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Abstract

The generation of fuzzy measures is an important question arising in the practical use of these operators.
In this paper we deal with the problem of developing a random generator of fuzzy measures. More concretely,
we study some of the properties that any random generator should satisfy. These properties lead to some
theoretical problems concerning the group of isometries that we tackle in the paper for some subfamilies of
fuzzy measures.
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1 Introduction

Fuzzy measures [28] are generalizations of probability distributions in which we remove additivity and mono-
tonicity is imposed instead. Fuzzy measures, together with Choquet integral [4] have been successfully applied
in many fields, as Decision Under Uncertainty [2, 27], Multicriteria Decision Making [14, 15], Cooperative
Game Theory [13], Combinatorics [26], pseudo-Boolean functions [17], etc.

Consider a situation that can be modelled through the Choquet integral w.r.t. a fuzzy measure (possibly,
restricted to a subfamily). Next step is to obtain such a measure. When dealing with the practical identification
of fuzzy measures, we usually have information about some prototypical examples and the problem consists
in finding the fuzzy measure that best fits the data.

If the considered proximity criterion is the squared error, different techniques exist to solve the problem.
For example, Grabisch and Nicolas [16] have developed a method based on solving a quadratic problem,
in [1] Beliakov et al. acknowledge the case when the measures are symmetric or 2 or 3-additive, and in [12],
Grabisch proposes an ad hoc algorithm for the problem; on the other hand, Wang et al. [30] have developed a
method based on genetic algorithms [11]. Although in the two last cases a suboptimal solution is found, the
computational cost is, sometimes, greatly reduced.

In a previous paper [5], we have proposed a method based on genetic algorithms to deal with the problem
of identification of some convex families of fuzzy measures; in that paper, the cross-over operator considered
in the genetic algorithm was the convex combination of fuzzy measures. This operator has the advantage that
the convex combination of fuzzy measures is a fuzzy measure and this also holds for some subfamilies of fuzzy
measures, as k-additive measures [15] and p-symmetric measures [22, 24] when the partition of indifference
is fixed. Moreover, the simulations carried out with this algorithm suggest that the method is stable with
respect to the presence of noise in the sample data [5]. This property is specially appealing, as exact values
seldom appear in practical situations.

However, the convex combination reduces the search region in each iteration. This implies that the initial
population must be carefully chosen so that the fuzzy measure fitting the data is curbed inside the region. To
bear on this problem, the only option is to use as initial population the set of vertices of the corresponding
subfamily (when this is possible, i.e. the subfamily determines a convex polyhedron).

On the other hand, as pointed out in [5], the number of extreme points for the general case coincides with
the n-th Dedekind number [7], and similar results can be found for other subfamilies. The value of the n-th
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Dedekind number is very large (see Table 1 below) and this makes the use of the set of vertices unfeasible for
large values of n (and n = 8 is already large!). Consequently, we are dragged to seek another initial population.

Another possibility is to initialize the population with a random generator of fuzzy measures. In this case,
it is important that any measure can be obtained using the algorithm and that the method avoids any trend
in the generated measures.

In this case, we are forced to consider some algorithms ”seeming to be” random in order to generate the
corresponding fuzzy measure. Additionally, we can deal with several algorithms, all of them seeming random
at a first glance. How to choose the best one?

In this paper, we propose some properties that any random generator should satisfy. Then, to any procedure
intending to be random, we should check if it satisfies these properties and we choose the procedure leading to
best results. In this paper, we stress on two of these properties, namely the group of isometric transformations
and the set of measures that remain invariant for these transformations. We treat the problem for three
different cases: the general case, the p-symmetric case and the k-additive case.

The paper is organized as follows: We give the basic concepts on fuzzy measures, k-additive measures
and p-symmetric measures in Section 2; in this section we also explain with more detail our algorithm of
identification of fuzzy measures and the necessity of developing random procedures. Section 3 deals with the
problem of obtaining the group of isometric transformations for each of these subfamilies of fuzzy measures.
Section 4 treats the problem of finding the set of all invariant measures w.r.t. any isometric transformation
for each subfamily. We finish with the conclusions and open problems.

2 Basic background

In order to be self-contained and to fix notation, we introduce in this section the basic results that will be
needed throughout the paper.

Let X be a finite referential set of n elements, X = {x1, ..., xn}. Subsets of X are denoted by capital letters
A, B, and so on, and also by A1, A2, ... Sometimes we use the notation {xi1 , ..., xir}, specially for singletons
and pairs; in order to avoid hard notation, we usually remove braces in this case. Matrices are denoted by
B,M,B′, ..., and vectors are denoted by ~v, ~w, and so on.

Definition 1 A fuzzy measure [28] (also called capacity [4] or non-additive measure [8]) on X is a
function µ that assigns to each subset of X a real value between 0 and 1 satisfying

1. µ(∅) = 0 and µ(X) = 1.

2. If A ⊆ B then µ(A) ≤ µ(B).

We will denote by FM(X) the set of fuzzy measures on X. Remark that FM(X) is a convex polyhedron.

Definition 2 Let µ be a fuzzy measure over X; we define the dual measure of µ as the fuzzy measure µ̄
given by µ̄(A) = 1− µ(Ac).

Definition 3 A unanimity game over A ⊆ X, A 6= ∅ is a fuzzy measure defined by

uA(B) =


1 if A ⊆ B
0 otherwise

For ∅, we define the unanimity game by

u∅(B) =


1 if B 6= ∅
0 if B = ∅

Consider a function f : X → R+, whose corresponding scores on each element xi are f(x1), . . . , f(xn).
From the point of view of Multicriteria Decision Making, in order to compare different objects, we need to
obtain an overall score from f(x1), . . . , f(xn). This is done through an aggregation operator [18], the Choquet
integral [4] being among the most popular.

Definition 4 The Choquet integral of a function

f : X → [0, 1]

with respect to a fuzzy measure µ on X is defined by
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Cµ(f) :=

nX
i=1

(f(x(i))− f(x(i−1)))µ(Bi),

where {x(1), . . . , x(n)} is a permutation of the set {x1, . . . , xn} satisfying

0 = f(x(0)) ≤ f(x(1)) ≤ ... ≤ f(x(n)),

and
Bi = {x(i), ..., x(n)}.

The Choquet integral is a generalization of the concept of expected value, and models based on it are
generalizations of the expected utility model.

Notice that 2n − 2 coefficients are needed in order to determine a fuzzy measure on a set of n elements.
This fact makes the use of these measures unfeasible in practice for large values of n. In an attempt to
reduce complexity, some subfamilies of non-additive measures have been defined, e.g. k-additive measures
[13], p-symmetric measures [22], k-intolerant measures [19], λ-measures [29], or more generally, decomposable
measures [9]. In this paper, we will deal with k-additive measures and p-symmetric measures.

The concept of k-additivity is based on the Möbius transform.

Definition 5 [26] Let µ be a set function (not necessarily a fuzzy measure) on X. The Möbius transform
(or inverse) of µ is another set function on X defined by

m(A) :=
X

B⊆A

(−1)|A\B|µ(B), ∀A ⊆ X. (1)

The Möbius transform given, the original set function can be recovered through the Zeta transform [3]:

µ(A) =
X

B⊆A

m(B). (2)

The Möbius transform represents the importance that a subset can attain on its own, without considering its
different parts.

Definition 6 [13] A fuzzy measure µ is said to be k-additive if its Möbius transform vanishes for any A ⊆ X
such that |A| > k and there exists at least one subset A of exactly k elements such that m(A) 6= 0.

In this sense, a probability measure is just a 1-additive measure [13] and k-additive measures constitute
a middle term between probabilities and general fuzzy measures. For a k-additive measure, the number of
coefficients is reduced to

kX
i=1

 
n

i

!
.

More about k-additive measures can be found e.g. in [15]. We will denote the set of fuzzy measures in FM(X)
being at most k-additive by FMk(X); remark that FMk(X) is a convex polyhedron.

Let us now turn to the concept of p-symmetry. This concept appears as a middle term between symmetric
measures and general fuzzy measures.

Definition 7 A fuzzy measure µ is said to be symmetric if it satisfies for any A, B ∈ P(X),

|A| = |B| ⇒ µ(A) = µ(B).

The definition of p-symmetric measure is based on the concept of indifferent elements and subsets of
indifference.

Definition 8 [24] Given two elements xi, xj of the universal set X and µ ∈ FM(X), we say that xi and xj

are indifferent elements for µ if and only if

∀A ⊆ X\{xi, xj}, µ(A ∪ {xi}) = µ(A ∪ {xj}).
If xi and xj are indifferent, they have exactly the same behavior.

Definition 9 [24] Given a subset A of X and µ ∈ FM(X), we say that A is a subset of indifference for
µ if and only if ∀B1, B2 ⊆ A, |B1| = |B2| and ∀C ⊆ X\A, it is

µ(B1 ∪ C) = µ(B2 ∪ C).
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Two elements in a subset of indifference A are indifferent elements in the sense of Definition 8. Thus, all
the elements in A have the same behavior.

Let Π1, Π2 be two partitions of X. We say that Π2 is coarser than Π1, denoted Π1 v Π2 if

∀A1 ∈ Π1, ∃A2 ∈ Π2, s.t. A1 ⊆ A2.

We are now in a position to define p-symmetric measures.

Definition 10 [24] Given a fuzzy measure µ, we say that µ is a p-symmetric measure if and only if the
coarsest partition of the universal set in subsets of indifference is {A1, ..., Ap}, Ai 6= ∅,∀i ∈ {1, ..., p}.

The existence and unicity of this partition has been proved in [23]. We will denote by FM(A1, ..., Ap) the
set of fuzzy measures for which Ai, i = 1, ..., p, is a subset of indifference (but not necessarily p-symmetric!
Indeed, any symmetric measure belongs to FM(A1, ..., Ap)). It can be easily seen that FM(A1, ..., Ap) is a
convex polyhedron for a fixed partition {A1, ..., Ap}.

As all the elements in the same subset of indifference have the same behavior, when dealing with a fuzzy
measure in FM(A1, ..., Ap), we only need to know the number of elements of each Ai that belong to a given
subset B of the universal set X. Therefore, the following result holds:

Lemma 1 [24] If {A1, ..., Ap} is a partition of X, then in order to define a measure in FM(A1, ..., Ap), any
C ⊆ X can be identified with a p-dimensional vector (c1, ..., cp) with ci := |C ∩Ai|.

This property allows a reduction in the complexity of the measure:

Lemma 2 [24] Let µ be a p-symmetric measure w.r.t. the indifference partition {A1, ..., Ap}. Then, it can be
represented in a (|A1|+ 1)× · · · × (|Ap|+ 1) matrix whose coefficients are defined by

M(i1, ..., ip) := µ(i1, ..., ip), ij ∈ {0, ..., |Aj |}.

More properties about p-symmetric measures and their behavior for Choquet integral can be found in
[24, 23].

Let us now turn to the problem of identification. Assume a situation that can be modelled through the
Choquet integral w.r.t. a fuzzy measure restricted to a subfamily F ; next step is to obtain such a measure.
For this, suppose we have some prototypical examples for which we know the score on each xi ∈ X and the
corresponding overall score, this overall score being the Choquet integral. We assume that all these scores
are numerical; if this is not the case, they should be transformed into numerical data through a tool dealing
with ordinal values, as MACBETH [10] or TOMASO [20]. Thus, the sample information can be written as
m functions f1, . . . , fm representing the scores on n criteria and another m values y1, . . . , ym denoting their
corresponding Choquet values. Consider a subfamily of fuzzy measures F . We look for a fuzzy measure µ ∈ F
minimizing

mX
i=1

(Cµ(fi)− yi)
2.

In a previous paper [5], we have proposed a method based on genetic algorithms to deal with this problem.
The cross-over operator considered in such algorithm is the convex combination

λµ1 + (1− λ)µ2,

with λ ∈ [0, 1] chosen at random. When F is convex, the convex combination is a suitable operator, as it is
not necessary to check on each step if the resulting measure is in F .

However, this operator has the drawback that the search region is reduced in each iteration (Figure 1), and
thus, if the initial population is not chosen carefully, then it might be the case that only bad approximations
could be found among the convex combinations of those initial individuals.

To solve this problem, the best option is to use as initial population the set of vertices of the corresponding
subfamily. In this sense, the following results for FM(X),FMk(X) and FM(A1, ..., Ap) can be proved:

Theorem 1 [25] The set of {0, 1}-valued measures constitutes the set of vertices of FM(X).

Theorem 2 [21] There are vertices of the set FMk(X), k > 2, that are not {0, 1}-valued measures.

Proposition 1 [21] The set of extreme points of FM1(X) (resp. FM2(X)) are the {0, 1}-valued measures
that are in FM1(X) (resp. FM2(X)).
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Figure 1: Reduction of search space due to convex combination

Theorem 3 [21] The set of extreme points of FM(A1, ..., Ap) is the set of {0, 1}-valued measures that are
also in FM(A1, ..., Ap).

Let us focus on the general case. As pointed out in [5], the number of {0, 1}-valued measures coincides
with the n-th Dedekind number [7], and similar results can be found for k-additive measures and p-symmetric
measures. The first Dedekind numbers are given in Table 1.

n Dedekind numbers
1 1
2 4
3 18
4 166
5 7579
6 7828352
7 2414682040996
8 56130437228687557907786

Table 1: Number of vertices of FM(X)

From this table, it can be seen that the use of the set of vertices is unfeasible for large values of n.
Consequently, we have to look for another initial population.

Another possibility is to initialize the population with a random generator of fuzzy measures, although in
this case we cannot ensure that the measure fitting the data is inside the search region. In this case, we have
the problem of determining whether a given procedure is indeed random. To face this problem, we propose
some properties that any random generator should satisfy. Then, to any procedure intending to be random,
we should check if it satisfies these properties. In this paper, we deal with two of these properties: the group
of isometric transformations and the set of measures remaining invariant by these transformations. We treat
the problem for three different convex subfamilies of fuzzy measures: FM(X),FMk(X) and FM(A1, ..., Ap).

3 The group of isometric transformations

If a procedure generating fuzzy measures in F is random, then it has no trend to obtain measures in a
subregion of F . Therefore, we can expect subregions with the same hyper-volume to have a similar number
of generated measures. To check this property, we have to pin out subregions with the same hyper-volume,
and a compelling way to obtain such subregions is considering the image of a subregion through an isometric
invariant transformation, i.e. a transformation leaving invariant the search space and keeping distances (and
thus, hyper-volumes).

More concretely, we identify a fuzzy measure µ with a vector in Rr for a suitable choice of r depending
on the representation (r = 2n − 2 for FM(X) and FMk(X), r = (|A1|+ 1)...(|Ap|+ 1) for FM(A1, ..., Ap))
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where each coordinate is given by µ(B), B ⊆ X, B 6= ∅, X (resp. µ(b1, ..., bp) for FM(A1, ..., Ap)), for an order
(for example the binary order), and we consider the Euclidean distance in Rr, so that

d(µ1, µ2) =

sX

B⊆X

(µ1(B)− µ2(B))2.

Definition 11 Let F be a family of fuzzy measures. A surjective function f : F → F is an isometry if

d(µ1, µ2) = d(f(µ1), f(µ2)), ∀µ1, µ2 ∈ F .

Remark that an isometry is a bijective mapping on F . Let us denote by G(F) the set of isometries of F .
For G(F), it is easy to see that the identity function is an isometry and that the composition of functions

in G(F) is an isometry. Moreover, as an isometry is a bijective mapping it has an inverse function, and this
inverse is an isometry, too. Therefore, G(F) forms a group under usual composition of functions.

We start our study with some previous results:

Lemma 3 Suppose F is a convex subfamily of fuzzy measures on X. If f ∈ G(F), then

f(λµ1 + (1− λ)µ2) = λf(µ1) + (1− λ)f(µ2), ∀µ1, µ2 ∈ F , λ ∈ [0, 1].

Proof: If µ1 = µ2 the result is obvious. Suppose then that µ1 6= µ2 and consider µ = λµ1 + (1 − λ)µ2

with µ1, µ2 ∈ FM(X) and λ in [0, 1]. Let us denote d := d(µ1, µ2). Clearly,

d(µ1, µ) = (1− λ)d, d(µ2, µ) = λd. (3)

Then, as f ∈ G(F),

d(f(µ1), f(µ)) = d(µ1, µ) = (1− λ)d, d(f(µ2), f(µ)) = d(µ2, µ) = λd.

Applying the triangular inequality,

d = d(f(µ1), f(µ2)) ≤ d(f(µ1), f(µ)) + d(f(µ), f(µ2)) = (1− λ)d + λd = d,

whence the equality holds, and we deduce that f(µ) is in the segment joining f(µ1) and f(µ2). But then, by
Equation (3),

f(λµ1 + (1− λ)µ2) = λf(µ1) + (1− λ)f(µ2), ∀µ1, µ2 ∈ F , λ ∈ [0, 1].

This finishes the proof.

As a consequence, we have

Corollary 1 If f ∈ G(F) and F is a convex polyhedron, then f maps vertices in vertices.

Let us denote by G(X) the group of isometries for FM(X), and G(A1, ..., Ap) (respectively Gk(X)) the
corresponding group for FM(A1, ..., Ap) (resp. FMk(X)). The goal of this section is to determine these
groups.

3.1 The general case

In this case, we identify µ ∈ FM(X) with a (2n − 2)-vector whose components are µ(A), A ⊆ X, A 6= X, ∅ for
a given order. Therefore, FM(X) is a convex polyhedron in R2n−2.

Let us start with some definitions.

Definition 12 Consider σ : X → X a permutation on X. We define the symmetry induced by σ, denoted
Sσ, the transformation on FM(X) such that for any µ ∈ FM(X), the fuzzy measure Sσ(µ) is defined by

Sσ(µ)(x1, ..., xr) = µ(xσ(x1), ..., xσ(xr)), ∀{x1, ..., xr} ⊆ X.

Definition 13 We define the dual transformation, denoted D, the transformation on FM(X) given by

D : FM → FM
µ ↪→ µ

.

Lemma 4 Let F be a subfamily of fuzzy measures.
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1. If Sσ is an internal operation on F , then Sσ ∈ G(F).

2. If D is an internal operation on F , then D ∈ G(F).

Proof: It suffices to compute the distance:

1. Remark that Sσ applied on µ just produces a reordenation of vector µ. Then, for any µ1, µ2 ∈ F ,

d(Sσ(µ1), Sσ(µ2)) =

sX

B⊆X

(Sσ(µ1)(B)− Sσ(µ2)(B))2 =

sX

B⊆X

(µ1(B)− µ2(B))2 = d(µ1, µ2).

2. For the dual application,

d(D(µ1), D(µ2)) =

sX

B⊆X

(D(µ1)(B)−D(µ2)(B))2 =

sX

B⊆X

(1− µ1(Bc)− (1− µ2(Bc)))2

=

sX

B⊆X

(µ1(B)− µ2(B))2 = d(µ1, µ2).

This finishes the proof.

For the general case, the following can be proved:

Theorem 4 If |X| > 2, the set G(X) is given by symmetries and compositions of symmetries with the dual
application. In fact, G(X) is the semidirect product of the group of symmetries with the cyclic group or order
2 generated by the dual transformation.

Proof: By Lemma 4, we already know that Sσ, ∀σ permutation on X and D are transformations in G(X).
We prove that the reverse also holds in several lemmas:

Lemma 5 Let f be a transformation in G(X). Then, f can be written as

f(µ) = Bµ +~b, ∀µ ∈ FM(X),

where B is a square matrix and ~b := f(uX).

Proof: Consider f : FM(X) → FM(X) in G(X). Define ~b := f(uX). Note that uX = ~0, as we have
removed uX(∅) and uX(X). Let us define

f1 : FM(X) → R2n−2

µ ↪→ f(µ)−~b

As FM(X) is convex, for µ1, µ2 ∈ FM(X), λ ∈ [0, 1], it follows that λµ1+(1−λ)µ2 ∈ FM(X). From Lemma
3, we know that f keeps convex combinations in FM(X). Then,

f1(λµ1 + (1− λ)µ2) = f(λµ1 + (1− λ)µ2)−~b = λf(µ1) + (1− λ)f(µ2)−~b = λf1(µ1) + (1− λ)f1(µ2).

Therefore, f1 keeps convex combinations, too. Moreover, f1(uX) = ~0.
Consider the family of unanimity games {uA}A⊆X,A6=∅,X . Let us see that this family is a basis for the vector

space R2n−2. As there are 2n − 2 vectors in the family, it suffices to show that they are linearly independent.
Suppose that ∃λ1, ..., λr, uA1 , ..., uAr , such that

rX
i=1

λiuAi = ~0.

As the Möbius transform is a linear transformation on FM(X), the Möbius transform m of a fuzzy measure
µ can be written as

m := Mµ,

where M is a square matrix. Then, as the Möbius transform is a bijective transformation,

~0 = M(

rX
i=1

λiuAi) =

rX
i=1

λiMuAi . (4)
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On the other hand, it can be easily seen that MuAi is a vector with value 1 in the coordinate corresponding
to Ai and 0 otherwise. This implies that λi = 0, ∀i in Equation (4). Thus, {uA}A⊆X,A6=∅,X is a basis of R2n−2.

We extend f1 to all R2n−2 by

f̄1 : R2n−2 → R2n−2

~v =
P2n−2

i=1 αiuAi ↪→ P2n−2
i=1 αif1(uAi)

As {uA}A⊆X,A6=∅,X is a basis of R2n−2 and f1(uX) = ~0, it follows that f̄1 is well-defined and f̄1(µ) =

f1(µ), ∀µ ∈ FM(X) as f1 is linear on this set. Moreover, f̄1 is a linear application on R2n−2 and thus,
it can be written as

f̄1(~v) = B~v,

where B is a square matrix. Let us now define

f̄ : R2n−2 → R2n−2

~v ↪→ f̄1(~v) +~b

For µ ∈ FM(X), it is

Bµ +~b = f̄(µ) = f̄1(µ) +~b = f1(µ) +~b = f(µ),

whence the result.

Lemma 6 If n > 2, given f ∈ G(X) such that f(µ) = Bµ +~b. Then, necessarily ~b ∈ {~0,~1}.
Proof: It is clear that

d(u∅, uX) = max
µ1,µ2∈FM(X)

d(µ1, µ2).

Moreover, this is the only maximum when n > 2 (if n = 2, we have d(ux1 , ux2) = d(uX , u∅)).
On the other hand, as f maps FM(X) in FM(X), we have that f(uX), f(u∅) ∈ FM(X). And, as f keeps

distances, we conclude that {f(uX), f(u∅)} = {uX , u∅}.
Now, as uX = ~0, u∅ = ~1, it is f(uX) = BuX +~b = ~b ∈ {~0,~1}.

Lemma 7 Suppose n > 2. Let f ∈ G(X) such that f(µ) = Bµ. Then, if µ is a symmetric measure, f(µ) = µ.

Proof: As the set of symmetric fuzzy measures is a convex polyhedron of FM(X), it suffices to show the
result for the extreme points of the polyhedron. It is immediate to see that these vertices are given by

µk(A) :=


1 if |A| ≥ k
0 otherwise

, k = 1, ..., n.

In particular, uX = µn, u∅ = µ1.
Consider xi ∈ X and the unanimity game uX\xi

. As f keeps distances,

1 = d(uX , uX\xi
)2 = d(BuX ,BuX\xi

)2 = d(uX ,BuX\xi
)2.

This implies that BuX\xi
has exactly one value 1 and 2n − 3 values 0. Moreover, as BuX\xi

∈ FM(X) and
maps vertices in vertices (Corollary 1), we conclude that BuX\xi

= uX\xj
by monotonicity.

On the other hand, d(µn−1, uX\xi
)2 = n − 1. Moreover, d(µn−1, uX)2 = n ⇒ Bµn−1 is a vertex with

exactly n values 1.
Joining both results, we conclude that Bµn−1(X\xj) = 1. As this can be done for any xi ∈ X and f is

bijective, we conclude that Bµn−1 = µn−1.
Consider now µ ∈ FM(X) given by

µ(X\xi) = 1, ∀xi ∈ X, ∃ ! xj , xk ∈ X |µ(X\{xj , xk}) = 1, µ(A) = 0 otherwise.

As f keeps distances, and d(µn−1, µ)2 = 1, d(uX , µ)2 = n + 1, we deduce d(Bµn−1,Bµ)2 = d(µn−1,Bµ)2 = 1
and d(BuX ,Bµ)2 = d(uX ,Bµ)2 = n + 1. Thus, by monotonicity, µ′ := Bµ can be written as

µ′(X\xi) = 1, ∀xi ∈ X, ∃ ! xj′ , xk′ ∈ X |µ′(X\{xj′ , xk′}) = 1, µ′(A) = 0 otherwise.

For µn−2 we have d(µn−1,Bµn−2)
2 =

`
n
2

´
, d(uX , Mµn−2)

2 =
`

n
2

´
+
`

n
1

´
. Therefore, Bµn−2 has

`
n
2

´
+
`

n
1

´
values 1 and

`
n
1

´
correspond to subsets X\{xi, xi} ∈ X.
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On the other hand, d(Bµn−2,Bµ)2 =
`

n
2

´ − 1, whence Bµn−2(X\{xj′ , xk′}) = 1. As this can be done for
any xj , xk ∈ X, we conclude that Bµn−2 = µn−2.

Following this process, we prove that Bµi = µi, i = 1, ..., n, whence the result.

Lemma 8 Consider f ∈ G(X) such that fµ = Bµ. Let µ be a {0, 1}-valued measure. Then, the number of
subsets A of cardinality i such that µ(A) = 1 coincides with the number of subsets C of cardinality i such that
B(µ)(C) = 1.

Proof: As the transformation keeps distances, for any {0, 1}-valued measure µ,

d(uX , µ) = d(BuX ,Bµ) = d(uX ,Bµ).

Therefore, Bµ has exactly the same number of values 1 as µ.
We will prove the by induction on i that the result holds for cardinality n− i.
For i = 1, applying Lemma 7,

d(µn−1, µ) = d(Bµn−1,Bµ) = d(µn−1,Bµ),

whence we conclude that Bµ has exactly the same number of values 1 for subsets of type X\xi as µ.
Consider i > 1 and suppose the result holds until i− 1. Applying Lemma 7,

d(µn−i, µ) = d(Bµn−i,Bµ) = d(µn−i,Bµ).

This means that the number of subsets A such that |A| ≥ n− i, µ(A) = 1 is the same as the number of subsets
C such that |C| ≥ n− i,Bµ(C) = 1. Applying now the induction hypothesis, the result holds.

Lemma 9 Let f ∈ G(X) such that f(µ) = Bµ. Then f is necessarily a symmetry.

Proof: As f keeps convex combinations (Lemma 3), it suffices to show the result for the extreme points
of FM(X), i.e. the {0, 1}-valued measures (Theorem 1).

If µ = uX\xi
for some xi ∈ X, we have already shown in the proof of Lemma 7 that BuX\xi

= uX\xj
for

some xj ∈ X. As f is bijective, the mapping

σ : X → X
xi ↪→ xj

is a permutation on X. We will prove that f = Sσ.
We prove the result applying induction on r ≡ maximal value such that ∃A ⊆ X, |A| = n− r, µ(A) = 1.

• For r = 1, we show the result again by induction on s ≡ number of subsets of cardinality n − r whose
value is 1.

If s = 1, then µ = uX\xi
and the result holds.

Assume s > 1 and suppose the result holds until s− 1. Consider X\xi such that µ(X\xi) = 1 and define
µ′ by

µ′(A) :=


µ(A) if A 6= X\xi

0 otherwise
(5)

Then, d(µ′, µ) = 1, whence d(f(µ′), f(µ)) = 1. By Lemma 8, this implies that f(µ)(A) = 1 when
f(µ′)(A) = 1 and that there exists a subset X\xj such that f(µ)(X\xj) = 1, f(µ′)(X\xj) = 0. Moreover,
this holds for any µ′ defined by Equation (5) and any X\xi such that µ(X\xi) = 1. Therefore, the result
holds applying the induction hypothesis on s.

• Assume r > 1 and that the result holds until r − 1. We apply again induction on s ≡ number of subsets
of cardinality n− r whose value is 1.

If s = 1, then ∃!A, |A| = n− r such that µ(A) = 1. We have two different cases:

– If µ = uA, with |A| = n− r, we consider

µ′(C) :=


µ(C) if C 6= A

0 if C = A

Then, d(µ′, µ) = 1, whence d(f(µ′), f(µ)) = 1. This means that f(µ)(C) = 1 whenever f(µ′)(C) = 1
and that there exists a subset D such that f(µ)(D) = 1, f(µ′)(D) = 0. Moreover, by Lemma 8,
it follows that |D| = |A|. And f(µ′) = Sσ(µ′) by induction. This implies that D is the image
of A through σ; otherwise, as there exists at least two elements in X\A, monotonicity would fail.
Therefore, the result holds.
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– Consider xi ∈ X\A and suppose that µ is defined by

µ(C) :=


1 if A ⊆ C or C = X\xi

0 otherwise

Then, considering µ′ as defined before, we have d(µ′, µ) = 1, whence d(f(µ′), f(µ)) = 1. Thus
f(µ)(C) = 1 whenever f(µ′)(C) = 1 and there exists a subset D such that f(µ)(D) = 1, f(µ′)(D) =
0. Moreover, by Lemma 8, it follows that |D| = |A|. By induction, we know that f(µ′) = Sσ(µ′).
On the other hand, f(uA) = Sσ(uA) and f(uA, µ) = 1. Joining both results, we conclude that
f(µ) = Sσ(µ).

Following this process for measures whose distance from uA is 2, 3, and so on, and applying in each case
that f = Sσ for previous steps, we can prove the result for any measure for which s = 1.

Assume s > 1 and suppose the result holds until s− 1. Take A such that µ(A) = 1 and |A| = n− r. Let
µ′A be defined by

µ′A(B) :=


µ(B) if B 6= A

0 if C = A

Then, d(µ′, µ) = 1, whence d(f(µ′), f(µ)) = 1. By induction, f(µ′A) = Sσ(µ′A) and this can be done for
any A such that µ(A) = 1 and |A| = n− r. Therefore, f(µ) = Sσ(µ).

This finishes the proof.

Lemma 10 Let us define

G0(X) := {Bµ ∈ G(X)}, G1(X) := {Bµ +~1 ∈ G(X)}.

Then, |G0(X)| = |G1(X)|.
Proof: Consider the binary order. Then, if the position of A ⊆ X is i, then the corresponding position

for Ac in the binary order is 2n − 2− i.
Consider a transformation f ∈ G1(X) with matrix B. Define B′ by B′(i, j) = −B(2n − 2 − i, j). Let us

show that f ′(µ) := B′µ is a transformation in G0(X).

• First, let us show that B′µ ∈ FM(X), ∀µ ∈ FM(X). Consider A ⊆ B and A, B 6= X, ∅. Then,

(B′µ)(A) = r ⇔ (−Bµ)(Ac) = r ⇔ (Bµ)(Ac) = −r ⇔ (Bµ)(Ac) + 1 = 1− r.

As f ∈ G1(X), it follows that Bµ +~1 ∈ FM(X). On the other hand, as Bc ⊆ Ac, by monotonicity,

(Bµ)(Bc) + 1 ≤ 1− r ⇔ (Bµ)(Bc) ≤ −r ⇔ (−Bµ)(Bc) ≥ r ⇔ (B′µ)(B) ≥ r.

Therefore, monotonicity holds. Moreover, B′µ(C) ∈ [0, 1], ∀C ⊆ X, C 6= X, ∅ as Bµ + ~1 ∈ FM(X) and
consequently Bµ(Cc) ∈ [−1, 0].

• Let us prove that f ′ is an injective mapping on FM(X).

Consider µ1, µ2 ∈ FM(X) such that B′µ1 = B′µ2. Then, for any A ⊆ X, A 6= ∅, X, we have

(B′µ1)(A) = (B′µ2)(A) ⇔ (−Bµ1)(A
c) = (−Bµ2)(A

c) ⇔ (Bµ1)(A
c) + 1 = (Bµ2)(A

c) + 1.

But this means that µ1 = µ2 because f ∈ G(X) and consequently, bijective.

• Let us prove that f ′µ is a surjective mapping on FM(X). Consider µ ∈ FM(X) and let us show that
we can obtain another fuzzy measure µ1 such that B′µ1 = µ.

We denote by µ̄ the dual measure of µ. As f ∈ G(X), there exists µ1 such that Bµ1 + ~1 = µ̄. Now, for
any A ⊆ X, A 6= ∅, X, we have

(Bµ1)(A) + 1 = µ̄(A) ⇔ (Bµ1)(A) = µ̄(A)− 1 = −µ(Ac) ⇔ (−B′µ1)(A
c) = −µ(Ac) ⇔ B′µ1 = µ

Therefore, f ′(µ) = B′µ is a transformation in G0(X).
On the other hand, it is clear that the mapping

F : G1(X) → G0(X)

Bµ +~1 ↪→ B′µ
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is a bijective application, whence the result.

As shown in Lemma 9, the set G0(X) is the set of symmetric transformations following a permutation on
X. Consider f ∈ G0(X), and define

f ′ : FM → FM
µ ↪→ f(µ)

As f(uX) = uX and ūX = u∅ = ~1, it follows that f ′ ∈ G1(X). Moreover, different transformations in G0(X)
lead to different transformations in G1(X), whence applying Lemma 10 we conclude that transformations in
G1(X) are symmetries composed with the dual application.

Finally, we show that G(X) is the semidirect product of symmetries with the dual application:

Lemma 11 The group G0(X) is a normal subgroup of G(X).

Proof: Take g in G(X) and h in G0(X). We must show that g−1hg belongs to G0(X). If g(uX) = uX ,
then g−1(uX) = uX and the result clearly holds. If not, we know that g(uX) = u∅ and h(u∅) = u∅. Thus,

(g−1hg)(uX) = g−1(h(g(uX))) = g−1(h(u∅)) = g−1(u∅) = uX ,

and consequently g−1hg ∈ G0(X).

This finishes the proof of the theorem.

Corollary 2 If |X| = n, (n > 2), then the cardinality of G(X) is

2(n!).

Theorem 5 If n = 2, the group G(X) is isomorphic to the dihedral group D4 (the group of isometries of the
square).

Proof: Each measure in FM(X) is determined by its value on x1 and x2. Thus, the function

C : FM(X) → [0, 1]× [0, 1]

defined by
C(µ) = (µ(x1), µ(x2))

is a bijection between FM(X) and the unit square. Also, C keeps distances (i.e. d(C(µ1), C(µ2)) = d(µ1, µ2))
so both sets have the same group of isometries.

3.2 The group G(A1, ..., Ap)

For this subsection, we consider the vector expression of p-symmetric measures stated in Lemma 1. Thus,
FM(A1, ..., Ap) can be seen as a convex polyhedron in R(|A1|+1)...(|Ap|+1). We start again with some definitions.

Definition 14 Consider FM(A1, ..., Ap) and suppose there exist j, k (j < k) such that |Aj | = |Ak|. We
define the transposition between Aj and Ak, denoted pj,k, as the function pj,k : FM(A1, ..., Ap) →
FM(A1, ..., Ap) such that for any µ ∈ FM(A1, ..., Ap), pj,k(µ) is defined for any subset (i1, ..., ip) by

pj,k(µ)(i1, ..., ip) := µ(i1, ..., ik, ..., ij , ..., ip).

For FM(A1, ..., Ap), the corresponding result is:

Theorem 6 If |X| > 2 or |X| = 2, p = 1, the set of isometric transformations in G(A1, ..., Ap) are the
compositions of transpositions between subsets of indifference with the same cardinality, and compositions of
these transformations with the dual application. In fact, G(A1, ..., Ap) is the semidirect product of the group
generated by the transpositions between subsets of indifference with the same cardinality with the cyclic group
or order 2 generated by the dual transformation.

Proof: The theorem can be shown translating the corresponding lemmas of Theorem 4. However, we
propose here another alternative proof.
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Lemma 12 Consider FM(A1, ..., Ap) and suppose there exist j, k (j < k) such that |Aj | = |Ak|. Then,
pj,k ∈ G(A1, ..., Ap).

Proof: Trivial.

Lemma 13 If µ ∈ FM(A1, ..., Ap), then µ̄ ∈ FM(A1, ..., Ap).

Proof: Consider B, C ⊆ X with the same vector representation for the partition {A1, ..., Ap} (Lemma 1).

µ̄(B) = 1− µ(Bc) = 1− µ(Cc) = µ̄(C),

as Bc and Cc have the same vector representation. Therefore, the result holds.

Then, translating the proof of Lemma 4, we have

Corollary 3 Consider FM(A1, ..., Ap). Then, D ∈ G(A1, ..., Ap).

As G(A1, ..., Ap) is a group, we conclude that compositions of transpositions between subsets of indifference
with the same cardinality and these functions composed with the dual transformation are in G(A1, ..., Ap).

Let us prove that these are the only transformations in the group.
Remark that uX , u∅ ∈ FM(A1, ..., Ap) for any partition {A1, ..., Ap} of X. Then, just translating the proof

of Lemma 6, we have

Lemma 14 If n > 2, given f ∈ G(A1, ..., Ap), we necessarily have {f(uX), f(u∅)} = {uX , u∅}.
Let us define

G0(A1, ..., Ap) := {f ∈ G(A1, ..., Ap) : f(uX) = uX}.
It can be seen that G0(A1, ..., Ap) is a subgroup of G(A1, ..., Ap) :

• The identity function is in G0(A1, ..., Ap).

• If f, g ∈ G0(A1, ..., Ap), then f ◦ g(uX) = uX , whence f ◦ g ∈ G0(A1, ..., Ap).

• If f ∈ G0(A1, ..., Ap), then f−1(uX) = uX , whence f−1 ∈ G0(A1, ..., Ap).

Definition 15 Consider µ ∈ FM(X). We say that µ∗ ∈ FM(X) dominates µ, and we denote it µ∗ ≥ µ,
if and only if

µ∗(A) ≥ µ(A), ∀A ⊆ X.

Lemma 15 If f ∈ G0(A1, ..., Ap), then µ1 ≤ µ2 implies f(µ1) ≤ f(µ2) for all extremes µ1, µ2 of FM(A1, ..., Ap).

Proof: As uX ∈ FM(A1, ..., Ap), the number of subsets for which an extreme µ ∈ FM(A1, ..., Ap)
attains value 1 is invariant under f , since d(f(µ), f(uX)) = d(µ, uX) and d(f(µ), f(uX)) = d(f(µ), uX) as
f ∈ G0(A1, ..., Ap). Let us denote

n1 := d(µ1, uX), n2 := d(µ2, uX).

Since µ1 ≤ µ2 we have
d(f(µ1), f(µ2)) = d(µ1, µ2) = n2 − n1.

On the other hand, consider

p := |{A ⊆ X : f(µ1)(A) = f(µ2)(A) = 1}|,
p1 := |{A ⊆ X : f(µ1)(A) = 1, f(µ2)(A) = 0}|,
p2 := |{A ⊆ X : f(µ2)(A) = 1, f(µ1)(A) = 0}|.

Then, p1 + p2 = d(f(µ1), f(µ2)) = n2 − n1. Also,

p + p1 = |{A ⊆ X : f(µ1)(A) = 1}| = d(f(µ1), uX) = d(µ1, uX) = n1.

Analogously, p+p2 = n2 and, substracting, we obtain p2−p1 = n2−n1, which we know is equal to p1 +p2.
Thus, p2 − p1 = p2 + p1 and p1 = 0. Hence, f(µ1) ≤ f(µ2).

As a corollary, we have:

Corollary 4 If f ∈ G0(A1, ..., Ap), then µ1 ≤ µ2 implies f(µ1) ≤ f(µ2) for all µ1, µ2 ∈ FM(A1, ..., Ap).
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Proof: The result follows directly from the previous lemma and Lemma 3.

Now, we consider the supremum ∨ and infimum ∧ operations, given for any C ⊆ X by

(µ1 ∨ µ2)(C) := max(µ1(C), µ2(C)), (µ1 ∨ µ2)(C) := min(µ1(C), µ2(C)), ∀µ1, µ2 ∈ FM(A1, ..., Ap).

Lemma 16 The operations ∨ and ∧ are internal operations on FM(A1, ..., Ap).

Proof: Take µ1, µ2 ∈ FM(A1, ..., Ap). Let B, C be two subsets with the same vector representation for
{A1, ..., Ap}. Then, µ1(B) = µ1(C), µ2(B) = µ2(C), whence (µ1 ∨ µ2)(B) = (µ1 ∨ µ2)(C). The same can be
done for ∧.

Moreover, if µ1, µ2 are extreme points, so they are µ1 ∨ µ2 and µ1 ∧ µ2.
The following proposition holds.

Lemma 17 Given f ∈ G0(A1, ..., Ap), and µ1, µ2 ∈ FM(A1, ..., Ap), we have

f(µ1 ∨ µ2) = f(µ1) ∨ f(µ2), f(µ1 ∧ µ2) = f(µ1) ∧ f(µ2).

Proof: It suffices to show that

• f(µ1 ∨ µ2) ≥ f(µ1).

• f(µ1 ∨ µ2) ≥ f(µ2).

• For any µ ∈ FM(A1, ..., Ap) such that µ ≥ f(µ1), µ ≥ f(µ2), it is µ ≥ f(µ1 ∨ µ2).

The first two conditions hold by Corollary 4. For the last condition, consider f−1 the inverse transformation
of f. Such transformation exists as f ∈ G(A1, ..., Ap). Then, by Corollary 4:

f(µ1) ≤ µ ⇒ µ1 ≤ f−1(µ), f(µ2) ≤ µ ⇒ µ2 ≤ f−1(µ).

Thus, µ1 ∨ µ2 ≤ f−1(µ), whence, again by Corollary 4, f(µ1 ∨ µ2) ≤ µ.
The same proof can be done for the infimum.

Definition 16 Given a partition of indifference {A1, ..., Ap}, we define the p-symmetric unanimity game
over (b1, ..., bp) and we will denote it by u(b1,...,bp), the measure in FM(A1, ..., Ap) given by

u(b1,...,bp)(i1, ..., ip) =


1 if ij ≥ bj, ∀j = 1, ..., p
0 otherwise

Remark that for any measure µ ∈ FM(A1, ..., Ap), there are some subsets (b1, ..., bp) satisfying the following
conditions:

µ(b1, ..., bp) > 0,
µ(c1, ..., cp) = 0, if ci ≤ bi, i = 1, ..., p and ∃i | ci < bi.

(6)

This leads us to introduce the following concept:

Definition 17 Consider µ ∈ FM(A1, ..., Ap). We will say that a subset (b1, ..., bp) is a minimal subset for
µ if it satisfies condition (6).

Definition 18 We will call the unanimity games of type u(0,...,rj ,...,0), with rj ∈ {1, ..., |Aj |} atomic p-
symmetric unanimity games.

Remark that atomic p-symmetric unanimity games are the only {0, 1}-valued measures µ ∈ FM(A1, ..., Ap)
satisfying

µ = µ1 ∧ µ2 ⇒ µ = µ1 or µ = µ2,
µ = µ1 ∨ µ2 ⇒ µ = µ1 or µ = µ2.

(7)

Lemma 18 If µ is an extreme point of FM(A1, ..., Ap), then it can be written as suprema of infima of the
atomic p-symmetric unanimity games.
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Proof: Let us denote the minimal subsets of µ by (b1
1, ..., b

1
p), ..., (bs

1, ..., b
s
p). Then,

µ =

s_
i=1

u(bi
1,...,bi

p).

On the other hand,

u(bi
1,...,bi

p) =

p^
j=1

u(0,...,0,bi
j ,0,...,0).

Joining both results, we obtain the result.

Lemma 19 Let f be a transformation in G0(A1, ..., Ap) Then, f is defined by the images of the atomic p-
symmetric unanimity games.

Proof: From Corollary 1 f is determined by its image on the extremes. Thus, the result follows from
Lemmas 17 and 18.

Therefore, it suffices to obtain the image of these measures.

Lemma 20 Consider f ∈ G0(A1, ..., Ap). Then f maps atomic p-symmetric unanimity games on atomic p-
symmetric unanimity games.

Proof: Let us consider u(0,...,0,rj ,0,...,0) and assume f(u(0,...,0,rj ,0,...,0)) is not an atomic p-symmetric una-
nimity game. Then, suppose w.l.g. that there exist µ1, µ2 two {0, 1}-valued measures in FM(A1, ..., Ap) such
that

f(u(0,...,0,rj ,0,...,0)) = µ1 ∧ µ2.

Then,
u(0,...,0,rj ,0,...,0) = f−1(µ1) ∧ f−1(µ2).

On the other hand, f−1(µ1) and f−1(µ2) are {0, 1}-valued measures in FM(A1, ..., Ap) by Corollary 1. And
they are different because f is one-to-one. But this contradicts Equation (7). The same can be done for the
supremum. This finishes the proof.

Lemma 21 Consider f ∈ G0(A1, ..., Ap). Then, f can be written as a composition of transpositions between
subsets of indifference of the same cardinality.

Proof: By Lemma 19, it suffices to study the image of the atomic p-symmetric unanimity games. Moreover,
by Lemma 20, we already know that f maps atomic p-symmetric unanimity games on atomic p-symmetric
unanimity games. Therefore, f(u(0,...,0,rj ,0,...,0)) = u(0,...,0,ri,0,...,0).

On the other hand, f keeps distances and uX ∈ FM(A1, ..., Ap), so that f maintains the number of subsets
with measure 0. The number of subsets with value 0 for (0, ..., 0, rj , 0, ..., 0) are

(|A1|+ 1) · · · (|Aj−1|+ 1)rj(|Aj+1|+ 1) · · · (|Ap|+ 1). (8)

For f(u(0,...,0,rj ,0,...,0)), the number of values 0 are

(|A1|+ 1) · · · (|Ai−1|+ 1)ri(|Ai+1|+ 1) · · · (|Ap|+ 1). (9)

Let us suppose w.l.g. that |A1| ≥ |A2| ≥ ... ≥ |Ap|. Then, for u(|A1|,0,...,0), applying Equations (8) and (9), it
is

|A1|(|Ai|+ 1) = (|A1|+ 1)ri ⇒ ri =
(|Ai|+ 1)|A1|
|A1|+ 1

.

Moreover, as ri ∈ Z, we necessarily have that |A1| + 1 divides |Ai| + 1, whence |A1| = |Ai|. Therefore,
u(|A1|,0,...,0) can only be mapped on u(0,...,0,|Ai|,0,...,0) with |Ai| = |A1|.

Consider now u(i,0,...,0). By Lemma 20, f(u(i,0,...,0)) = u(0,...,0,j,0,...,0). But by monotonicity, f(u(i,0,...,0)) ≥
f(u(|A1|,0,...,0)). This implies that the image of any u(i,0,...,0) is an atomic p-symmetric unanimity game on the
same subset of indifference as f(u(|A1|,0,...,0)). Finally, as the number of values 0 remains constant by f, the
value i remains the same, too.

This can be done for any Ai such that |Ai| = |A1|. Therefore, f acts as a composition of transpositions
between these subsets of indifference.
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Once the image of these p-symmetric unanimity games is fixed, we take Aj such that |Aj | < |A1| and
|Aj | maximal in these conditions. We can apply the same proof to conclude that u(0,...,rj ,...,0) is mapped to
u(0,...,rk,...,0), with rk = rj and |Ak| = |Aj |.

Following this process, we obtain the result.

Lemma 22 Suppose n > 2 or n = 2, p = 1. Consider f ∈ G(A1, ..., Ap) such that f 6∈ G0(A1, ..., Ap). Then, f
is necessarily the composition of a transformation in G0(A1, ..., Ap) with the dual transformation.

Proof: If f ∈ G(A1, ..., Ap) but f 6∈ G0(A1, ..., Ap), this implies (Lemma 14) that f(uX) = u∅. Consider f̄
given by

f̄ : FM(A1, ..., Ap) → FM(A1, ..., Ap)

µ ↪→ f(µ)
.

Then, f̄ is the composition of f with the dual application. On the other hand, f̄(uX) = ū∅ = uX , whence
f̄ ∈ G0(A1, ..., Ap). As the dual application is its own inverse, we conclude that f is the composition of a
transformation in G0(A1, ..., Ap) with the dual application.

Finally, we show that G(A1, ..., Ap) is the semidirect product of symmetries between subsets of the same
cardinality with the dual application:

Lemma 23 The group G0(A1, ..., Ap) is a normal subgroup of G(A1, ..., Ap).

Proof: It is just a translation of the one for Lemma 11.

This finishes the proof of the Theorem.

Definition 19 Let {A1, ..., Ap} be a partition of indifference on X. We will denote by Ci the subfamily of all
subsets of indifference of cardinality i.

Corollary 5 If |X| > 2 or |X| = 2, p = 1, the cardinality of G(A1, ..., Ap) is

2(|C1|! · · · |Ck|!),
where k is the maximal cardinality of the subsets of indifference.

The case |X| = p = 2 is solved in Theorem 5.

3.3 The k-additive case

The k-additive case is more complicated. We consider again that µ ∈ FM(A1, ..., Ap) can be identified with
a (2n − 2)-vector whose components are µ(A), A ⊆ X, A 6= X, ∅ for a given order. Therefore, FM(X) is a
convex polyhedron in R2n−2.

At this point, it must be noted that we could have considered the representation given by the Möbius
inverse. In this case, the number of coefficients is more reduced and it is the natural representation of k-
additive measures. However, if the Möbius transform is used, it follows that D is no more an isometry:

Example 1 Consider |X| = 4 and the fuzzy measures µ1, µ2 whose corresponding Möbius inverse are given
by

m1(x1) = 1, m1(x2) = 1, m1(x1, x2) = −1, m1(A) = 0, otherwise.

m2(x3) = 1, m2(x4) = 1, m1(x3, x4) = −1, m1(A) = 0, otherwise.

Then, d(m1, m2)
2 = 6. On the other hand, the dual measures µ1, µ2 has as Möbius inverse:

m̄1(x1, x2) = 1, m̄1(A) = 0, otherwise,

m̄2(x3, x4) = 1, m̄2(A) = 0, otherwise,

whence d(m̄1, m̄2)
2 = 2.

We will come back to this point below.
The following can be shown:

Proposition 2 Let k ∈ {1, ..., n}. Then, symmetries and compositions of symmetries with the dual application
are transformations in Gk.
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Proof: It is clear that symmetries are transformations in Gk(X). Then, it suffices to show that the dual
transformation of a measure in FMk(X) is in FMk(X). Consider µ ∈ FMk(X) with Möbius transform m
and let us denote by µ̄ its dual measure, with Möbius transform m̄. For A ⊆ X, applying the Zeta transform
(Eq. (2)) and Eq. (1),

m̄(A) =
X

B⊆A

µ̄(B)(−1)|A\B| =
X

B⊆A

(1− µ(Bc))(−1)|A\B| =
X

B⊆A

(−1)|A\B| −
X

B⊆A

µ(Bc)(−1)|A\B|

= −
X

B⊆A

µ(Bc)(−1)|A\B| = −
X

B⊆A

(−1)|A\B| X

C⊆Bc

m(C).

Consider C ⊆ X and let us see how many times m(C) appears in the last expression. We have three
different cases:

• If C ∩ A = ∅, then C ⊆ Ac ⊆ Bc. Therefore, m(C) appears in all µ(Bc) and thus, m(C) appears
multiplied by

−
X

B⊆A

(−1)|A\B| = −(1− 1)|A| = 0.

• If C ∩ A = D 6= A, as C appears in any µ(Bc) such that C ⊆ Bc ⇔ B ∩ C = ∅. Thus, m(C) appears
multiplied by

−
X

B⊆A,B∩C=∅
(−1)|A\B| = −(1− 1)|A\D| = 0.

• If C ∩ A = A, then C only appears when B = ∅. Therefore, m(C) appears once and multiplied by
(−1)|A|+1.

Consequently, m̄(A) =
P

C⊇A m(C)(−1)|A|+1. Thus, if µ ∈ FMk(X) and |A| > k, it follows that m̄(A) = 0,

whence µ̄ ∈ FMk(X).
Now, applying Lemma 4, the result holds.

For the special case of probabilities, the following can be shown:

Proposition 3 The set G1(X) is given by symmetries.

Proof: First, remark that for probabilities, the dual transformation coincides with the identity. On the
other hand, any transformation in G1(X) must map vertices into vertices (Corollary 1). As the vertices of
FM1(X) are uxi , xi ∈ X (Proposition 1), the result holds.

For the 2-additive case, the following can be shown:

Proposition 4 If n > 2, the set G2(X) consists in symmetries and compositions of symmetries with the dual
application.

Proof: First, we will show that if f is in G2(X) then for every i it holds f(ui) = uj for some j. We will
denote s(µ1, µ2) = d(µ1, µ2)

2. It is routine to check that for i, j and k, all different, it holds:

• s(ui, uj) = s(ui, uj ∨ uk) = s(ui, uj ∧ uk) = 2n−1

• s(ui, ui ∨ uj) = s(ui, ui ∧ uj) = 2n−2

• s(ui ∨ uj , ui ∨ uk) = s(ui ∧ uj , ui ∧ uk) = 2n−2

• s(ui ∨ uj , ui ∧ uj) = s(ui ∨ uj , ui ∧ uk) = 2n−1

Also, if n > 3 we can consider i, j, k and l, all different, and then:

• s(ui ∨ uj , uk ∨ ul) = s(ui ∧ uj , uk ∧ ul) = 3 · 2n−3

• s(ui ∨ uj , uk ∧ ul) = 9 · 2n−4

We know that f takes vertices into vertices, and in the case of 2-additive measures the vertices are exactly
{ui : i = 1, . . . , n} ∪ {ui ∨ uj : 1 ≤ i < j ≤ n} ∪ {ui ∧ uj : 1 ≤ i < j ≤ n} (Proposition 1). Thus, if n > 3 it
is clear that for every i it holds f(ui) = uj for some j, since f keeps distances and also s, and s(ui, µ) with µ
another extreme is always even while for the other type of vertices this value is sometimes odd.

Let us focus on the case n = 3. Suppose that, for some i, f(ui) is not uj for some j. Then, we can
assume, without loss of generality, that f(u1) = u1 ∨ u2 (if not, we compose f with symmetries and/or the
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dual transformation). We know that s(u1, u2) = s(u1, u3) = s(u1, u2 ∨ u3) = s(u1, u2 ∧ u3) = 4, and for any
other extreme µ it holds s(u1, µ) = 2. Consequently

{f(u2), f(u3), f(u2 ∨ u3), f(u2 ∧ u3)} = {u3, u1 ∧ u2, u1 ∧ u3, u2 ∧ u3},

since the left set includes the image of all extremes which are at squared distance 4 from u1, and the right set
includes all those wich are at squared distance 4 from f(u1).

We have to consider several different cases:

• f(u2) = u3. Then, it must hold s(u3, f(u3)) = s(f(u2), f(u3)) = s(u2, u3) = 4. But s(u3, u1 ∧ u3) =
s(u3, u2 ∧ u3) = 2, and then f(u3) = u1 ∧ u2. Thus,

{f(u2 ∨ u3), f(u2 ∧ u3)} = {u1 ∧ u3, u2 ∧ u3},

but s(u2 ∨ u3, u2 ∧ u3) = 4 and s(u1 ∧ u3, u2 ∧ u3) = 2, which is a contradiction.

• f(u2) = u1 ∧ u2. Since s(u1 ∧ u2, u1 ∧ u3) = s(u1 ∧ u2, u2 ∧ u3) = 2, it must hold f(u3) = u3. Thus,

{f(u2), f(u3)} = {u3, u1 ∧ u2},

and, hence, again
{f(u2 ∨ u3), f(u2 ∧ u3)} = {u1 ∧ u3, u2 ∧ u3},

which we already know is a contradiction.

• f(u2) = u1 ∧ u3. In this case s(u1 ∧ u3, u3) = s(u1 ∧ u3, u1 ∧ u2) = s(u1 ∧ u3, u2 ∧ u3) = 2, which
contradicts the fact that s(f(u2), f(u3)) = s(u2, u3) = 4.

• f(u2) = u2 ∧ u3. Same as the previous case.

Then, we know that for each i, f(ui) = uj for some j. We can suppose, without loss of generality, that
f(ui) = ui for every i (if not, compose with the adequate symmetry). We must show that f is either the
identity of the dual application. Consider f(ui ∨ uj) with i 6= j. Since f takes extremes into extremes, we
have two possibilities:

• f(ui∨uj) = uk∨ul. Since f(ui) = ui and f(uj) = uj , we know that s(uk∨ul, ui) = s(ui∨uj , ui) = 2n−2,
and s(uk ∨ ul, uj) = s(ui ∨ uj , uj) = 2n−2, and then {i, j} = {k, l}.

• f(ui ∨ uj) = uk ∧ ul. After composition with the dual transformation we are in the previous case and
we can deduce {i, j} = {k, l}.

This finishes the proof.

The general k-additive case is much more complicated. The reason is that the set of vertices of FMk(X)
is no longer the set of {0, 1}-valued measures in FMk(X) (Theorem 2). However, as we will see below,
Proposition 2 suffices to obtain surprising results.

4 The set of invariant measures

Let us now consider another point of view. Assume F is a convex family of fuzzy measures and let µg be the
center of gravity of F . Let f be an isometric transformation on F . Then, µg should remain invariant by f. On
the other hand, if a procedure is random, it has not any trend and thus, the center of gravity of the generated
measures should be near µg. Therefore, it makes sense to study the set of invariant measures for any f ∈ G(F).
If there is only one invariant measure, this is the center of gravity; if this is not the case (the arithmetic mean
of the vertices is invariant and it does not necessarily coincide with µg), at least we will obtain a subset of
measures where µg is.

Let us denote by bxc the integer part of x.

4.1 The general case

For the general case, the following can be shown:
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Proposition 5 The set of measures in FM(X) that are invariant for any transformation in G(X) is a convex
polyhedron whose vertices are the symmetric measures µ1, ..., µbn

2 c+1 given by

µi(Bj) :=

8
<
:

0 if j < i
1
2

if i ≤ j ≤ bn
2
c

1− µ(Bn−j) if j > bn
2
c

(10)

where Bj represents any subset of X such that |Bj | = j.

Proof: From Theorem 4, we already know that G(X) consists in symmetries and compositions between
symmetries and the dual transformation. Therefore, it suffices to study which are the measures in FM(X)
that are both self-dual and symmetric.

If µ ∈ FM(X) is symmetric, then µ(A) only depends on |A|,∀A ⊆ X. Let us denote with some abuse of
notation µ(i) = µ(A), |A| = i, i = 1, ..., n− 1.

On the other hand, as µ is also self-dual, it satisfies µ(A) = 1− µ(Ac), ∀A ⊆ X.
Joining both conditions, we obtain the following set of equations:

µ(i) = 1− µ(n− i), i = 1, ..., n− 1.

Thus, it suffices to determine the values of µ(i) for i = 1, ..., bn
2
c.

Let us check that any measure in these conditions can be put as a convex combination of the measures of
Equation (10). First, remark that µi, i = 1, ..., bn

2
c+ 1 are symmetric and self-dual. Let µ be any symmetric

self-dual measure and consider

µ′ := 2µ(1)µ1 + 2(µ(2)− µ(1))µ2 + ... + 2(
1

2
− µ(bn

2
c)µbn

2 c+1.

The measure µ′ thus defined is symmetric and self-dual. Then, µ′ is a convex combination of µ1, ..., µbn
2 c+1,

and it suffices to prove that µ′ = µ. Consider i ∈ {1, ..., bn
2
c}.

µ′(i) =
1

2
[2µ(1) + 2(µ(2)− µ(1)) + ... + 2(µ(i)− µ(i− 1))] = µ(i).

Finally, it is clear that µi, i = 1, ..., bn
2
c+ 1 are extreme points.

4.2 Invariant measures by transformations in G(A1, ..., Ap)

Let us turn to FM(A1, ..., Ap). We need some previous definitions.

Definition 20 Let {A1, ..., Ap} be a partition of indifference on X. Consider B ≡ (b1, ..., bi, ..., bj , ..., bp). If
|Ai| = |Aj |, we define the set Bi,j by

Bi,j ≡ (b1, ..., bj , ..., bi, ..., bp).

Definition 21 Let {A1, ..., Ap} be a partition of indifference on X. Assume |Ai1 | = ... = |Air |. We say that
a family of subsets D is symmetric with respect to {Ai1 , ..., Air} if

∀B ∈ D, Bij ,il ∈ D, ∀j, l ∈ {1, ..., r}.

Definition 22 Let {A1, ..., Ap} be a partition of indifference on X. Assume |Ai1 | = ... = |Air |. We say that
a measure µ ∈ FM(A1, ..., Ap) is symmetric with respect to {Ai1 , ..., Air} if

µ(B) = µ(Bij ,il), ∀j, l ∈ {1, ..., r}.

Proposition 6 The set of measures in FM(A1, ..., Ap) that are invariant for any transformation in G(A1, ..., Ap)
is a convex polyhedron whose vertices are the measures in FM(A1, ..., Ap) satisfying:

1. They are self-dual measures.

2. They are symmetric with respect to Ci, i = 1, ..., k, where k is the maximal cardinality of the subsets of
indifference (Definition 19).

3. If B ⊆ X, |B| ≤ bn
2
c and µ(B) 6= 0, then µ(B) = 1

2
.
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Remark that the first condition implies that any minimal subset of µ has cardinality at most bn
2
c+ 1.

Conditions 1 and 2 characterize the set of all measures in FM(A1, ..., Ap) invariant by G(A1, ..., Ap). The
last condition characterizes the vertices of the convex polyhedron.

Proof: Let us denote the set of all measures in FM(A1, ..., Ap) being symmetric with respect to Ci, i =
1, ..., k, by FM(A1, ..., Ap)C1,...,Ck . It is clear that this set is a convex polyhedron.

Lemma 24 The vertices of FM(A1, ..., Ap)C1,...,Ck are the {0, 1}-valued measures in FM(A1, ..., Ap)C1,...,Ck .

Proof: Consider µ ∈ FM(A1, ..., Ap)C1,...,Ck . Let us define the families of subsets D1, ...,Dr satisfying the
following conditions:

• If B ∈ Di, C ∈ Dj , i < j ⇒ µ(B) < µ(C).

• If B, B′ ∈ Di ⇒ µ(B) = µ(B′).

• Sr
i=1Di = {B ∈ P(X), µ(B) > 0}, Di 6= ∅.

Indeed, Di, i = 1, ..., r form a partition of subsets in X with positive measure grouping the subsets with the
same measure. Let us define:

µi(B) :=


1 if B ∈ Dj , j ≥ i
0 otherwise

i = 0, ..., r − 1.

As µ ∈ FM(A1, ..., Ap)C1,...,Ck , it follows that µi ∈ FM(A1, ..., Ap)C1,...,Ck , i = 1, ..., r.
Consider Bi ∈ Di, i = 0, ..., r, and define

µ′ := µ(B1)µ1 + (µ(B2)− µ(B1))µ2 + ... + (µ(Br)− µ(Br−1))µr.

Let us check that µ′ = µ. For any B ⊆ X, we have two different cases:

• If µ(B) = 0, then µ′(B) = 0.

• Otherwise, B ∈ Di for some i = 1, ..., r. Therefore,

µ′(B) = 2[µ(B1) + (µ(B2)− µ(B1)) + ... + (µ(Bi)− µ(Bi−1))] = µ(Bi) = µ(B).

On the other hand, any {0, 1}-valued measure in FM(A1, ..., Ap)C1,...,Ck is an extreme point because it is an
extreme point of FM(A1, ..., Ap). This finishes the proof.

¿From Theorem 6, we know that G(A1, ..., Ap) consists in the set of bijections between subsets of in-
difference in Ci and these transformations composed with the dual application. This implies that for any
µ ∈ FM(A1, ..., Ap) remaining invariant for any transformation in G(A1, ..., Ap), µ ∈ FM(A1, ..., Ap)C1,...,Ck

and it is self-dual. As µ is self-dual, it suffices to define it for subsets B such that |B| ≤ bn
2
c. On the other

hand, by monotonicity and the dual condition, µ(B) ≤ 1
2
, ∀B ⊆ X, |B| ≤ bn

2
c. Moreover, these two conditions

characterize the set of invariant measures.
Let us define

µ′(B) :=


2µ(B) if |B| ≤ bn

2
c

1 otherwise

As µ ∈ FM(A1, ..., Ap)C1,...,Ck , it follows that µ′ ∈ FM(A1, ..., Ap)C1,...,Ck . Then, by Lemma 24, there
exist measures µ′1, ..., µ

′
r ∈ FM(A1, ..., Ap)C1,...,Ck being {0, 1}-valued such that

µ′ =

rX
i=1

αiµ
′
i,

rX
i=1

αi = 1, αi ≥ 0, ∀i = 1, ..., r.

Let us define

µi(B) :=

(
µ′i(B)

2
if |B| ≤ bn

2
c

1− µ′i(B
c)

2
otherwise

Note that any µi, i = 1, ..., r, are in the conditions stated in the proposition. As µ′i ∈ FM(A1, ..., Ap)C1,...,Ck ,
so are µi, i = 1, ..., r. Then, ∀B ⊆ X, |B| ≤ bn

2
c,

µ(B) =

rX
i=1

αiµi(B),

rX
i=1

αi = 1, αi ≥ 0, ∀i = 1, ..., r.

By self-duality, we conclude that µ =
Pr

i=1 αiµi. On the other hand, it is straightforward to prove that µi is
an extreme point of the set of invariant measures. This finishes the proof.
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4.3 The k-additive case

Finally, let us study the k-additive case. We already know that the set of transformations in Gk(X) is at least
the set of symmetries and compositions of symmetries with the dual measure (Proposition 2). This implies
that the set of invariant measures in FMk(X) is included in the set of all symmetric self-dual measures in
FMk(X). The structure of these measures depends on the values of k and n. Theorem 5 shows the form of the
n-additive case. However, an important situation arises when k is small and n is large; this is the usual case
in practice, as the decision maker finds difficult dealing with interactions of more than two or three elements.
For this case, the following can be shown:

Theorem 7 Suppose |X| = n and consider k ≤ bn
2
c. The only measure in FMk(X) that is invariant for any

transformation in Gk(X) is the arithmetic mean of the vertices, given by

µ(Bi) =
i

n
, ∀Bi ⊆ X, |Bi| = i.

Proof: Let µ ∈ FMk(X) be an invariant measure for any transformation in Gk(X). By symmetry, µ(A)
only depends on |A|,∀A ⊆ X. Let us denote µ(i) := µ(A), |A| = i, i = 1, ..., n − 1. As µ is also self-dual, it
satisfies µ(A) = 1− µ(Ac), ∀A ⊆ X, whence

µ(i) = 1− µ(n− i), i = 1, ..., n− 1.

If we write these conditions for i = 1, ..., k − 1 in terms of the Möbius transform of µ, that we will denote
by m, and we add the condition

P
A⊆X m(A) = 1, we obtain:

Pk
i=1

`
n
i

´
mi = 1

m1 = 1− [
`

n−1
1

´
m1 + ... +

`
n−1

k

´
mk]

... ... ...`
k−1
1

´
m1 + ... +

`
k−1
k−1

´
mk−1 = 1− [

`
n−k+1

1

´
m1 + ... +

`
n−k+1

k

´
mk]

This system is equivalent to:

`
n
1

´
m1 + ... +

`
n
k

´
mk = 1`

1
1

´
m1 +

`
n−1

1

´
m1 + ... +

`
n−1

k

´
mk = 1

... ... ...`
k−1
1

´
m1 + ... +

`
k−1
k−1

´
mk−1 +

`
n−k+1

1

´
m1 + ... +

`
n−k+1

k

´
mk = 1

The matrix of the system is given by

M1 =

0
BBBB@

n
`

n
2

´
...

`
n

k−1

´ `
n
k

´
n

`
n−1

2

´
...

`
n−1
k−1

´ `
n−1

k

´
...

...
...

...
...`

k−1
1

´
+
`

n−k+1
1

´
+
`

k−1
2

´
+
`

n−k+1
2

´
...

`
k−1
k−1

´
+
`

n−k+1
k−1

´ `
n−k+1

k

´

1
CCCCA

Let us now see that the determinant of the system is different of 0. Substracting the r-th row to the
(r + 1)-th row, for r=k-1, ..., 1, we obtain that the coefficient (r + 1, i) is given by

−
 

n− r

i

!
+

 
n− r − 1

i

!
−
 

r

i

!
+

 
r + 1

i

!
= −

 
n− r − 1

i− 1

!
+

 
r

i− 1

!
, r, i = 1, ..., k.

The system turns into

M2 =

0
BBBB@

n
`

n
2

´
...

`
n

k−1

´ `
n
k

´
0 −`n−1

1

´
... −`n−1

k−2

´ −`n−1
k−1

´
...

...
...

...
...

0 +
`

k−2
1

´− `n−k
1

´
... +

`
k−2
k−2

´− `n−k
k−2

´ −`n−k
k−1

´

1
CCCCA

But now, we can repeat the process for r = k− 1, ..., 2 on M2 to obtain a new matrix M3, and so on until
we arrive to Mk. This matrix is an upper triangular matrix whose elements in the main diagonal are non-null.
Therefore, our system has only one solution.

On the other hand, it can be easily checked that the arithmetic mean is a solution of the system.
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Finally, as any transformation in Gk(X) maps vertices into vertices, the arithmetic mean of the vertices
must remain invariant.

Joining both results, we obtain that the arithmetic mean of the vertices is given by

µ(Bi) =
i

n
, ∀Bi ⊆ X, |Bi| = i.

This finishes the proof.

It is interesting to remark the differences between the general case (Proposition 5) and the k-additive case
for small values of k (Theorem 7).

Theorem 7 is specially interesting, as it provides the center of gravity, while in other cases, we only have
a region containing this measure.

5 Conclusions and open problems

In this paper we have studied some of the properties that any random generator of fuzzy measures should
satisfy. We think this could be useful in the comparison of different procedures.

The development of these properties leads to some problems about the structure of fuzzy measures.
We have studied the group of isometric transformations for FM(X),FM(A1, ..., Ap) and FMk(X). This

group is completely determined for FM(X) and FM(A1, ..., Ap), being an open problem for FMk(X). The
reason lies in the fact that the set of vertices of FMk(X) has not been determined yet.

Next, we have studied the set of invariant measures for any isometric transformation in each family. Al-
though the set of isometric transformations in FMk(X) has not been completely defined, the results obtained
suffice to completely determine the set of invariant measures when k ≤ n

2
.

As explained when dealing with the k-additive case, G(F) can vary if we change the representation. Indeed,
if we consider the Möbius transform, the dual transformation is not an isometric transformation. This implies
that Theorem 7 (and consequently, the center of gravity) is no longer valid if we use the Möbius transform.
On the other hand, the Möbius transform is the natural representation of k-additive measures; then, it could
be interesting to study Gk(X) with the representation in terms of Möbius transform.
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