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Prácticas V 10/10/2025: Hoja 1

7. Este ejercicio tiene sentido cuando K = R. Haciendo el cambio de variables
x1 = senα, x2 = cos β, x3 = tan γ obtenemos un SLNH 3 EC 3 INCOG que resolvemos,
2 = x1 = senα, lo cual es imposible ya que sen2 α + cos2 α = 1, para todo α ∈ R.

Prácticas V 10/10/2025: Hoja 2

3.

Hf (A) =

 1 −2 0 −3

0 0 1 0
0 0 0 0

 , Hf (B) =

 1 0 4 0

0 1 −2 0

0 0 0 1

 , Hf (F ) =

 1 0 16 0

0 1 −2 0

0 0 0 1

 ,

Hf (C) = Hf (A), Hf (D) = Hf (E) = Hf (B).

Prácticas V 17/10/2025: Hoja 1

8. Haciendo el cambio de variables X = x2, Y = y2, Z = z2, llegamos a un SLNH
3EC 3INC 3PAR cuya matriz de coeficientes ampliada es la siguiente−1/2 1 1 | 2a2

1 −1/2 1 | 2b2

1 1 −1/2 | 2c2


Observemos la simetŕıa de las ecuaciones anteriores. El método de Gauss–Jordan nos
proporciona a la matriz ERF siguiente 1 0 0 | 4

9
(−a2 + 2b2 + 2c2)

0 1 0 | 4
9
(2a2 − b2 + 2c2)

0 0 1 | 4
9
(2a2 + 2b2 − c2)



Para cada terna a, b, c ∈ R tal que


−a2 + 2b2 + 2c2 ≥ 0,

2a2 − b2 + 2c2 ≥ 0,

2a2 + 2b2 − c2 ≥ 0

hay 23 = 8 soluciones, que

son x = ±
√
X = ±2

3

√
−a2 + 2b2 + 2c2, y = ±

√
Y = ±2

3

√
2a2 − b2 + 2c2, z = ±

√
Z =

±2
3

√
2a2 + 2b2 − c2. Observemos la simetŕıa de las soluciones anteriores.

Interpretación geométrica: En el espacio de parámetros R3, la ecuación 2b2+2c2 =
a2 determina una superficie cónica y la desigualdad 2b2 + 2c2 ≥ a2 determina su exterior.

Análogamente, tenemos que considerar otros dos conos. El conjunto de ternas

ab
c

 ∈ R3

para las cuales el sistema dado tiene solución es el exterior común a dichos 3 conos; ver
figura 1.
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Prácticas V 24/10/2025: Hoja 1

14. Si A2 = A y B = In − A, entonces B2 = (In − A)2 = I2n − InA − AIn + A2 =
In− 2A+A = In−A = B. Además AB = A(In−A) = A−A2 = A−A = 0. Demostrar
BA = 0 es análogo.

15. Sean A,B ∈Mn(K).

a. a) Si A = AT y B = BT , entonces (A + B)T = AT + BT = A + B, usando una
propiedad de la trasposición,

b) Si A = AT y k ∈ K, entonces (kA)T = kAT = kA, usando una propiedad de
la trasposición,

c) CONTRAEJEMPLO:

(
1 1
1 0

)(
0 1
1 0

)
=

(
1 1
0 1

)
, que no es simétrica,

d) Si A = −AT y B = −BT , entonces −(A + B)T = −(AT + BT ) = A + B,
usando una propiedad de la trasposición,

e) Si A = −AT y k ∈ K, entonces −(kA)T = −kAT = kA, usando una propiedad
de la trasposición,

f ) CONTRAEJEMPLO:

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
= −I2 que no es

antisimétrica.
b. Dada A ∈ Mn(K), la matriz A − AT es antisimétrica, pues (A − AT )T = AT −

(AT )T = AT − A. El otro caso es parecido.
c. Dada A ∈Mn(K), tenemos

A =
A+ AT

2
+
A− AT

2

donde el primer sumando es simétrico y el segundo es antisimétrico por los apar-
tados anteriores.

Unicidad: Si A = S+T = S ′+T ′, con S, S ′ ∈M sim
n (K) y T, T ′ ∈Mantisim

n (K),
entonces S−S ′ = T −T ′ es una matriz simétrica y antisimétrica. La única matriz
que cumple ambas cosas es la matriz nula. Deducimos S − S ′ = T − T ′ = 0, luego
S = S ′ y T = T ′.

Prácticas V 31/10/2025: Hoja 2

5.

a. Si A es invertible (i.e., regular) entonces es cuadrada y, por el teorema de las 5
condiciones equivalentes visto en clase, Hf (A) es la identidad, luego Hf (A) solo
pues ser igual a N2.
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b. Si A tiene determinante cero, demostraremos pronto en clase que A no es inverti-
ble.1 Por el teorema de las 5 condiciones equivalentes visto en clase, Hf (A) no es
la identidad, luego Hf (A) solo pues ser igual a N3.

c. Si A tiene rango máximo y no es cuadrada, entonces Hf (A) solo pues ser igual a
N1 ya que A y Hf (A) tienen el mismo tamaño y el mismo rango.

d. Si A tiene rango 3 y no tiene rango máximo, entonces Hf (A) solo pues ser igual a
N3, ya que A y Hf (A) tienen el mismo rango. (OBS: N1, N2 tienen rango máximo)

8.

a. (rA)A−1/r = r(AA−1)/r = rIn/r = In(r/r) = In, ya que los escalares conmutan
con las matrices.

b. Ap(A−1)p = (A p veces. . . . . .A)(A−1 p veces. . . . . .A−1) = (A p−1 v.. . . . . .A)(AA−1)(A−1 p−1 v.. . . . . .A−1) =
= (A p−1 v.. . . . . .A)In(A−1 p−1 v.. . . . . .A−1) =
= (A p−2 v.. . . . . .A)(AInA

−1)(A−1 p−2 v.. . . . . .A−1) = · · · = AA−1 = In.
c. AT (A−1)T = (A−1A)T = (In)T = In, por dos propiedades de las trasposición.

Prácticas V 21/11/2025: Hoja 3

20.

a. 

a1 + a2 + a3 − s = 0

b1 + b2 + b3 − s = 0

c1 + c2 + c3 − s = 0

a1 + b2 + c3 − s = 0

c1 + b2 + a3 − s = 0

a1 + b1 + c1 − s = 0

a2 + b2 + c2 − s = 0

a3 + b3 + c3 − s = 0

es SLH de 8 ecuaciones en 10 incógnitas (los ai, bi, ci y s).
b. Sumando las cuatro ecuaciones en que aparece b2 y simplificando, llegamos a 3b2 =
s.

Si λ ∈ K y A,A′ ∈ W y la suma de filas, columnas y diagonales de A es s
y la suma de filas, columnas y diagonales de A′ es s′, entonces la suma de filas,
columnas y diagonales de A+A′ es s+s′ y la suma de filas, columnas y diagonales
de λA es λs, por lo que A+A′ ∈ W y λA ∈ W . Esto prueba que W es subespacio
vectorial de M3(K).

Otra forma: el conjunto {(A, s) : A es cuadrado mágico de suma s} es subes-
pacio deM3(K)×K, ya que es el conjunto de soluciones de un SLH en 10 incógnitas.

1Una forma de justificar esto es recordar la fórmula de la inversa A−1 = 1
det(A) adj(AT ) vista en

Bachillerato. Esta fórmula solo se puede escribir cuando det(A) 6= 0.
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Pero como 3b2 = s, entonces podemos sustituir s por su valor, obteniendo aśı W
como el conjunto de soluciones de un SLH en 9 incógnitas, obteniendo que W es
subespacio de M3(K).

Sean M1 =

1 1 1
1 1 1
1 1 1

, M2 =

 1 −1 0
−1 0 1
0 1 −1

, M3 =

 0 1 −1
−1 0 1
1 −1 0

.

Observamos que M1,M2,M3 son cuadrados mágicos.

fg: De

a1 b1 c1
a2 b2 c2
a3 b3 c3

 =
∑3

i=1 λiMi deducimos λ1 = b2, λ2 = 2a1−b1−c1
3

, λ3 =

2a1−b1−c1
3

. (OBS: solución válida para cuerpos de caracteŕıstica distinta de 3).

li: De 0 =
∑3

i=1 λiMi deducimos λ1 = λ2 = λ3 = 0.

c. B =
∑3

i=1 λiMi =

6 1 8
7 5 3
2 9 4

 con λ1 = 5, λ2 = 1, λ3 = −3, s = 15, C =∑3
i=1 λiMi con λ1 = a1+b1+c1

3
, λ2 = 2a1−b1−c1

3
, λ3 = a1+b1−2c1

3
. (OBS: solución

válida para cuerpos de caracteŕıstica distinta de 3).

Prácticas V 05/12/2025: Hoja 4

18. (1)(a) Del enununciado deducimos que dimE = 4 y que dimW = 2 ya que
v1, v2 no son proporcionales y generan W .

Vamos a trabajar con coordenadas respecto de la base B.

Los vectores h1 =


1
1
1
1

 , h2 =


1
0
1
1

 ∈ E son li ya que no son proporcionales. Para ver

si sus clases h1 + W,h2 + W son li planteamos la pregunta: ¿si 0 + W = λ1(h1 + W ) +
λ2(h2 +W ), con λ1, λ2 ∈ K, entonces ocurre que λ1 = λ2 = 0?

Operando, tenemos 0 + W = λ1(h1 + W ) + λ2(h2 + W ) = (λ1h1 + λ2h2) + W =
λ1 + λ2
λ1

λ1 + λ2
λ1 + λ2

 + W , lo que equivale a


λ1 + λ2
λ1

λ1 + λ2
λ1 + λ2

 ∈ W , es decir, que existen a, b ∈ K tales

que


λ1 + λ2
λ1

λ1 + λ2
λ1 + λ2

 = a


1
0
1
0

 + b


1
1
−1
−1

 =


a+ b
b

a− b
−b

. Igualando coordenada a cooordenada

(respecto de B) obtenemos un SLH 4EC 4INCOG. Se obtiene de inmediato λ1 = b, a = 0,
2b = 0. Si carK 6= 2 deducimos que λ1 = λ2 = a = b = 0 es la solución única. Hemos
demostrado que h1 +W,H2 +W son li, cuando carK 6= 2.
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Generalizando lo anterior, tenemos que cualesquiera vectores h1, h2 de coordenadas
h11
h21
h31
h41

,


h12
h22
h32
h42

 tales que la matriz


h11 h12 −1 −1
h21 h22 0 −1
h31 h32 −1 1
h41 h42 0 1

 tenga rango máximo 4 (tenga

determinante no nulo) verifican que h1, h2 son li y también los son sus clases módulo W .
Por ello, para encontrar dos vectores h1, h2 que sean li, pero que sus clases módulo

W sean ld, lo que necesitamos es que la matriz


h11 h12 −1 −1
h21 h22 0 −1
h31 h32 −1 1
h41 h42 0 1

 NO tenga rango

máximo (tenga determinante nulo), siendo el rango de


h11 h12
h21 h22
h31 h32
h41 h42

 igual a 2. Por ejemplo,

tomo h1 = v1 y h2 no proporcional a v1.

15. La matriz de coeficientes del SLH que describe U es

(
1 −1 1 −2
1 −2 1 −1

)
, que

tiene rango 2. Resolviendo este sistema por M. Gauss–Jordan obtenemos que z, t son
variables libres y que x = −z + 3t e y = t. Dando, por turnos, el valor 1 a una de las

variables libres y 0 al resto, obtenmos una base (u1, u2) de U aśı: u1 =


−1
0
1
0

, u2 =


3
1
0
1

.

Tenemos dimU = 2. Buscamos un subespacio W de dimensión 2 tal que U ∩W = {0}
y Q4 = U + W . Escribamos W = L(h1, h2), con h1, h2 vectores li. Debe ocurrir que
Q4 = U + W , para lo cual es necesario y suficiente que u1, u2, h1, h2 sea una base de Q4.

Para ello, la matriz


−1 3 h11 h12
0 1 h21 h22
1 0 h31 h32
0 1 h41 h42

 tenga rango máximo 4 (determinante no nulo).

Por ejemplo, tomamos W = L(e1, e2) 6= W ′ = L(e1, e4).

Prácticas V //2026

EJERCICIO: Sea (V, 〈, 〉) un espacio vectorial euclideano de dimensión ar-
bitraria. Demuestra que vectores no nulos y ortogonales dos a dos son li-
nealmente independientes. Dados v1, v2, . . . , vn ∈ V \ {0} ortogonales dos a dos y
λ1, λ2, . . . , λn ∈ R, supongamos 0 = λ1v1 + λ2v2 + · · · + λnvn. Entonces, para cada
j = 1, 2, . . . , n, mutiplicando por vj obtenemos 0 = 〈0, vj〉 = 〈λ1v1+λ2v2+· · ·+λnvn, vj〉 =
λ1〈v1, vj〉+ · · ·+λj−1〈vj−1, vj〉+λj〈vj, vj〉+λj+1〈vj+1, vj〉+ · · ·+λn〈vn, vj〉 = λj〈vj, vj〉 =
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λj‖vj‖2. Tenemos 0 = λj‖vj‖2 ∈ R y, al ser ‖vj‖2 6= 0 (ya que vj 6= 0) y ser R un cuerpo,
llegamos a que 0 = λj, para cada j = 1, 2, . . . , n.
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Figura 1


