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Abstract

Non-additive measures are a valuable tool to model many different problems arising in real situations. However,
two important difficulties appear in their practical use: the complexity of the measures and their identification
from sample data. For the first problem, additional conditions are imposed, leading to different subfamilies of
non-additive measures. Related to the second point, in this paper we study the set of vertices of some families
of non-additive measures, namely k-additive measures and p-symmetric measures. These extreme points are
necessary in order to properly apply a new method of identification of non-additive measures based on genetic
algorithms, whose cross-over operator is the convex combination. We solve the problem through techniques of
Linear Programming.

Keywords: Decision analysis, genetic algorithms, multiple criteria analysis, linear programming, non-additive
measures, k-additivity, p-symmetry, vertices.

1 Introduction

Non-additive measures (also called capacities or fuzzy measures) constitute a generalization of classical probability
distributions in which we have removed additivity and monotonicity is imposed instead. This extension is perfectly
justified in many practical situations, in which additivity is too restrictive.

For example, in the field of Decision Making, models based on Probability, as those from von Neumann and
Morgenstern [42] or Anscombe and Aumann [2] to cite a few, can lead to inconsistencies due to risk aversion and
the certainty effect as the well-known paradoxes of Ellsberg [14] and Allais [1], respectively. However, models
based on non-additive measures [6, 36] are able to handle and interpret these problems. Moreover, in recent
years, the analysis and use of non-additive measures have been enriched by different equivalent representations
of a capacity [18], that are obtained through invertible linear transformations applied on the measure.

Non-additive measures have been successfully applied to model problems in Multicriteria Decision Making and
Cooperative Games. In the former case, non-additive measures allow the decision maker to introduce vetoes and
favors in the model [18], as well as interactions among the different criteria [19]. In the theory of Cooperative
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Games, non-additive measures represent the strength of coalitions of players; they are related to the Shapley
value [38], as shown in [17]. Other fields related to non-additive measures are combinatorics [35], pseudo-Boolean
functions [22], etc.

This versatility of non-additive measures has led to a huge number of related works, both from a theoretical
and from a practical point of view [12, 43], and they have become a powerful tool in many fields.

However, despite the fact of the many advantages of non-additive measures, their practical use has to face with
the hurdle of an increment in the complexity. In the case of finite spaces of cardinality n, just n− 1 values suffice
to define a probability measure, while 2n − 2 coefficients are needed for non-additive measures. This exponential
complexity is the Achilles heel of the theory.

In an attempt to cope with the complexity involved by the use of non-additive measures, Grabisch [17] has
proposed the concept of k-additive measures, and Miranda and Grabisch [30] have recently proposed a generaliza-
tion of symmetric measures, the so-called p-symmetric measures. In both cases we obtain an important reduction
in the number of coefficients needed to define the non-additive measure. These families provide a model which is
both flexible and simple to use.

Suppose a situation that can be modelled through the Choquet integral [8] with respect to a p-symmetric or a
k-additive measure (an axiomatic characterization of such a model for the k-additive case can be found in [29]).
Next step should be the identification of the corresponding measure.

We will assume that some kind of experimental information is available. We also assume that this sample
information is numerical; if this is not the case, it should be transformed into numerical data through a tool
dealing with ordinal values, as MACBETH [13] or TOMASO [26]. The goal is to find a (k-additive, p-symmetric)
measure fitting this data. It must be remarked at this point that it is possible to find several measures equally
suitable [33].

If the considered proximity criterion is the squared error, different techniques exist to solve the problem. For
example, Grabisch and Nicolas [21] have developed a method based on solving a quadratic problem. On the other
hand, Wang et al. [44] have developed a method based on genetic algorithms; although in this case a suboptimal
solution is found, the computational cost is greatly reduced.

In a recent paper [9], we have proposed an algorithm for the learning of k-additive and p-symmetric measures
from sample data based on genetic algorithms. In that paper, the cross-over operator was the convex combination.
This operator seems to be logical and simple, and has the advantage that the resulting measure keeps the k-
additivity (resp. p-symmetry), so that we do not need to check the conditions at each step. However, an important
drawback is that the search space is reduced in each iteration; this is solved in part through the introduction of a
mutation operator, but anyway we are reduced to the region determined by the initial population. Therefore, it
is needed an initial population wide enough to contain the searched measure inside the region that it determines.
In this sense, the best option is to consider the set of vertices.

The aim of this paper is to determine the set of vertices or extreme points for these two families of non-additive
measures. All along the paper, the results are based on linear programming methods [3].

The paper is organized as follows: In Section 2 we introduce the basic concepts on non-additive measures that
will be needed throughout the paper. Section 3 is devoted to give a brief description of genetic algorithms and
explain the special characteristics of ours. Vertices of the set of k-additive measures are studied in Section 4,
while Section 5 deals with the same problem for p-symmetric measures. We finish with some conclusions and
open problems.

2 Basic concepts on non-additive measures

Consider a finite referential set of n elements (criteria in Multicriteria Decision Making, players in Cooperative
Games, ...), X = {x1, ..., xn}. Let us denote by P(X) the set of subsets of X. Subsets of X are denoted A,B, ...
and also by A1, A2, ....

Definition 1. [8, 10, 40] A non-additive measure over (X,P(X)) is a mapping µ : P(X) → [0, 1] satisfying

• µ(∅) = 0, µ(X) = 1 (boundary conditions).

• ∀A,B ∈ P(X), if A ⊆ B, then µ(A) ≤ µ(B) (monotonicity).
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We will denote the set of all non-additive measures on X by FM(X). Remark that FM(X) is a bounded
convex polyhedron i.e., the intersection of a finite number of semispaces; each of these semispaces is linked to a
monotonicity constraint.

A special class of non-additive measures is the set of {0, 1}-valued measures.

Definition 2. A non-additive measure is {0, 1}-valued if it only takes values 0 and 1.

Definition 3. Given a convex subset of non-additive measures, F ⊆ FM(X), we say that µ ∈ F is a vertex of
F if we cannot find two non-additive measures µ1, µ2 ∈ F , both different form µ, and a scalar λ ∈ (0, 1) such that

µ(A) = λµ1(A) + (1− λ)µ2(A), ∀A ∈ P(X).

The set of vertices completely determine the convex polyhedron, as any point in it can be written as a convex
combination of the vertices (see [3]).

Given a vector ~x in a convex polyhedron on Rp, if it satisfies one of the constraints with equality, we say that
this constraint is active for ~x. If ~x is an extreme point or vertex, then, the system defined by its active constraints
has a unique solution. Two distinct vertices in the polyhedron are said to be adjacent if we can find p− 1 linearly
independent constraints that are active at both of them.

As FM(X) is a bounded convex polyhedron, any measure µ can be put as a convex combination of the vertices.
The vertices of FM(X) have been obtained by Radojevic in [34, Proposition 2], in which it is given a constructive
way to find the coefficients of the convex combination:

Proposition 1. The set of {0, 1}-valued measures constitutes the set of vertices of FM(X).

Remark 1. The proof appearing in [34] can be adapted as an alternative proof of Theorem 2 below to show
that the vertices of the set of p-symmetric measures are the {0, 1}-valued measures that are also p-symmetric.
Reciprocally, the proof of Theorem 2 based on unimodular matrices can be adapted to prove Proposition 1.

A special case of {0, 1}-valued measures are the so-called unanimity games:

Definition 4. A unanimity game over A ⊆ X, A 6= ∅ is a non-additive measure defined by

uA(B) :=
{

1 if A ⊆ B
0 otherwise

For ∅, we define the unanimity game by

u∅(B) :=
{

1 if B 6= ∅
0 if B = ∅

There are other set functions that can be used to equivalently represent a non-additive measure. In this paper
we will need the so-called Möbius transform.

Definition 5. [35] Let µ be a set function (not necessarily a non-additive measure) on X. The Möbius trans-
form (or inverse) of µ is another set function on X defined by

m(A) :=
∑

B⊆A

(−1)|A\B|µ(B), ∀A ⊆ X. (1)

The Möbius transform given, the original set function can be recovered through the Zeta transform [7]:

µ(A) =
∑

B⊆A

m(B). (2)

The value m(A) represents the strength of the subset A in any coalition in which it appears. Remark that the
Möbius transform can attain negative values; when it is a non-negative function, it corresponds to the basic
probability mass assignment in Dempster-Shafer theory of evidence [37].

Related to unanimity games, the following result can be proved.
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Proposition 2. [20] The Möbius transform of the unanimity game on A, with A 6= ∅, is given by

m(B) =
{

1 if B = A
0 otherwise

For u∅, the Möbius inverse is given by m(A) = (−1)|A|+1, ∀A ⊆ X, A 6= ∅ and m(∅) = 0.

Unanimity games are usually taken as the basis of the set of non-additve measures because any non-additive
measure can be written as

µ(A) =
∑

B 6=∅
m(B)uB(A), ∀A ∈ P(X).

Finally, we will need the following result:

Proposition 3. [19] Let µ1, ..., µp be a family of non-additive measures, with m1, ...,mp, their corresponding

Möbius representations, and α1, ..., αp ∈ [0, 1] so that
p∑

i=1

αi = 1. Then, µ =
p∑

i=1

αiµ
i is a non-additive measure

whose Möbius transform is given by

m =
p∑

i=1

αim
i.

In order to aggregate the different values, the so-called fuzzy integrals are used. One of the most important is
the Choquet integral. This integral is a generalization of the concept of expected value.

Definition 6. [8] The Choquet integral of a function

f : X → R+

with respect to a non-additive measure µ on X is defined by

Cµ(f) :=
n∑

i=1

(f(x(i))− f(x(i−1)))µ(Bi), (3)

where {x(1), . . . , x(n)} is a permutation of the set {x1, . . . , xn} satisfying

0 =: f(x(0)) ≤ f(x(1)) ≤ ... ≤ f(x(n))

and Bi = {x(i), ..., x(n)}.
In order to determine a non-additive measure, 2n − 2 values are necessary. The number of coefficients grows

exponentially with n and so does the complexity of the problem of learning. This drawback reduces considerably
the practical use of non-additive measures. Thus, some subfamilies of non-additive measures have been defined in
an attempt to reduce complexity, e.g. k-additive measures [17], p-symmetric measures [30], k-intolerant measures
[24, 25], λ-measures [41], or more generally decomposable measures [11].

Definition 7. [17] A non-additive measure µ is said to be k-order additive or k-additive if its Möbius
transform vanishes for any A ⊆ X such that |A| > k and there exists at least one subset A with exactly k elements
such that m(A) 6= 0.

In this sense, a probability measure is just a 1-additive measure. Thus, k-additive measures generalize proba-
bility measures, that are very restrictive in many situations. They fill the gap between probability measures and
general non-additive measures. For a k-additive measure, the number of coefficients is reduced to

k∑

i=1

(
n

i

)
.

More about k-additive measures can be found e.g. in [19]. We will denote the set of all k′-additive measures on X
with k′ ≤ k by FMk(X); we will use the fact that FMk(X) is a convex polyhedron (the proof is straightforward
considering the Möbius transform). Specially appealing is the 2-additive case, that provides a generalization of
probability allowing interactions while keeping a reduced complexity.
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Definition 8. A non-additive measure is said to be symmetric if it satisfies for any A,B ∈ P(X),

|A| = |B| ⇒ µ(A) = µ(B).

It can be proved [16] that the Choquet integral w.r.t. a symmetric measure is an OWA operator [45]; then,
the same as for probabilities, the Choquet integral w.r.t. a symmetric measure has a low complexity. Therefore,
we define p-symmetric measures in a way such that the corresponding Choquet integral is kept to a reduced
complexity.

The definition of p-symmetric measure is based on the concept of indifferent elements and subsets of indifference.

Definition 9. [30] Given two elements xi, xj of the universal set X, we say that xi and xj are indifferent
elements for µ if

∀A ⊆ X\{xi, xj}, µ(A ∪ xi) = µ(A ∪ xj). (4)

In Multicriteria Decision Making, the definition of indifferent elements reflects the fact that criteria xi and xj

are equivalent, so that we do not care about which one is fulfilled.
This can be extended to more than two elements through subsets of indifference.

Definition 10. [30] Given a subset C of X, we say that C is a subset of indifference if and only if ∀B1, B2 ⊆
C, |B1| = |B2| and ∀A ⊆ X\C, we have

µ(A ∪B1) = µ(A ∪B2). (5)

From this definition, two elements of the same subset of indifference are indifferent elements in the sense of
Definition 9.

Indeed, the relation R defined by xiRxj if and only if xi and xj are indifferent elements for µ is an equivalent
relation, and the subsets of indifference are the equivalence classes.

Definition 11. Let Π1, Π2 be two partitions of X. We say that Π2 is coarser than Π1, denoted Π1 v Π2, if

∀A1 ∈ Π1, ∃A2 ∈ Π2, s.t. A1 ⊆ A2.

The set of partitions of X with v has the structure of a lattice (see [39]). Then, the subset of partitions
Π = {A1, ..., Ar} of X such that Ai is a subset of indifference for µ has a least upper bound. In [31], it is shown
that this least upper bound is a partition whose elements are subsets of indifference for µ, too. We will refer to
this least upper bound as the indifference partition. Now, it is straightforward to define p-symmetric measures.

Definition 12. [30] Given a non-additive measure µ, we say that µ is a p-symmetric measure if and only if
the (unique) coarsest partition of the universal set in subsets of indifference has p nonempty subsets.

With these definitions, a symmetric measure is just a 1-symmetric measure. Given {A1, ..., Ap} a partition of
X, the set of all non-additive measures µ such that Ai for i = 1, ..., p, are subsets of indifference for µ is denoted by
FM(A1, ..., Ap). Remark that in FM(A1, ..., Ap) we include all non-additive measures whose indifferent partition
is (A1, ..., Ap) but also the non-additive measures whose indifferent partition is coarser. It will be proved below
(Proposition 12) that FM(A1, ..., Ap) is a convex polyhedron. In the same spirit of k-additive measures, p-
symmetric measures appear as a middle term between symmetric measures and general non-additive measures.
They reduce the complexity of non-additive measures and provide a generalization of the idea of symmetry.

Remark that, when dealing with a p-symmetric measure w.r.t. {A1, ..., Ap}, we only need to know the number
of elements of each Ai belonging to a given subset B of the universal set X. Then, we can identify B ⊆ X with
a p-dimensional vector (b1, ..., bp) where bi := |Ai ∩B|, ∀i = 1, ..., p.

This property allows a reduction in the complexity of the measure:

Lemma 1. [32] Let µ be a p-symmetric measure w.r.t. the indifference partition {A1, ..., Ap}. Then, it can be
represented in a (|A1|+ 1)× · · · × (|Ap|+ 1) matrix whose entries are defined by

M(i1, ..., ip) := µ(i1, ..., ip), 0 ≤ ij ≤ |Aj |.
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Remark 2. Lemma 1 also holds for any measure in FM(A1, ..., Ap).

In [32], some properties of p-symmetric measures have been studied, among them a decomposition of the
corresponding Choquet integral.

With all these concepts, we can now state our problem as follows: Given m objects represented by the functions
f1, . . . , fm, and their assigned overall scores y1, . . . , ym, and a family of non-additive measures F , we look for µ ∈ F
minimizing

m∑

i=1

(Cµ(fi)− yi)2. (6)

That is, we look for a non-additive measure µ in F that best fits our data with respect to the Choquet integral.

3 Genetic algorithms

Genetic algorithms are general optimization methods based on the theory of natural evolution [23]. The main
concepts are those of individual and population, which are, respectively, a candidate solution and the set of
individuals being considered at a certain step in the algorithm.

Starting from an initial population, at each iteration (or generation), some individuals are selected with prob-
ability proportional to their fitness (which is measured according to the function that we want to optimize) and
new individuals are generated from them using a cross-over operator. These new individuals replace the old ones
(their parents) and the process continues until an optimum is found or until the maximum number of generations
is reached. Then, the best individual in the last population is returned as a possible solution of the problem.

Sometimes, the cross-over operator greatly reduces the diversity of the populations and the risk of finding only
a local optimum increases. To avoid this, a mutation operator which randomly changes individuals is defined.
With some predetermined frequency, this operator is applied.

These algorithms have been successfully used in many optimization problems (see [15]) and have a lot of good
properties (robustness, few requirements on the function to optimize, low complexity,...) which make them an
appealing choice for the problem of identification.

To apply the method of genetic algorithms to our problem we must first choose a cross-over operator on non-
additive measures and select a suitable representation. We have chosen the convex combination of two non-additive
measures µ1 and µ2, defined by

λµ1 + (1− λ)µ2,

with λ ∈ [0, 1] chosen at random when the operator is applied.
The key advantage of this operator comes from the fact that it can also be applied to sub-families of non-

additive measures which are convex, such as k-additive measures and p-symmetric measures (when the partition
of subsets of indifference is fixed). Then, we can select different classes of measures for the learning problem
without having to define new, specific cross-over operators.

The main drawback with this operator is that the search space is reduced in each generation (see figure 1),
since the convex combinations of the new measures are always a subset of the convex combinations of the previous
ones. What is more, if the initial population is not carefully selected, then it might be the case that only bad
approximations can be found among the convex combinations of those initial individuals.

To overcome this drawback, one can use the extreme points of the family. Then, the starting population is
initialized to the set of vertices and, seldom, some individuals are combined with one of the vertices chosen at
random (this is the mutation operator) in order to keep the diversity high enough.

Once we know the vertices, the natural representation of the measures is by their coefficients as convex com-
bination of the initial population. With this representation the cross-over operator has low complexity (if the
number of vertices is small) and also the number of Choquet integrals that must be computed is kept to a min-
imum, since they are also convex combination of the integrals of the parents. Thus, we only have to integrate
with respect to the vertices, which is usually easy.

Then, a measure µ will be represented as

(λ1, . . . , λl, z1, . . . , zm),
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Figure 1: Reduction of the search space due to convex combination

where λ1, . . . , λl, are coefficients of µ with respect to the l vertices and zi = Cµ(fi). From this representation the
fitness function (quadratic error) can be easily computed, too.

4 Vertices of k-additive measures

In this section we will show that, contrary to what happens with FM(X) (see Proposition 1), the set of {0, 1}-
valued measures in FMk(X) does not completely determine the set of vertices for k > 2. The basic idea is
to obtain two (k + 1)-additive measures µ1, µ2, such that they are adjacent vertices in the convex polyhedron
FM(X), and such that it is possible to find λ ∈ (0, 1) satisfying

µ = λµ1 + (1− λ)µ2 ∈ FMk. (7)

If such a λ exists, µ is not a {0, 1}-valued measure because it is not a vertex of the set FM(X) (see Proposition
1). Moreover, µ would be the only one k-additive measure in the segment joining µ1 and µ2. As µ1 and µ2 are
adjacent vertices, the points in the segment line between µ1 and µ2 can only be written as a convex combination
other points in this line, and this would imply that µ is in fact an extreme point of FMk. This result is stated
in several propositions based on results of linear programming.

First, remark that for a {0, 1}-valued measure µ, there are some subsets A satisfying the following conditions:

µ(A) = 1,
µ(B) = 1, ∀B ⊇ A,
µ(C) = 0, ∀C ⊂ A.

(8)

This leads us to introduce the following concept:

Definition 13. Consider a {0, 1}-valued measure µ. We will say that a subset A of X is a minimal subset for
µ if it satisfies the condition (8).

Remark 3. If we consider the lattice (P(X),∪,∩), then a minimal subset for a {0, 1}-valued measure µ can be
equivalently defined as a subset of X such that µ(A) = 1 and whose principal filter FA and principal ideal IA (see
[39]) satisfy

µ(B) = 1, ∀B ∈ FA, µ(B) = 0, ∀B ∈ IA\{A}.
Remark 4. A {0, 1}-valued measure is completely defined by its minimal subsets. To see this, it suffices to remark
that µ(A) = 1 if it contains a minimal subset and µ(A) = 0 otherwise.

We propose now an algorithm to obtain the Möbius transform of a {0, 1}-valued measure from its minimal
subsets.

Proposition 4. Let µ be a {0, 1}-valued measure whose minimal subsets are B1, ..., Br. If we denote by m the
corresponding Möbius transform of µ, then m can be computed through:

• Step 0: Initially, set m(A) → 0, ∀A ⊆ X.
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• Step 1: m(Bi) → 1, ∀i = 1, ..., r.

• Step 2: For any i, j, i 6= j, m(Bi ∪Bj) → m(Bi ∪Bj)− 1.

• Step 3: For any different i, j, k, m(Bi ∪Bj ∪Bk) → m(Bi ∪Bj ∪Bk) + 1.

• ...

• Step r: m(B1 ∪ ... ∪Br) → m(B1 ∪ ... ∪Br) + (−1)r+1.

Proof: We will prove that the non-additive measure µm obtained through our algorithm is indeed µ. Consider
A ⊆ X.

• If Bi 6⊆ A, ∀i, then µ(A) = 0 (Remark 4). On the other hand, applying the algorithm, we have m(C) =
0, ∀C ⊆ A. Therefore, by Equation (2),

µm(A) =
∑

C⊆A

m(C) = 0,

and the result follows.

• Suppose that ∃Bi ⊆ A. In this case, µ(A) = 1. Assume without loss of generality that B1, ..., Bp ⊆ A and
Bp+1, ..., Br 6⊆ A. Notice that: ⋃

j∈J

Bj ⊆ A ⇔ J ⊆ {1, ..., p}.

Consider ∅ 6= J ⊆ {1, ..., p} such that |J | = k. The corresponding C := ∪j∈JBj appears at step k, and then
m(C) turns into m(C)+(−1)k+1. Remark also that these C’s are exactly the

(
p
k

)
subsets (maybe repeated!)

derived from the minimal subsets appearing at step k and contained in A. Consequently,

µm(A) =
∑

C⊆A

m(C) =
p∑

i=1

(
p

i

)
(−1)i+1 = (−1)(1− 1)p + 1 = 1.

Then, the result holds.

Corollary 1. Given a {0, 1}-valued measure whose minimal subsets are B1, ..., Br and such that | ∪r
i=1 Bi| = k,

the resulting {0, 1}-valued measure is a k-additive measure (at most).

Let us apply the algorithm of Proposition 4 in an example.

Example 1. Let us consider X = {1, 2, 3, 4, 5} and assume that the minimal subsets are

{1, 3}, {1, 4}, {1, 5}, {3, 4}, {3, 5}.

Applying our algorithm we obtain:

• Unions of 1 minimal subset:

{1, 3}, {1, 4}, {1, 5}, {3, 4}, {3, 5}.

• Unions of 2 minimal subsets:

{1, 3, 4}, {1, 3, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 3, 4}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 5}, {3, 4, 5}.

(Notice that there are subsets appearing more than once).
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• Unions of 3 minimal subsets:

{1, 3, 4, 5}, {1, 3, 4}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}.

• Unions of 4 minimal subsets:

{1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}, {1, 3, 4, 5}.

• Unions of 5 minimal subsets:
{1, 3, 4, 5}.

Then, the Möbius transform is given by:

m(1, 3) = 1, m(1, 4) = 1, m(1, 5) = 1, m(3, 4) = 1, m(3, 5) = 1.

Consider for example m(1, 3, 4). As {1, 3, 4} appears three times as union of 2 minimal subsets and once as a
union of three minimal subsets, we have

m(1, 3, 4) = −3 + 1 = −2.

Similarly,

m(1, 3, 5) = −3 + 1 = −2, m(1, 4, 5) = −1, m(3, 4, 5) = −1, m(1, 3, 4, 5) = −2 + 8− 5 + 1 = 2.

And finally, m(A) = 0 otherwise.

Remark 5. At this point, it is important to note that it is possible to find a {0, 1}-valued measure whose minimal
subsets are B1, ..., Br, with | ∪r

i=1 Bi| = k, and such that this {0, 1}-valued measure is not exactly k-additive but
k′-additive, with k′ < k:

Let us consider X = {1, 2, 3, 4, 5}. Assume that the minimal elements are

{1, 2}, {1, 3}, {1, 4}, {3, 4, 5}.

Then, ∪4
i=1Bi = {1, 2, 3, 4, 5}. Let us apply the algorithm of Proposition 4:

• Unions of 1 minimal subset:
{1, 2}, {1, 3}, {1, 4}, {3, 4, 5}.

• Unions of 2 minimal subsets:

{1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4, 5}, {1, 3, 4}, {1, 3, 4, 5}, {1, 3, 4, 5}.

• Unions of 3 minimal subsets:

{1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}, {1, 3, 4, 5}.

• Unions of 4 minimal subsets:
{1, 2, 3, 4, 5}.

Then, the Möbius transform is given by:

m(1, 3) = 1, m(1, 4) = 1, m(1, 5) = 1, m(3, 4) = 1, m(3, 5) = 1.

m(1, 2, 3) = −1, m(1, 2, 4) = −1, m(1, 3, 4) = −1, m(1, 3, 4, 5) = −1, m(1, 2, 3, 4) = 1, m(1, 2, 3, 4, 5) = 0.

And finally, m(A) = 0 otherwise. Then, µ is 4-additive instead of 5-additive.
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Let us now turn to the monotonicity conditions of a non-additive measure (Definition 1). These constraints
can be put in the form

µ(∅) = 0, µ(X) = 1.
µ(X\{xi})− 1 + h(X,xi) = 0.

µ(A\{xi})− µ(A) + h(A, xi) = 0, ∀A 6= X, ∀xi ∈ A.
h(A, xi) ≥ 0, µ(A) ≥ 0, ∀A 6= ∅, X, ∀xi ∈ A.

(9)

Then, we have written the monotonicity conditions as the constraints of a linear programming problem in the
standard form [3] with variables µ(A), h(A, xi), ∀A 6= ∅, ∀xi ∈ A; variables h(A, xi),∀A 6= ∅, ∀xi ∈ A are the
slack variables. Now, consider a vertex µ0, i.e. a {0, 1}-valued measure (Proposition 1). This measure is a basic
feasible solution of System (9) and it must be defined through some basic variables (see [3] for a proof); the other
variables (called non-basic variables) attain value 0. It must be kept in mind throughout this section that several
choices of basic variables can define the same vertex, since we are dealing with a very degenerated problem (in
which some of the basic variables attain value 0, too).

We first study the values of these basic variables.

Proposition 5. Suppose we introduce the variable µ(A) in the basis and there exists a B ⊃ A such that the
corresponding µ(B) is not a basic variable. Then, µ(A) attains the value 0 in the new solution.

Proof: The proof is straightforward. As µ(B) is not a basic variable, it follows that µ(B) = 0, whence
µ(A) = 0 in order to satisfy the monotonicity constraints of non-additive measures (Definition 1), i.e. in order to
obtain a feasible solution.

Remark 6. It must be noted that the reciprocal of this result does not hold, i.e. it is possible to find situations
in which µ(B) is a basic variable for any B ⊇ A and µ(A) attains the value 0:

Consider |X| = 3. In this case, the monotonicity constraints are given by:

−1 + µ(xi, xj) + h(X, xi) = 0, ∀xi, xj ∈ X.

−µ(xi, xj) + µ(xi) + h({xi, xj}, xj) = 0, ∀xi, xj ∈ X.

−µ(xi) + h({xi}, xi) = 0, ∀xi ∈ X.

Let us consider as initial basis the one whose basic variables are the slack ones. Then, µ(A) = 0, ∀A 6= X, as
µ(A) is not a basic variable. We consider the following process:

We introduce in the basis µ(x1); then, we can choose between h({x1, x2}, x2), h({x1, x3}, x3) and h({x1}, x1)
to leave the basis. Assume h({x1, x2}, x2) leaves the basis. Then, µ(x1) = 0 by monotonicity (Proposition 5).

We introduce µ(x1, x2). In this case, if the variable leaving the basis is h(X, x3), then µ(x1) attains again value
0 by monotonicity (µ(x1, x3) ≥ µ(x1)). But this implies that µ(x1, x2) should attain value 0 in order to satisfy
the constraint

−µ(x1, x2) + µ(x1) + h({x1, x2}, x2) = 0.

On the other hand, it is µ(x1, x2) = 1 because of the constraint

−1 + µ(x1, x2) + h(X,x3) = 0.

Then, we arrive to a contradiction and h(X,x3) cannot leave the basis.
If µ(x1) leaves the basis, then µ(x1, x2) = 0 in order to satisfy

−µ(x1, x2) + µ(x1) + h({x1, x2}, x2) = 0.

Finally, if h({x1, x2}, x1) leaves the basis, it is µ(x1, x2) = 0 because of the constraint

−µ(x1, x2) + µ(x2) + h({x1, x2}, x1) = 0,

as µ(x2) is not a basic variable.
Then µ(x1, x2) = 0 and taking A = {x1, x2}, this shows that it is possible to find situations in which a basic

variable µ(A) attains the value 0, even if any other variable µ(B), A ⊆ B is a basic variable, too.
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However, it is always possible to find a way in which µ(A) = 1 whenever it is a basic variable and µ(B), B ⊇ A,
is also a basic variable:

Proposition 6. Suppose we introduce the variable µ(A) in the basis and assume that µ(B) is a basic variable for
any B ⊃ A. Then, it is possible to obtain a basic solution such that µ(A) = 1.

Proof: It suffices to build such a solution. We will make the proof by induction on n− |A|.
If n − |A| = 1, then A = X\{xi}. Let us consider the solution in which the basic variables are the slack

ones. Then, all basic variables attain value 0, except the slack variables h(X, xi), whose value is 1. The variable
µ(X\{xi}) appears in the following monotonicity constraints:

µ(X\{xi}) + h(X, xi) = 1.

µ(X\{xi, xj})− µ(X\{xi}) + h(X\{xi}, xj) = 0.

Consequently, µ(X\{xi}) can get into the basis with a value of 1 and h(X,xi) leaves the basis. Therefore, the
result holds.

Assume now n − |A| > 1 and that the result holds until n − |A| − 1. Let us start again from the solution in
which the basic variables are the slack ones. Then, we introduce all the variables µ(X\{xi}) with A ⊂ X\{xi}.
All these variables get into the basis with a value of 1. Then, we introduce the variables µ(X\{xi, xj}) with
A ⊂ X\{xi, xj}. Then, all these variables get into the basis with a value of 1 (by induction). We continue the
process for µ(X\{xi, xj , xk}) with A ⊂ X\{xi, xj , xk}, and so on.

When introducing µ(B) in the basis, one of the slack variables of type h(B ∪ {xj}, xj) gets out the basis and
the other slack variables on this form stay in the basis but with value 0.

Then, when introducing µ(A) in the basis, we have a solution in which for any B ⊃ A, the variable µ(B) is in
the basis and with value 1. At this point, the constraints in which µ(A) appears are:

µ(A) + h(A ∪ {xi}, xi) + NonBasicV ariables = 1, xi 6∈ A,

by the application of simplex method, and

µ(A\{xj})− µ(A) + h(A, xj) = 0, xj ∈ A,

as these constraints have never been used in the previous steps.
Then, µ(A) gets into the basis with a value of 1 and one of the slack variables h(A ∪ {xi}, xi) gets out the

basis. The other variables of this type attain value 0, though remaining in the basis.
Remark that when introducing µ(A) in the basis, if µ(A) attains value 1, then variables h(A, xj), xj ∈ A also

attain value 1. We will use this property below.

Next step is to find a way to identify some adjacent solutions of a basic feasible solution. The way we obtain
adjacent solutions is by introducing a non-basic variable into the set of basic variables [3].

In the following, we will assume that we are in the conditions of Proposition 6, i.e. we will suppose that
we have started from the initial solution in which the basic variables are the slack ones; given the variables
µ(A1), ..., µ(Ar), these variables have been introduced in the basis in order of decreasing cardinality, and when
introducing any µ(Aj), a slack variable in the form h(Aj ∪ {xi}, xi) has left the basis. From a similar process of
the one developed in the proof of Proposition 6, we know we can always act this way.

Proposition 7. Let µ′ be a {0, 1}-valued measure. Choose A such that µ′(A) = 1. Let us define

µ∗1(D) =
{

1 if D 6⊆ A and µ′(D) = 1
0 otherwise

Then, µ∗ is an adjacent measure of µ′.

Proof: Let us consider the method explained before and suppose we have introduced in the basis any variable
µ(B) such that µ′(B) = 1. Thus, µ∗ is obtained by making µ∗(A) = 0 (this is possible if we reintroduce a suitable
slack variable in the basis and µ(A) is no more a basic variable); this implies that for any B ⊂ A such that
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µ(B) = 1, we necessarily have µ∗(B) = 0 by the monotonicity constraints (and also by Proposition 5). For any
other C ⊆ X, the value of µ(C) remains the same. We obtain then the {0, 1}-valued measure µ∗ and then the
proposition holds.

Remark 7. We can obtain other adjacent measures of µ′ by reversing the process. In this case, we have to choose
A such that µ′(A) = 0 and µ′(B) = 1 for any B ⊃ A; and consider B1, ..., Br a family of non-empty subsets of A
s.t. for any C satisfying that ∃Bi ⊆ C ⊂ A, it follows that C = Bj for some j. If we introduce µ(A) as a basic
variable, then µ(A) = 1 by Proposition 6. Even more, by construction, µ(Bi) is a basic variable, too. Before
introducing µ(A), we had µ(Bi) = 0 by Proposition 5. After introducing µ(A), we have µ(Bi) = 1 (see the proof
of Proposition 6). We obtain then the {0, 1}-valued measure µ∗.

Now, we have to look for two adjacent (k + 1)-additive measures such that their convex combination leads to
a k-additive measure. We first study the relationship between the Möbius transforms of two adjacent measures
obtained through Proposition 7 or Remark 7. We make the proof under the conditions of Proposition 7. Similar
proofs can be done straightforwardly in the conditions of Remark 7.

Proposition 8. Let µ be a {0, 1}-valued measure whose corresponding Möbius transform is m. Consider A ⊆ X
such that µ(A) = 1. Let us define the non-additive measure µ′ given by

µ′(B) =
{

µ(B) if B 6⊆ A
0 otherwise

Then, if m′ is the Möbius transform of µ′, we have

m′(C) = m(C) + (−1)|C\(C∩A)|+1m(C ∩A), ∀C ⊆ X. (10)

Proof: Note that the measure in this proposition corresponds to an adjacent measure of µ by Proposition 7.
If we apply again Equation (1), we have

m′(C) =
∑

B⊆C

(−1)|C\B|µ′(B) =
∑

B⊆C,B 6⊆A

(−1)|C\B|µ(B),

by the definition of µ′. Consequently,

m′(C) =
∑

B⊆C

(−1)|C\B|µ(B)−
∑

B⊆C,B⊆A

(−1)|C\B|µ(B) = m(C)−
∑

B⊆C∩A

(−1)|C\B|µ(B).

Now, ∑

B⊆C∩A

(−1)|C\B|µ(B) =
∑

B⊆C∩A

(−1)|C\(C∩A)|+|(C∩A)\B|µ(B) =

(−1)|C\(C∩A)| ∑

B⊆C∩A

(−1)|(C∩A)\B|µ(B) = (−1)|C\(C∩A)|m(C ∩A).

This finishes the proof.

We state our main result.

Theorem 1. There are vertices of the set FMk(X), k > 2, that are not {0, 1}-valued measures.

Proof: It suffices to build an example.
Consider X = {1, 2, 3, 4} and assume µ is the {0, 1}-valued measure whose minimal subsets are

{1, 2}, {1, 3}, {2, 3}, {1, 4}.

Applying Proposition 4, we have that m(1, 2, 3, 4) is given by:
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• Unions of 2 minimal subsets:
{1, 4} ∪ {2, 3}.

• Unions of 3 minimal subsets:

{1, 2} ∪ {1, 3} ∪ {1, 4}; {1, 2} ∪ {2, 3} ∪ {1, 4}; {1, 3} ∪ {2, 3} ∪ {1, 4}.

• Unions of 4 minimal subsets:
{1, 2} ∪ {1, 3} ∪ {2, 3} ∪ {1, 4}.

Consequently, m(1, 2, 3, 4) = 1 and therefore µ is a 4-additive measure.
Define a new measure µ′ by

µ′(A) =
{

µ(A) if A 6⊆ {1, 2, 3}
0 otherwise

By Proposition 7, we know that µ′ is adjacent to µ.
Applying now Proposition 8, we have that

m′(1, 2, 3, 4) = m(1, 2, 3, 4) + (−1)2m(1, 2, 3).

Let us compute m(1, 2, 3). Applying again Proposition 4:

• Unions of 2 minimal subsets:

{1, 3} ∪ {2, 3}; {1, 2} ∪ {1, 3}; {1, 2} ∪ {2, 3}.

• Unions of 3 minimal subsets:
{1, 2} ∪ {2, 3} ∪ {1, 3}.

Then, m(1, 2, 3) = −2, whence m′(1, 2, 3, 4) = −1 (by Proposition 8).
Now, µ∗ = 0.5µ + 0.5µ′ is a 3-additive measure because m∗(1, 2, 3, 4) = 0 and m∗(1, 2, 3) 6= 0, (applying

Proposition 3).
On the other hand, as µ and µ′ are adjacent vertices in FM(X), if µ1, µ2 are such that µ∗ = λµ1 + (1− λ)µ2,

then, necessarily both µ1 and µ2 are in the line joining µ and µ′. This implies that µ1 and µ2 are 4-additive
measures (the only 3-additive measure in this line is µ∗). Consequently, µ∗ is an extreme point of FM3(X) but
it is not a {0, 1}-valued measure because it is not a vertex of FM(X) (Proposition 1).

This theorem shows that the structure of the convex polyhedron FMk(X) is more complex than the one of
FM(X). It proves that, although the set of {0, 1}-valued measures in FMk(X) are vertices, there are other
vertices different from these. These new vertices come from k-additive measures that are in the line joining
two adjacent {0, 1}- valued measures that are not k-additive. Then, we have more vertices than the {0, 1}-valued
measures. However, even if we consider {0, 1}-valued measures as our initial population, we obtain a huge number
of measures. Indeed, the following can be proved:

Proposition 9. The number of {0, 1}-valued measures in FMk(X) is at least

k∑

i=1

(
n

i

)
Bi,

where Bj are the Bell numbers, defined recursively by

Bn+1 =
n∑

i=0

(
n

i

)
Bi, B0 := 1.
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Proof: Let us consider a subset of cardinality i; the number of different subsets of cardinality i is
(
n
i

)
. For a

fixed subset of cardinality i, we consider the measure whose minimal subsets are a partition of this subset. Any
of these measures is an i-additive measure (at most) by Corollary 1. The number of different partitions of a set
of cardinality i is the i-th Bell number (see e.g. [5, page 42]). Consequently, the number of extreme points is at
least

k∑

i=1

(
n

i

)
Bi,

whence the result.

For example, if n = 10 and we consider the 4-additive case, we have

B1 = 1, B2 = 2, B3 = 5, B4 = 15,

whence the number of vertices is greater than 3850.
Even more, we might be considering here just a small part of the set of vertices of FMk(X). We are not

considering the case of obtaining a subset not from a partition but from a non-disjoint union of subsets; the
same can be said about the possibility of obtaining a k-additive measure when the union of minimal subsets has
a cardinality greater than k, as pointed out in Remark 5. Finally, we are not considering the vertices that are
not {0, 1}-valued measures (Theorem 1). Consequently, the actual number of vertices might be far away from
the bound found in Proposition 9. Of course, we cannot consider in our algorithm as initial population so many
points and thus, a reduction should be made.

For probabilities, i.e. 1-additive measures, the following result holds as a consequence of the results in [7]:

Proposition 10. The extreme points of FM1(X) are the {0, 1}-valued measures that are in FM1(X). These
{0, 1}-valued measures are the unanimity games on the singletons uxi , xi ∈ X. Moreover, given P a probability
distribution over X, it can be written as

P =
∑

xi∈X

P (xi)uxi .

Let us now turn to the special case of 2-additive measures. In this case, the following can be proved:

Proposition 11. The set of extreme points of FM2(X) are the {0, 1}-valued measures that are in FM2(X).
These {0, 1}-valued measures are given by:

• m(xi) = 1, m(A) = 0, otherwise (the extreme points of probabilities, uxi , xi ∈ X).

• m(xi) = 1, m(xj) = 1, m(xi, xj) = −1, m(A) = 0, otherwise. We will denote these measures by µ′xi,xj
.

• m(xi, xj) = 1, m(A) = 0, otherwise (uxi,xj , {xi, xj} ⊆ X).

Moreover, given µ a 2-additive measure over X, it can be written as

µ =
∑

m(xi,xj)<0

−m(xi, xj)µ′xi,xj
+

∑

m(xi,xj)>0

m(xi, xj)uxi,xj +
∑

xi∈X

c(xi)uxi ,

with c(xi) := [m(xi) +
∑

m(xi,xj)<0 m(xi, xj)].

Proof: Let µ be a 2-additive measure. Let us denote by µ∗ the measure given by

µ∗ =
∑

m(xi,xj)<0

−m(xi, xj)µ′xi,xj
+

∑

m(xi,xj)>0

m(xi, xj)uxi,xj +
∑

xi∈X

c(xi)uxi ,

with c(xi) = [m(xi) +
∑

m(xi,xj)<0 m(xi, xj)]. It suffices to check that the corresponding Möbius transforms m
and m∗ are the same. We have several cases:

• If |A| > 2, then both m(A) and m∗(A) = 0, and then the result holds.
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• Suppose |A| = 2 and m(A) < 0. Then, m∗(A) = −m(A) · (−1) = m(A).

• If |A| = 2 and m(A) ≥ 0, then m∗(A) = m(A) · 1 = m(A).

• Finally, if A = {xi}, it follows that

m∗(A) = c(xi) · 1−
∑

m(xi,xj)<0

m(xi, xj) = m(xi) +
∑

m(xi,xj)<0

m(xi, xj)−
∑

m(xi,xj)<0

m(xi, xj) = m(xi),

whence the result.

The reason of this result for probabilities and 2-additive measures lays in the fact that m(xi) ∈ [0, 1],m(xi, xj) ∈
[−1, 1] for any non-additive measure [28]. On the other hand, if µ is a {0, 1}-valued measure, then it is m(A) ∈
Z, ∀A ⊆ X as a consequence of Proposition 4. Thus, if we apply Proposition 8 removing from the basis a subset
in the form µ(xi, xj) or µ(xi), it is not possible to reverse the sign of m(xi, xj , xk). Therefore, it is not possible
to find two 3-additive adjacent measures in the conditions of Theorem 1.

The number of vertices of FM2(X) is given in next corollary.

Corollary 2. The number of extreme points of FM2(X) is n2.

Proof: It suffices to sum up situations 1, 2 and 3 in last proposition. Therefore,

n +
(

n

2

)
+

(
n

2

)
= n +

n(n− 1)
2

+
n(n− 1)

2
= n + n(n− 1) = n2.

Therefore, the result holds.

5 The case of p-symmetric measures

Let us now turn to the p-symmetric case. First of all, we have to remark that in general, the convex combination
of p-symmetric measures is not a p-symmetric measure for p ≥ 2 :

Example 2. Assume |X| = 3 and let m1 and m2 be the Möbius transforms of two 2-symmetric measures µ1, µ2,
respectively.

For µ1, the subsets of indifference are {x1, x2} and {x3}, and m1 is defined by

m1(x1) = 0.5 = m1(x2), m1(A) = 0, otherwise.

For µ2, the subsets of indifference are {x1, x3} and {x2}, and m2 is defined by

m2(x1) = 0.5 = m2(x3), m2(A) = 0, otherwise.

It is straightforward to check that both µ1 and µ2 are 2-symmetric measures w.r.t. the corresponding partitions.
Let us now define m = 0.75m1 + 0.25m2. For this new measure, we have

m(x1) = 0.5, m(x2) = 0.75 ∗ 0.5, m(x3) = 0.25 ∗ 0.5, m(A) = 0, otherwise,

and consequently µ is a 3-symmetric measure as m(x1),m(x2) and m(x3) attain different values, whence so do
µ(x1), µ(x2) and µ(x3).

However, the result holds when we maintain the same partition:

Proposition 12. Let µ1, µ2 ∈ FM(A1, ..., Ap). Then, µ = λµ1 + (1− λ)µ2 ∈ FM(A1, ..., Ap), ∀λ ∈ [0, 1].
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Proof: The proof is straightforward. It suffices to show that Ai is a subset of indifference for any i = 1, ..., p.
Consider B, C ⊆ Ai such that |B| = |C|. Then, for any D ⊆ X\Ai,

µ(B ∪D) = λµ1(B ∪D) + (1− λ)µ2(B ∪D) = λµ1(C ∪D) + (1− λ)µ2(C ∪D) = µ(C ∪D),

as µ1, µ2 ∈ FM(A1, ..., Ap). This finishes the proof.

Contrary to the k-additive case, for p-symmetric measures the following can be shown:

Theorem 2. The set of extreme points of FM(A1, ..., Ap) is the set of {0, 1}-valued measures that are also in
FM(A1, ..., Ap).

Proof: We will make the proof using properties of unimodular matrices (see [3]). An alternative proof can be
done adapting the one of Proposition 1.

From System (9), the convex polyhedron FM(A1, ..., Ap) can be written in terms of µ as

A~u ≤ ~b,

where ~u is a vector representing the values of µ(A) and this system represents constraints in the form

−µ(A) + µ(A\xi) ≤ 0,

−µ(xi) ≤ 0,

and
µ(X\xi) ≤ 1.

Then, ~b has integer coefficients. This implies that if we prove that A is unimodular, all the extreme points
have integer coefficients. Of course, if A is unimodular, so it is At, the transpose of matrix A.

Remark that in At, we have three different types of columns: some of then have two non-zero values (one
value 1 and another one -1); some others have only one non-zero value (a -1 or a 1). Then, At can be written as
(B, I,−I) where B stands for columns with two non-zero values, I for columns with one 1 and rest of 0’s and −I
for columns with one -1 and rest of 0’s.

As columns in B have only one value 1 and only one value -1, this implies that B is unimodular. But then,
so it is the matrix (B, Id) where Id represents the identity matrix and analogously, (−B,−Id, Id) is unimodular.
Then, (B, Id,−Id) is unimodular and consequently, (B, I,−I) is unimodular, as it is a submatrix of a unimodular
matrix.

Consequently, the extreme points of FM(A1, ..., Ap) have integer coefficients, and then they are {0, 1}- valued
measures contained in FM(A1, ..., Ap). As any {0, 1}-valued measure in FM(A1, ..., Ap) is an extreme point of
the polyhedron, this finishes the proof.

We have proved that the vertices of p-symmetric measures are indeed the set of {0, 1}-valued measures for
different values of p and the partition of X in subsets of indifference. However, as for FMk(X), this provides us
with a huge number of measures. For example, if we consider the 2-symmetric case, the following can be shown:

Proposition 13. The number of {0, 1}-valued measures in FM(A1, A2) with |A1| ≥ |A2| is

(|A1|+ 2)|A2|+1

(|A2|+ 1)!
− 2.

Proof: Using the matrix representation (Lemma 1), the measures can be represented in a (|A1|+1)×(|A2|+1)
matrix M . Moreover, as µ is a {0, 1}-valued measure, it follows that values in M are 0’s and 1’s. We look for the
number of possible measures in these conditions.

Due to monotonicity conditions (Definition 1), this problem is equivalent to determining, for each row in M,
the first position with value 1. For any row, there are |A1| + 2 possible positions (the last value representing a
row of 0’s). Then, we have

(|A1|+ 2)|A2|+1
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possibilities. However, not all of them are non-additive measures because of the monotonicity conditions. Given
a (|A2| + 1)-vector of the positions of the first 1 in each row, (i0, ..., i|A2|), the only possibility satisfying the
monotonicity conditions is the one for which i0 ≤ i1 ≤ ... ≤ i|A2|. Then, only one possibility over (|A2| + 1)!
satisfies the monotonicity conditions.

Finally, two possibilities, representing a matrix of only 0’s or only 1’s must be removed because of the boundary
conditions.

6 Conclusions and future research

In this paper we have studied the vertices of some subfamilies of non-additive measures. These extreme points
are necessary in order to ensure that the solution of the problem of identification can be reached when using our
algorithm.

We have proved that the vertices of p-symmetric measures are indeed the set of {0, 1}-valued measures for
different values of p and the partition of X in subsets of indifference. This fact, together with the matrix
representation of p-symmetric measures, allows a simple way to compute the vertices.

On the other hand, we have shown that there exist vertices of the set of k-additive measures that are not
{0, 1}-valued measures. However, the {0, 1}-valued measures are the vertices of FMk(X) for the special cases of
k = 1 and k = 2.

As future research, we have, first of all, the problem of obtaining explicitly the set of vertices of k-additive
measures. However, this is purely a theoretical problem; from a practical point of view, this is not useful, as the
number of vertices is too high, even if we only consider the {0, 1}-valued measures, and should be reduced before
applying the algorithm; otherwise the complexity grows tremendously.

This is indeed our main open problem: how can the number of vertices be reduced in the initial population?
In this case, several options must be studied. For example, are there vertices “more important” than others in a
certain way? Another solution is to consider as initial population the vertices that are “near” the available data
following some criterion of proximity. In both cases, further research is needed.

An interesting problem comes from the fact that both FMk(X) and FM(A1, ..., Ap) are not dense in FM(X).
Then, using a subfamily of FM(X) dense and easy to compute would be an interesting problem. However, to
our knowledge, no such family has been defined yet.

Finally, we have the problem of adding in our algorithm other subfamilies of non-additive measures, as belief
functions, λ-measures, k-intolerant measures, etc.
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through the use of Möbius inversion. Mathematical Social Sciences, (17):263–283, 1989.

[7] G. Choquet. Theory of capacities. Annales de l’Institut Fourier, (5):131–295, 1953.

[8] E. F. Combarro and P. Miranda, Identification of fuzzy measures from sample data with genetic algorithms.
Computers and Operations Research, to appear.

[9] D. Denneberg. Non-additive measures and integral. Kluwer Academic, 1994.

[10] D. Dubois and H. Prade. A class of fuzzy measures based on triangular norms. Int. J. General Systems,
8:43–61, 1982.

[11] D. Dubois, H. Prade, and R. Sabbadin. Qualitative decision theory with Sugeno integrals. In M. Grabisch,
T. Murofushi, and M. Sugeno, editors, Fuzzy measures and integrals, number 40 in Studies in Fuzziness and
Soft Computing, pages 314–331. Physica-Verlag, 2000.

[12] C. A. Bana e Costa and J.-C. Vansnick. MACBETH- An interative path towards the construction of cardinal
value function. International Transactions in Operational Research, 1(4):489–500, 1994.

[13] D. Ellsberg. Risk, ambiguity, and the Savage axioms. Quart. J. Econom., (75):643–669, 1961.

[14] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, 1989.

[15] M. Grabisch. Pattern classification and feature extraction by fuzzy integral. In 3rd European Congress on
Intelligent Techniques and Soft Computing (EUFIT), pages 1465–1469, Aachen (Germany), August 1995.

[16] M. Grabisch. k-order additive discrete fuzzy measures. In Proceedings of 6th International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), pages
1345–1350, Granada (Spain), 1996.

[17] M. Grabisch. Alternative representations of discrete fuzzy measures for decision making. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5:587–607, 1997.

[18] M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems,
(92):167–189, 1997.
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