener la composición h = g ◦ f .
En primer lugar, determinamos las matrices asociadas respecto a las bases

canónicas:

M(f) =

(
−2 3
3 1

)
M(g) =

(
2 1
4 0

)
.

La matriz asociada a la composición será

M(h) =

(
2 1
4 0

)
·
(

−2 3
3 1

)
=

(
−1 7
−8 12

)
.

El resultado, por tanto, es h(x, y) = (7y − x, 12y − 8x).

Ejercicio 5.3.3. Dadas las aplicaciones lineales f : R2 → R3 y g : R3 → R2

de�nidas por:

f(x, y) = (2x− 3y, 2y, 0) y g(s, t, u) = (s+ 2t− u, s+ u, 2t− u),

obtener la composición h = g ◦ f .
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5.3.2. El conjunto de aplicaciones lineales como espacio
vectorial

Teorema 5.3.4. Dados dos espacios vectoriales E y F , el conjunto de las
aplicaciones lineales de E en F , £(E,F ) = {f : E → F | f lineal } con las
operaciones:

Suma: + : £(E,F )× £(E,F ) → £(E,F ) tal que f + g : E → F es la
aplicación que asocia a cada x ∈ E, (f + g)(x) := f(x)+ g(x) ∀x ∈ E.

Producto: ∗ : R × £(E,F ) → £(E,F ) tal que λ ∗ f : E → F es la
aplicación que asocia a cada x ∈ E, (λ ∗ f)(x) := λ ∗ f(x) ∀x ∈ E.

es un espacio vectorial.

Teorema 5.3.5. Si dim(E) = n y dim(F ) = m con bases B y B′ respecti-
vamente, entonces:

MB,B′ : £(E,F ) → Mm×n

tal que a cada aplicación f le hace corresponder su matriz asociada respecto
a las bases B y B′ es un isomor�smo de espacios vectoriales. En particular,
dim(£(E,F )) = m · n.

5.4. Cambio de base de una aplicación lineal

Sea f : E → F una aplicación lineal, BE = {e1, e2, ..., en} y B′
E =

{e′1, e′2, ..., e′n} dos bases de E y BF = {f1, f2, ..., fn} y B′
F = {f ′

1, f
′
2, ..., f

′
n}

dos bases de F . Sea w = f(v) y sean v = (x1, . . . , xn)BE
=: x, v = (x′

1, . . . , x
′
n)B′

E
=:

x′, w = (y1, . . . , yn)BF
=: y, w = (y′1, . . . , y

′
n)B′

F
=: y′.

Como vimos en el apartado 5.2, tenemos una matriz A1 = MBE ,BF
(f) que

caracteriza la aplicación lineal f respecto a las bases BE y BF ,

y = A1x. (5.2)

Del mismo modo, tenemos una matriz A2 = MB′
E ,B′

F
(f) que caracteriza

la aplicación lineal f respecto a las bases B′
E y B′

F ,

y′ = A2x
′. (5.3)

Sea P la matriz de cambio de base deBE aB′
E. Como vimos en el apartado

4.7:

x′ = Px. (5.4)
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Sea Q la matriz de cambio de base de BF a B′
F . Entonces,

y′ = Qy. (5.5)

Por tanto la relación entre las matrices que caracterizan la aplicación
lineal respecto a las distintas bases, A1 y A2, es como sigue:

y′ = Qy ⇒ y = Q−1y′
(5,3)⇒ y = Q−1A2x

′ (5,4)⇒ y = Q−1A2Px (5.6)

De (5.2) y (5.6) tenemos que:

A1 = Q−1A2P.

De forma equivalente, o despejando la ecuación, tenemos también que:

A2 = QA1P
−1.

Ejemplo 5.4.1. Sea f : R3 → R2 dada por f(x, y, z) = (3x + 2y − 4z, x −
5y + 3z).

a) Calcular la matriz asociada a f respecto a las bases canónicas, BE y
BF , de R3 y R2.

b) Calcular la matriz asociada a f cuando las bases son B′
E = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}

y B′
F = {(1, 3), (2, 5)}.

Solución.

a) La matriz viene determinada por las imágenes de los elementos de la
base BE respecto a la base BF .

f(1, 0, 0) = (3, 1)
f(0, 1, 0) = (2,−5)
f(0, 0, 1) = (−4, 3)

 de donde A1 = MBE ,BF
(f) =

(
3 2 −4
1 −5 3

)

b) Podemos calcular directemente la matriz de la aplicación lineal respecto
a las nuevas bases. Calculamos las imágenes de los elementos de la base
B′

E primero respecto a la base canónica BF .

f(1, 1, 1) = (1,−1)BF
→ (1,−1)BF

= a11(1, 3) + a21(2, 5)
f(1, 1, 0) = (5,−4)BF

→ (5,−4)BF
= a12(1, 3) + a22(2, 5)

f(1, 0, 0) = (3, 1)BF
→ (3, 1)BF

= a13(1, 3) + a23(2, 5)


Y resolviendo los tres sistemas, tenemos que
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A2 = MB′
E ,B′

F
=

(
−7 −33 −13
4 19 8

)
También podemos calcular A2 = MB′

E ,B′
F
(f) usando las matrices del

cambio de base: A2 = QA1P
−1. Como vimos en el apartado 4.7, las

columnas de la matriz cambio de base de B′ a B son los vectores de B′

en función de B.

MB′
E ,BE

= M−1
BE ,B′

E
= P−1 =

 1 1 1
1 1 0
1 0 0


y MB′

F ,BF
=

(
1 2
3 5

)
Haciendo los cálculos, tenemos que

M−1
B′

F ,BF
= MBF ,B′

F
= Q =

(
−5 2
3 −1

)

A2 =

(
−5 2
3 −1

)(
3 2 −4
1 −5 3

) 1 1 1
1 1 0
1 0 0

 =

(
−7 −33 −13
4 19 8

)

De�nición 5.4.2. Dos matrices A1, A2 son equivalentes si existen dos ma-
trices inversibles P y Q tales que A2 = Q−1A1P .

Proposición 5.4.3. Dos matrices son equivalentes si y solo si son las ma-
trices asociadas a una misma aplicación lineal en distintas bases.

De�nición 5.4.4. Dos matrices A1, A2 son semejantes si existe una matriz
inversible P tal que A2 = P−1A1P .

Ejemplo 5.4.5. Las matrices A1 =

(
−1 2
3 3

)
y A2 =

(
5 6
−1 −3

)
son

semejantes. La matriz de paso es P =

(
1 2
2 1

)
Comprobar que A2 = P−1A1P.

De�nición 5.4.6. Una aplicación lineal de un espacio vectorial en sí mismo,
f : E → E, se denomina endomor�smo.

Proposición 5.4.7. Dos matrices son semejantes si y solo si son las matrices
asociadas a un mismo endomor�smo en distintas bases.
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5.5. Aplicaciones lineales en R2 y algunos mo-
vimientos del plano

Si f : R2 → R2 es una apicación lineal, entonces M(f) ∈ M2x2. Veamos
algunas transformaciones básicas del plano y cómo son sus correspondientes
matrices.

Aplicación nula: f(x, y) = (0, 0), M(f) =

(
0 0
0 0

)
Aplicación identidad: f(x, y) = (x, y), M(f) =

(
1 0
0 1

)
Proyección sobre los ejes: eje OX, f(x, y) = (x, 0) o eje OY , g(x, y) =
(0, y),

M(f) =

(
1 0
0 0

)
M(g) =

(
0 0
0 1

)
Homotecias centradas en (0,0): f(x, y) = (ax, ay), M(f) =

(
a 0
0 a

)
Giros (en el sentido antihorario) con centro (0, 0) y ángulo α: f(x, y) =
(x cosα− y senα, x senα + y cosα)

M(f) =

(
cos(α) − sen(α)
sen(α) cos(α)

)
Veamos de dónde sale esto. Si consideramos (x, y) como número com-
plejo, x+ iy, el producto de 1α · (x+ iy) nos da un giro de ángulo α en
sentido antihorario. Si lo escribimos en forma trigonométrica, tenemos
que 1α = cosα + i senα. Por tanto, el producto es

(cosα + i senα)(x+ iy) = x cosα− y senα + (x senα + y cosα)i

Simetría respecto a los ejes: eje OX, f(x, y) = (x,−y) o eje OY ,
g(x, y) = (−x, y),

M(f) =

(
1 0
0 −1

)
M(g) =

(
−1 0
0 1

)
Simetría respecto a la recta y = mx con m = tan(α): f(x, y) =
(x cos(2α) + y sen(2α), x sen(2α)− y cos(2α))

M(f) =

(
cos(2α) sen(2α)
sen(2α) − cos(2α)

)
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Capítulo 6

Diagonalización de matrices

6.1. De�nición y propiedades

Sea E un espacio vectorial sobre R o C y f : E → E un endomor�smo,
esto es, una aplicación lineal de un espacio vectorial en sí mismo.

Pretendemos expresar la aplicación lineal en forma matricial respecto a
alguna base B de forma que la matriz sea diagonal. Así pues, la primera
pregunta que nos hacemos es: ¾cuándo existe dicha base? Es decir, ¾para qué
endomor�smos existe una base B para la que MB(f) es diagonal?

Propiedad: Si f es un endomor�smo, B = {v1, v2, ..., vn} es una base de
E y

MB(f) =


a11 0 ... 0
0 a22 ... 0
: : ... 0
0 0 ... ann


es diagonal, entonces para cada vi ∈ B, f(vi) = aiivi.

Tenemos que, en la base B, vi = (0, ..., 0, 1, 0, ..., 0)B. Si representamos la
aplicación lineal en forma matricial:

a11 0 ... 0
0 a22 ... 0
: : ... 0
: : ... :
0 0 ... ann




0
:
1
:
0

 =


0
:
aii
:
0


es decir 0v1 + 0v2 + · · ·+ 0vi+i + aiivi + 0vi+i + · · ·+ 0vn = aiivi.

De�nición 6.1.1. Sea f un endomor�smo de un espacio vectorial E sobre
Ro C. Se llama vector propio o autovector de f a un elemento v ∈ E que
veri�ca:

73
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i) v ̸= 0E

ii) Existe un elemento λ ∈ R tal que f(v) = λv.

Si denotamos el endomor�smo identidad por Id, la matriz asociada será
la matriz unidad, M(Id) = I, para cualquier base. Así f(v) = λv = (λId)(v)
y, por las propiedades de la aplicación lineal, (f − λId)(v) = 0. Así, las
anteriores propiedades i), ii) son equivalentes a la condición:

i') v ̸= 0 y v ∈ Ker(f − λId) para algún λ ∈ R.

De�nición 6.1.2. Se dice que λ es el valor propio o autovalor asociado
al vector propio v si f(v) = λv.

Es decir, λ es un valor propio si y sólo si Ker(f − λId) ̸= 0, o sea, si y
sólo si (f − λId) no es inyectiva.

Llamamos vectores propios y valores propios de la matriz cuadrada A a
los vectores propios y valores propios del endomor�smo asociado f respecto
a una base B tal que MB(f) = A.

La ecuación f(x) = λx es equivalente a Ax = λx ⇔ (A−λI)x = 0 donde,
si f es un endomor�smo de un espacio vectorial E de dimensión n,

I =


1 0 ... 0
0 1 ... 0
: : ... :
0 0 ... 1


n×n

6.2. Cálculo de los valores propios

Sea f un endormor�smo en un espacio vectorial E de dimensión n, B una
base de E y A = MB(f). Como vimos antes, λ es un valor propio de f si y
sólo si Ker(f − λId) ̸= 0 ⇔ (f − λId) es no inyectivo ⇔ M(f − λId) es no
inversible ⇔ A− λIn es no inversible ⇔ det(A− λIn) = 0.

Por tanto, podemos encontrar los valores propios resolviendo los posibles
valores de λ en la ecuación det(A− λIn) = 0, es decir,∣∣∣∣∣∣∣∣

(a11 − λ) a12 ... a1n
a21 (a22 − λ) ... a2n
: : ... :

an1 an2 ... (ann − λ)

∣∣∣∣∣∣∣∣ = 0.

Esta ecuación se denomina ecuación característica.
Su desarrollo nos da un polinomio P (λ) de grado n que se denomina

polinomio característico de la matriz A. Los valores propios de la matriz
A son las raíces de dicho polinomio.
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Por el teorema fundamental del álgebra, todo polinomio de grado n admite
n raíces reales o complejas (no necesariamente distintas):

P (λ) = (−1)n(λ− λ1)
r1(λ− λ2)

r2 · · · · · (λ− λk)
rk

donde r1 + r2 + · · ·+ rk = n.

De�nición 6.2.1. El número de veces que aparece la raíz i, ri, se llama
multiplicidad del valor propio.

Ejemplo 6.2.2. 1) A =

(
6 −2
−2 9

)
; P (λ) =

∣∣∣∣ 6− λ −2
−2 9− λ

∣∣∣∣ =
= (6− λ) (9− λ)− 4 = 0 → λ2 − 15λ+ 50 = 0 → λ1 = 10 ó λ2 = 5.

2) A =

 1 1 1
1 1 1
1 1 1


P (λ) =

∣∣∣∣∣∣
1− λ 1 1
1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
3− λ 3− λ 3− λ
1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣ =

= (3− λ)

∣∣∣∣∣∣
1 1 1
1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣ = (3− λ)

∣∣∣∣∣∣
1 1 1
0 −λ 0
0 0 −λ

∣∣∣∣∣∣ = (3− λ)λ2 = 0.

Por tanto, (3− λ)λ2 = 0 → λ1 = 0 (doble), λ2 = 3.

6.3. Cálculo de los vectores propios

Los vectores propios se obtienen obteniendo soluciones no triviales del
sistema homogéneo: (A− λiIn)X = 0 para cada valor propio λi:


(a11 − λi) a12 ... a1n

a21 (a22 − λi) ... a2n
: : ... :

an1 an2 ... (ann − λi)

 =


x1

x2

:
xn

 =


0
0
:
0

 .

es decir,
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(a11 − λi)x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + (a22 − λi)x2 + · · ·+ a2nxn = 0

.......................................................................
an1x1 + an2x2 + · · ·+ (ann − λi)xn = 0


Nótese que este sistema tiene solución no trivial si y sólo si det(A−λiIn) =

0, es decir, si y sólo si λi es valor propio. Si tiene solución no trivial, quiere
decir que el sistema es compatible indeterminado.

Como vimos en la proposición 4.5.6, el conjunto de soluciones del sistema
es un espacio vectorial. En particular, si x = (x1, x2, ..., xn) es una solución
no trivial, también lo es α · x = (αx1, αx2, ..., αxn), ∀α ̸= 0. Al subespacio
vectorial asociado al valor propio λi lo denotamos Eλi

. El conjunto de vectores
propios asociados al valor propio λi es Eλi

− {0}.

Ejemplo 6.3.1. Veamos los vectores propios de las matrices del ejemplo
anterior.

1) Los vectores propios asociados a λ1 = 10 serán las soluciones no tri-
viales de la ecuación:

(A− λ1I2)X = 0 donde A =

(
6 −2
−2 9

)
y (A − 10I2) =(

6− 10 −2
−2 9− 10

)
=

(
−4 −2
−2 −1

)
de donde obtenemos el sistema:

−4x1 − 2x2 = 0
−2x1 − x2 = 0

}
Observamos que las dos ecuaciones son proporcionales. Resolviendo:

2x1 + x2 = 0 → Si x1 = α, x2 = −2α con α ∈ R. Así, los vectores
propios asociados a λ1 = 10 son de la forma : (α,−2α) con α ̸= 0.
Dicho de otra manera, E10 = {(α,−2α) |α ∈ R}. Tomando un valor
no nulo cualquiera de α podemos expresar el subespacio E10 a partir de
una base que lo genera: E10 = L[(1,−2)].

Los vectores propios asociados a λ2 = 5 provienen del sistema:(
6− 5 −2
−2 9− 5

)(
x1

x2

)
=

(
0
0

)
Esto es,

x1 − 2x2 = 0
−2x1 + 4x2 = 0

}
Observamos que son proporcionales (el rango es 1) y que, por tanto,
una de las ecuaciones es redundante. Resolviendo x1 − 2x2 = 0 →
Si x2 = β, entonces x1 = 2β. Los vectores propios asociados a λ2 = 5
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son de la forma: (2β, β) con β ̸= 0. Es decir, E5 = {(2β, β) |α, β ∈
R}. Tomando un valor no nulo cualquiera de β podemos expresar el
subespacio E5 a partir de una base que lo genera: E5 = L[(2, 1)].

2) Vectores propios asociados al valor propio λ1 = 0

(A−0I3) =

 1− 0 1 1
1 1− 0 1
1 1 1− 0

 x1

x2

x3

 =

 0
0
0

 ⇐⇒ x1+x2+

x3 = 0.

Los vectores propios son de la forma (α, β,−α−β) con α, β ̸= 0. E0 =
{(α, β,−α−β) |α, β ∈ R}. Para dar una base de E0 necesitaremos dos
vectores que obtenemos dando valores a α y β de forma que los vectores
resultantes sean linealmente independientes. Por ejemplo, tomando α =
1, β = 0 y α = 0, β = 1 resulta: E0 = L[(1, 0,−1), (0, 1,−1)].

Los vectores propios asociados a λ2 = 3 , veri�can (A − 0I3) = 1− 3 1 1
1 1− 3 1
1 1 1− 3

 x1

x2

x3

 =

 0
0
0

 ⇐⇒ x1 = x2 = x3. Son,

por tanto, de la forma (α, α, α) con α ̸= 0. E3 = {(α, α, α) |α ∈ R} =
L[(1, 1, 1)].

Nótese que: dim(Ker(A−0I3)) = 2 siendo 0 una raíz doble del polinomio
característico y dim(Ker(A − 3I3)) = 1 siendo 3 una raíz simple del
polinomio característico.

Ejercicio 6.3.2. Dada la matriz

A =


1
2

−3 2 1
0 2 0 −1
0 0 0 0
1 0 0 −1


determinar sus valores propios y hallar un vector propio asociado al valor
propio −1.

Solución: Desarrollando el polinomio característico (lo más fácil es ha-
cerlo por la 3ª �la. Después, desarrollo el determinante 3x3 de nuevo por
la 3ª �la) obtenemos P (λ) = λ[(3 − 2 + λ) + (−1 − λ)(1

2
− λ)(2 − λ)] =

−λ(1 + λ)[1− (1
2
− λ)(2− λ)] = λ2(1 + λ)(λ− 5

2
).

Los valores propios son 0 (doble), -1 y 5
2
.

El sistema asociado al valor propio −1 es:
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3
2
x− 2y + 2z + t = 0

3y − t = 0
z = 0

x = 0

 de donde x = z = 0 y t = 3y. Un vector

propio asociado al -1 sería de la forma (0, α, 0, 3α) para algún α ̸= 0.

6.4. Propiedades de los vectores propios y va-
lores propios

1) Dado un valor propio λ, el conjunto Eλ es un subespacio vectorial de
E.

En efecto, sean v1 y v2 dos soluciones al sistema (A−λI)X = 0 asociado
al valor propio λ.

Av1 = λv1 ⇔ f (v1) = λv1
Av2 = λv2 ⇔ f (v2) = λv2

}
∀α, β ∈ R, f (αv1 + βv2) = αf (v1) + βf (v2) = αλv1 + βλv2 =
λ (αv1 + βv2).

2) La suma de los n valores propios de una matriz es igual a su traza
(a11+ a22+ · · ·+ ann). En particular, dos matrices semejantes tienen el
mismo polinomio característico y la misma traza.

3) El producto de los n valores propios de una matriz es igual a su deter-
minante.

Teorema 6.4.1. Un endomor�smo f de E es diagonalizable si y sólo si
existe una base (v1, v2, ..., vn) de E formada por vectores propios de f .

Demostración. Sea B = {v1, v2, ..., vn} una base de vectores propios. Su-
pongamos λ1, λ2, ..., λn los valores propios asociados: f(vi) = λivi para i =

1, . . . , n. Como se vió en 5.2, MB(f) =


λ1 0 ... 0
0 λ2 ... 0
: : ... 0
0 0 ... λn


Supongamos que f es diagonalizable. Sea B = {v1, v2, ..., vn} una base tal

que MB(f) es diagonal: MB(f) =


a11 0 ... 0
0 a22 ... 0
: : ... 0
0 0 ... ann


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Es inmediato comprobar que si expresamos los vectores v1, v2, ..., vn en
la base B se cumple que MB(f)(vi)B = aiivi. Por tanto, los vi son vectores
propios.

Teorema 6.4.2. Dado un endomor�smo f : E → E con dim(E) = n y
autovalores λ1, λ2, ..., λk con multiplicidades α1, α2, ..., αk, f es diagonalizable
si y sólo si α1 + · · ·+ αk = n y dim(Eλi

) = αi.

Observación 6.4.3. Nótese que, por el teorema fundamental del álgebra, si
E es un espacio vectorial sobre C, entonces la primera condición del teorema
6.4.2, (α1 + · · ·+ αk = n), se da siempre.

Proposición 6.4.4. Si un endomor�smo f : E → E con dim(E) = n posee n
autovalores reales diferentes λ1, λ2, ..., λn ∈ R, entonces f es diagonalizable.

6.5. Diagonalización de una matriz

Sea f un endormor�smo dado por la matriz A = MB(f) y supongamos
que es diagonalizable. Para calcular la matriz equivalente diagonal primero
obtenemos los autovalores, posiblemente repetidos, λ1, λ2, ..., λn. Entonces,
la matriz diagonal

D =


λ1 0 ... 0
0 λ2 ... 0
: : ... 0
0 0 ... λn


es equivalente a A. Nótese que si tomamos los autovalores en un orden distinto
obtenemos otra matriz diagonal equivalente a A.

Veamos ahora cómo obtener una matriz de paso P tal que D = P−1AP .
Calculamos para cada valor λi el espacio vectorial asociado Eλi

. Si la
matriz es diagonalizable, como vimos en el teorema 6.4.2, la dimensión de
Eλi

coincide con la multiplicidad de λi, αi. Dicho espacio estará generado por
αi vectores que, como vimos, son vectores propios. Los vectores que forman
las bases de los espacios Eλi

serán las columnas de la matriz P en el mismo
orden en el que aparecen los autovalores en D.

Ejemplo 6.5.1. 1) Dada la matriz A =

(
6 −2
−2 9

)
vimos que los vec-

tores propios son λ1 = 10 y λ1 = 5. Por tanto

D =

(
10 0
0 5

)
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Los subespacios asociados son E10 = L[(1,−2)] y E5 = L[(2, 1)]. Así:

P =

(
1 2
−2 1

)
Efectivamente, P−1 = 1

5

(
1 −2
2 1

)
y

(
10 0
0 5

)
=

1

5

(
1 −2
2 1

)(
6 −2
−2 9

)(
1 2
−2 1

)

2) Dada la matriz A =

 1 1 1
1 1 1
1 1 1

 vimos que los vectores propios eran

λ1 = 0, con multiplicidad 2 y λ2 = 3.

La matriz diagonal será: D =

 0 0 0
0 0 0
0 0 3


Los subespacios asociados, como vimos en el ejemplo anterior, son
E0 = L[(1, 0,−1), (0, 1,−1)], E3 = L[(1, 1, 1)]. La matriz de paso que
obtenemos es:

P =

 1 0 1
0 1 1
−1 −1 1


Nótese que la matriz diagonal depende del orden en el que tomamos los
autovalores. La matriz P depende de dicho orden y de la elección que
hemos hecho de los vectores de las bases de los subespacios Eλi

.

Ejercicio 6.5.2. Diagonizar las siguientes matrices calculando la matriz de
paso P :

A =

 1 −1 0
−1 1 0
0 0 0

 B =

 3 −2 0
0 1 0
−4 8 −1

 C =

 2 4 2
1 2 −1
0 0 4

 .

6.6. Bases ortonormales y método de Gram-
Schmidt

De�nición 6.6.1. Una base de un espacio vectorial {e1, e2, ..., en} es orto-
normal si:
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i) ei · ej = 0 ∀ i ̸= j (son ortogonales entre sí).

ii) ||e1|| = ||e2|| = · · · = ||en|| = 1 (todos tienen norma 1).

Ejemplo 6.6.2. La base canónica de Rn es ortonormal.

Dada una base cualquiera de E, podemos construir una base ortonormal
mediante el método de Gram-Schmidt.

Sea {e1, e2, ..., en} una base de E.
Primero, normalizamos e′1 =

e1
||e1|| .

Después, para cada k = 2, 3, ..., n, suponiendo e′1, ..., e
′
k−1 de�nidos y or-

tonormales entre sí, hacemos

xk = ek −
k−1∑
i=1

⟨ek, e′i⟩e′i.

Nótese que entonces xk es ortogonal a e′1, ..., e
′
k−1. Primero, como

e′1, ..., e
′
k−1 son ortonormales entre sí, ∀i, j ≤ k ⟨xi, xj⟩ = 1 si i = j

y ⟨xi, xj⟩ = 0 si i ̸= j. Así pues, ∀j = 1, k − 1 ⟨xk, e
′
j⟩ = ⟨ek −∑k−1

i=1 ⟨ek, e′i⟩e′i, e′j⟩ = ⟨ek, e′j⟩ −
∑k−1

i=1 ⟨ek, e′i⟩⟨e′i, e′j⟩ = ⟨ek, e′j⟩ −
⟨ek, e′j⟩ = 0. Además, por ser los vectores linealmente indepen-
dientes, xk siempre es distinto de cero y se puede normalizar.

Finalmente, normalizamos e′k =
xk

xk
.

Así, {e′1, e′2, ..., e′n} es una base ortonormal.

Ejemplo 6.6.3. Sea B = {(1, 0,−1), (0, 1,−1), (1, 1, 1)} una base de R3.

e′1 =
e1

||e1|| =
(1,0,−1)√

2
= ( 1√

2
, 0, −1√

2
).

x2 = e2 − ⟨e2, e′1⟩e′1 = (0, 1,−1)− ⟨(0, 1,−1), (
1√
2
, 0,

−1√
2
)⟩( 1√

2
, 0,

−1√
2
) =

= (0, 1,−1)− 1√
2
(
1√
2
, 0,

−1√
2
) = (0, 1,−1)− (

1

2
, 0,

−1

2
) = (

−1

2
, 1,

−1

2
).

e′2 =
x2

||x2|| =
(−1

2
,1,−1

2
)

√
6

2

= 2√
6
(−1

2
, 1, −1

2
) = (−1√

6
, 2√

6
, −1√

6
).

x3 = e3 − ⟨e3, e′1⟩e′1 − ⟨e3, e′2⟩e′2 = (1, 1, 1)− ⟨(1, 1, 1), ( 1√
2
, 0,

−1√
2
)⟩
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(
1√
2
, 0,

−1√
2
)− ⟨(1, 1, 1), (−1√

6
,
2√
6
,
−1√
6
)⟩(−1√

6
,
2√
6
,
−1√
6
) =

= (1, 1, 1)− 0(
1√
2
, 0,

−1√
2
)− 0(

−1√
6
,
2√
6
,
−1√
6
) = (1, 1, 1).

e′3 =
(1,1,1)√

3
= ( 1√

3
, 1√

3
, 1√

3
).

6.7. Diagonalización de matrices simétricas

Teorema 6.7.1. Si una matriz A con coe�cientes reales es simétrica, enton-
ces:

a) Los valores propios son números reales.

b) Si λ1, λ2 son dos valores propios distintos de A entonces los vectores
propios asociados v1, v2 son ortogonales.

c) La matriz es diagonalizable. De hecho, existe una matriz P ortogonal
tal que D = P−1AP = P tAP .

Corolario 6.7.2. Si los valores propios de una matriz simétrica A, λ1, λ2, ..., λn,
son todos distintos y v1, v2, ..., vn son sus vectores propios asociados, entonces
{ v1
||v1|| ,

v2
||v2|| , ...,

vn
||vn||} es una base ortonormal.

Proposición 6.7.3. Si v1, v2, ..., vn es una base ortonormal de vectores pro-
pios de una matriz simétrica A y P es la matriz cuyas columnas son v1, v2, ..., vn,
entonces P es ortogonal y D = P tAP .

Ejemplo 6.7.4. Sea A =

 4 0 −1
0 3 0
−1 0 4


El polinomio característico es P (λ) = |A−λI| =

∣∣∣∣∣∣
4− λ 0 −1
0 3− λ 0
−1 0 4− λ

∣∣∣∣∣∣ =
(4− λ)(3− λ)(4− λ)− (3− λ) = −λ3 + 11λ2 − 39λ+ 45.

Los valores propios son las raíces de este polinomio. Para calcularlas po-
demos factorizar el polinomio usando la regla de Ru�ni. Obtenemos así que
P (λ) = −(λ− 3)2(λ− 5) y los autovalores son λ = 3 y λ = 5.

Calculamos el espacio vectorial asociado a λ = 3, E3. Será el conjunto de
soluciones del sistema homogéneo:
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0 3− 3 0
−1 0 4− 3

 x
y
z

 =

 0
0
0


El sistema resultante es:
x − z = 0
−x + z = 0

}
de donde x = z.

Por tanto, E3 = {(α, β, α) |α, β ∈ R}
Buscamos una base E3. E3 tiene dimensión 2. Asignando valores a los

parámetros α, β obtenemos dicha base. Haciendo α = 1, β = 0 tenemos
el vector propio (1, 0, 1), Haciendo α = 0, β = 1 tenemos el vector pro-
pio (0, 1, 0). Ambos son linalmente independientes y forman una base: E3 =
L[(1, 0, 1), (0, 1, 0)].

Calculamos el espacio vectorial asociado a λ = 5, E5. Será el conjunto de
soluciones del sistema homogéneo: 4− 5 0 −1

0 3− 5 0
−1 0 4− 5

 x
y
z

 =

 0
0
0


El sistema resultante es:
−x − z = 0

−2y = 0
−x − z = 0


de donde y = 0, y x = −z.

Por tanto, E5 = {(α, 0,−α) |α ∈ R}.
Buscamos una base E5. Dando un valor cualquiera al único parámetro α

obtenemos dicha base. Haciendo α = 1, tenemos que (1, 0,−1) es un vector
propio tal que E5 = L[(1, 0,−1)].

La matriz de cambio tendría por columnas los vectores propios.

P =

 1 0 1
0 1 0
1 0 −1


Así, la matriz diagonal será D =

 3 0 0
0 3 0
0 0 5

 y D = P−1AP .

Para encontrar la matriz de paso ortogonal debemos usar el método de
Gram-Schmidt.

e′1 =
e1

||e1|| =
(1,0,1)√

2
= ( 1√

2
, 0, 1√

2
).

x2 = e2 − ⟨e2, e′1⟩e′1 = (0, 1, 0)− ⟨(0, 1, 0), ( 1√
2
, 0,

1√
2
)⟩( 1√

2
, 0,

1√
2
) =
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= (0, 1, 0)− 0(
1√
2
, 0,

−1√
2
) = (0, 1, 0).

e′2 =
x2

||x2|| = (0, 1, 0).

x3 = e3 − ⟨e3, e′1⟩e′1 − ⟨e3, e′2⟩e′2 = (1, 0,−1)− ⟨(1, 0,−1), (
1√
2
, 0,

1√
2
)⟩

(
1√
2
, 0,

1√
2
)− ⟨(1, 0,−1), (0, 1, 0)⟩(0, 1, 0) = (1, 0,−1)− 0(

1√
2
, 0,

1√
2
)−

−0(0, 1, 0) = (1, 0,−1).

e′3 =
(1,0,−1)√

2
= ( 1√

2
, 0, −1√

2
).

La matriz de paso sería

Q =

 1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2


Así, D = QtAQ.

6.8. Cálculo de potencias de matrices

Sea A una matriz diagonalizable y sea P la matriz de paso. Así, D =
P−1AP y A = PDP−1. Entonces

An = A · A ·
(n veces)
· · · · A = (PDP−1) · (PDP−1) ·

(n veces)
· · · · (PDP−1) =

PD(P−1)P )D(P−1P ) · · · (P−1P )DP−1 = PDnP−1.
Por tanto, para caldular An basta calcular P , P−1 y Dn.
Si

D =


λ1 0 ... 0
0 λ2 ... 0
: : ... 0
0 0 ... λn


entonces es inmediato comprobar que

Dn =


λn
1 0 ... 0
0 λn

2 ... 0
: : ... 0
0 0 ... λn

n


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Ejemplo 6.8.1. Sea A =

 4 0 −1
0 3 0
−1 0 4


Como vimos en el ejemplo 6.7.4, D = QtAQ 1 con:

D =

 3 0 0
0 3 0
0 0 5



Q =

 1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2


Es inmediato ver que Dn =

 3n 0 0
0 3n 0
0 0 5n


Por tanto,

An = QDnQ−1 = QDnQt =

 1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2

 3n 0 0
0 3n 0
0 0 5n

 1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2

 = 3n+5n

2
0 3n−5n

2

0 3n 0
3n−5n

2
0 3n+5n

2



1Podemos hacerlo con cualquier matriz de paso. En este caso, lo hacemos con Q y no

con P porque al ser ortogonal el cálculo de la inversa es trivial
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