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Abstract

In this paper we study the group of isometries over the order polytope of a poset. We provide a result that
characterizes any isometry based on the order structure in the original poset. From this result we provide upper
bounds for the number of isometries over the order polytope in terms of its number of connected components.
Finally, as an example of application, we recover the set of isometries for the polytope of fuzzy measures and
the polytope of p-symmetric measures when the indifference partition is fixed.
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1 Introduction

In this paper we deal with a special type of polytopes, the so-called order polytopes. These polytopes are
associated with a finite partially ordered set (poset) and have been studied [23, 16] for their importance on the
research of the complexity of enumeration problems [4, 3], and in sorting with partial information [15]. These
polytopes are strongly related to the poset ideals and filters, which in turn have wide applications in distributed
computing [14, 17, 11], algorithmic combinatorics [10], and discrete optimization and operations research [24]. In
particular, some families of fuzzy measures can be seen as order polytopes. In fact, order polytopes are a natural
generalization of the set of fuzzy measures and the set of fuzzy measures being at most p-symmetric with respect
to a fixed partition.

The aim of this paper is to study the set of isometries of an order polytope. To our knowledge, this problem
has not been addressed yet for this general case. In the case of fuzzy measures, the problem of obtaining the set
of isometries is related to the problem of identification of fuzzy measures from sample information [6] and has
been solved for some subfamilies in [18]. The results on this paper generalize those results.

We will prove that the set of isometries of an order polytope is strongly related to the structure of the subjacent
poset. Thus, it is possible to derive any isometry in a very simple way. Besides, these results can be applied to
any order polytope, no matter the structure of the corresponding poset.

The paper is organized as follows. In next section we introduce the concept of order polytope and other notions
that we will need throughout the paper. In Section 3 we deal with the problem of characterizing the isometries for
order polytopes; we also derive some consequences of this characterization. In Section 4 we study the subgroup
of isometries satisfying h(∅) = ∅. Next, in Section 5 we apply these results for the special case of p-symmetric
measures and general fuzzy measures. Finally, we study upper bounds for the number of isometries on the order
polytope of a poset in terms of the number of connected components in Section 6. We finish with the conclusions
and open problems.

1



2 Order polytopes

In this secttion we recall some usual notions from the theory of ordered sets and we fix some notation. For an
in-depth study, consult [1, 2].

Throughout the paper, we deal with a finite poset (P,¹) (or P for short) of p elements. We will denote the
subsets of P by capital letters A, B, ... and also A1, A2, ...; elements of P are denoted i, j, and so on, and also
x, y, z, ... In particular, if every pair of elements in the poset are comparable, then we are dealing with a total
order and P is a chain. Reciprocally, if no pair of elements can be compared, the poset is called an antichain.

Given a poset (P,¹), we define the dual poset (P ,¹′) as another poset with the same underlying set and
satisfying

i ¹ j in P ⇔ j ¹′ i in P .

If (P,¹) is isomorphic to (P ,¹′), we say that P is autodual.
If A is a subset of P, it inherits a structure of poset from the restriction of ¹ to A. In this case, we say that

A is a subposet of P .
A subset F of P is a filter if for any x ∈ F and any y ∈ P such that x ¹ y, it follows that y ∈ F . We will

denote filters by F1, F2, ... and also G1, G2, ... The dual notion of a filter is an ideal, i.e., a set that contains all
lower bounds of its elements.

Given two filters F1 and F2 of P , we can define F1 ∪ F2 and F1 ∩ F2 as the usual union and intersection of
subsets. It is trivial to check that F1 ∪F2 and F1 ∩F2 are also filters in P . In fact, the set of all filters of P forms
a lattice under set inclusion called the filter lattice of P (see [1]). A filter F is said to be join-irreducible if
whenever F = G1 ∪G2 for two other filters G1, G2, it implies F = G1 or F = G2.

A special type of filters is the family of the so-called principal filters; these filters are those generated by an
element. That is, for i ∈ P, the principal filter of i is defined by

i↑ := {j ∈ P : i ¹ j}.

Notice that, in finite posets, principal filters are join-irreducible and any join-irreducible filter is principal. For
i ∈ P, let us denote by i↓ the principal ideal of P given by those elements j of P such that j ¹ i. Principal ideals
are the only join-irreducible ideals in P .

Let us now turn to order polytopes. Given a poset (P,¹), it is possible to associate to P , in a natural way, a
polytope O(P ) in Rp, called the order polytope of P (cf. [23]). The polytope O(P ) is formed by the p-uples f
of real numbers indexed by the elements of P satisfying

• 0 ≤ f(i) ≤ 1 for every i in P

• f(i) ≤ f(j) whenever i ¹ j in P .

Thus, the polytope O(P ) consists in (the p-uples of images of) the order-preserving functions from P to [0, 1].
It is a well-known fact [23] that O(P ) is a 0/1-polytope, i.e. its extreme points are all in {0, 1}p. In fact, it is
easy to see that the extreme points of O(P ) are exactly the (characteristic functions of the) filters of P . In this
sense, the extreme point whose value is 1 for any element of P is identified with the filter P , while the extreme
point whose value is 0 for any element of P is identified with the filter ∅.

We can find several examples of order polytopes in the theory of fuzzy measures. Consider X = {x1, ..., xn}
a finite referential set. The set of non-additive measures [8], fuzzy measures [25] or capacities [5] over X,
denoted by FM(X), is the set of functions µ : P(X) → [0, 1] satisfying

• µ(∅) = 0, µ(X) = 1.

• µ(A) ≤ µ(B) for all A,B ∈ P(X) such that A ⊆ B.

Fuzzy measures have been applied to many different fields, as Multicriteria Decision Making, Decision Under
Uncertainty and Under Risk, Game Theory, Welfare Theory or Combinatorics (see [13] for a review of theoretical
and practical applications of fuzzy measures).
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From the point of view of order polytopes, FM(X) is the order polytope of the poset (P,¹) where P =
P(X)\{X, ∅} and ¹ is the inclusion between subsets. The principal filter A↑ is given by the measure

uA(B) :=
{

1 if A ⊆ B
0 otherwise

This measure is known as the unanimity game on A. Filter P is given by

u∅(B) :=
{

1 if B 6= ∅
0 if B = ∅

Finally, filter ∅ is given by uX .
Another example of order polytope is the set of p-symmetric measures [21], a special class of fuzzy measures.

This concept appears as a middle term between symmetric measures and general fuzzy measures. A fuzzy measure
µ is said to be symmetric if it satisfies that for any A,B ∈ P(X) such that |A| = |B|, it is µ(A) = µ(B).

The definition of p-symmetric measure is based on the concept of subsets of indifference. Given a subset A of
X and µ ∈ FM(X), we say that A is a subset of indifference for µ if and only if ∀B1, B2 ⊆ A, |B1| = |B2|
and ∀C ⊆ X\A, it is

µ(B1 ∪ C) = µ(B2 ∪ C).

With these definitions, given a fuzzy measure µ, we say that µ is a p-symmetric measure if and only if the
coarsest partition of the universal set in subsets of indifference is {A1, ..., Ap}, Ai 6= ∅, ∀i ∈ {1, ..., p}.

The existence and unicity of this partition has been proved in [20]. We will denote by FM(A1, ..., Ap) the set
of fuzzy measures for which Ai, i = 1, ..., p, is a subset of indifference (but not necessarily p-symmetric! Indeed,
any symmetric measure belongs to FM(A1, ..., Ap)).

As all the elements in the same subset of indifference have the same behavior, when dealing with a fuzzy
measure µ ∈ FM(A1, ..., Ap), for a given subset B of the universal set X, we only need to know the number of
elements of each Ai that belong to B. Therefore, the following result holds:

Lemma 1 [21] If {A1, ..., Ap} is a partition of X, then in order to define a measure in FM(A1, ..., Ap), any
B ⊆ X can be identified with a p-dimensional vector (b1, ..., bp) with bi := |B ∩Ai|.

More properties about p-symmetric measures can be found in [21, 20].
Then, the set FM(A1, ..., Ap) can be seen as the order polytope of the poset (P (A1, ..., Ap),¹), where

P (A1, ..., Ap) := {(i1, ..., ip) : ij ∈ {0, ..., |Aj |}, i, j ∈ Z}\{(0, ..., 0), (|A1|, ..., |Ap|)},

and ¹ is given by (c1, ..., cp) ¹ (b1, ..., bp) ⇔ ci ≤ bi, i = 1, ..., p.
Remark that FM(X) can be seen as a special case of p-symmetric measures; more concretely, FM(X) can

be identified with FM({x1}, ..., {xn}).
In next sections we will study the group of isometries on O(P ), i.e. the group of bijective functions h :

O(P ) → O(P ) keeping distances.

3 Characterizing isometries on order polytopes

Suppose f : P → P is a bijection such that there exist F, F ′ two disjoint filters (we allow one of them to be
empty) such that P = F ∪ F ′ and

1. f(F ) and f(F ′) are filters in P .

2. If i, j ∈ F, then i ¹ j if and only if f(i) ¹ f(j).

3. If i, j ∈ F ′, then i ¹ j if and only if f(j) ¹ f(i).

3



That is, f is isotone on F and antitone on F ′. For a given f in these conditions, we define hf,F,F ′ : O(P ) → O(P )
by

hf,F,F ′(a1, . . . , am) := (b1, . . . , bm)

where

bf(i) :=
{

ai if i ∈ F
1− ai if i ∈ F′ (1)

Let us first show that hf,F,F ′ is well-defined. Consider (a1, ..., am) ∈ O(P ) and let us show that (b1, ..., bm) ∈
O(P ). Clearly, 0 ≤ bi ≤ 1, so it suffices to show that for any f(i), f(j) ∈ P such that f(i) ¹ f(j), it is bf(i) ≤ bf(j).
We have two possibilities:

• If f(i) ∈ f(F ), then f(j) ∈ f(F ) as f(F ) is a filter. By the second condition, this implies that i ¹ j.
Moreover, as (a1, ..., am) ∈ O(P ) and Eq. (1), it follows that bf(i) = ai ≤ aj = bf(j).

• If f(i) ∈ F ′, then f(j) is in f(F ′) as f(F ′) is a filter. Now, as f(i) ¹ f(j), it follows that j ¹ i by definition
of f. As (a1, ..., am) ∈ O(P ) and Eq. (1), bf(i) = 1− ai ≤ 1− aj = bf(j).

Consequently, (b1, . . . , bm) is in O(P ) and hf,F,F ′ is well-defined.
Remark that if we consider the Euclidean distance1, then hf,F,F ′ clearly keeps distances; therefore, hf,F,F ′ is

injective. On the other hand, from the conditions on f, F and F ′, it follows that hf−1,f(F ),f(F ′) can be built.
Moreover, hf,F,F ′ ◦ hf−1,f(F ),f(F ′) and hf−1,f(F ),f(F ′) ◦ hf,F,F ′ are the identity map, whence we conclude that
hf,F,F ′ is onto.

Consequently, the mapping hf,F,F ′ is an isometry on O(P ). We will say that hf,F,F ′ thus built is the isometry
induced by f and the filters F, F ′. Note that indeed, from the definition of hf,F,F ′ , this mapping can be seen
as the restriction to O(P ) of an affine map whose associated linear mapping has determinant 1 or -1.

Example 1 Let us find explicitly the isometries hf,F,F ′ on O(P ) when P = {i, j} is the antichain of two elements.
Remark that for this choice of P, O(P ) can be identified with FM(X) for a referential X of two elements.

In this case, there are two possibilities for f, namely:

f1(i) = i, f1(j) = j, and f2(i) = j, f2(j) = i.

On the other hand, we have four different possibilities for F, namely: ∅, {i}, {j}, {i, j}.
The isometries hf,F,F ′ are given in next table:

Vertex F = ∅ F = {i} F = {j} F = {i, j}

(0, 0)
(0, 1)
(1, 0)
(1, 1)

f1 f2

(1, 1) (1, 1)
(0, 1) (1, 0)
(1, 0) (0, 1)
(0, 0) (0, 0)

f1 f2

(0, 1) (1, 0)
(1, 1) (1, 1)
(0, 0) (0, 0)
(1, 0) (0, 1)

f1 f2

(1, 0) (0, 1)
(0, 0) (0, 0)
(1, 1) (1, 1)
(0, 1) (1, 0)

f1 f2

(0, 0) (0, 0)
(1, 0) (0, 1)
(0, 1) (1, 0)
(1, 1) (1, 1)

Note that in this case O(P ) can be identified with the unit square and thus, the set of isometries is the dihedral
group D4. Therefore, the set of induced isometries recovers the whole set of isometries. Notice also that the
definition of hf,F,F ′ is not independent of the choice of the filters F and F ′; in this case, if f is the identity map
f1, then F and F ′ can be chosen to be any partition of P in two subsets, each selection giving raise to different
isometries.

Remark 1 Remark that for any isometry hf,F,F ′ , the subposets F and f(F ) are order isomorphic via f . Similarly,
the subposet F ′ is order isomorphic to f(F ′). Moreover, if A ⊆ F , then A and f(A) are order isomorphic;
similarly, if A ⊆ F ′, then A and f(A) are order isomorphic. Notice however that if A 6⊆ F,A 6⊆ F ′, then A is not
order isomorphic in general to f(A) nor f(A).

1The results presented in the paper also hold if, instead of the Euclidean distance, a p-norm-metric (1 ≤ p < ∞) is used.
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Lemma 2 [18] Suppose F ⊆ Rp is a convex set. Let h be an isometry on F and consider v1, v2 ∈ F . Then,

h(λv1 + (1− λ)v2) = λh(v1) + (1− λ)h(v2), ∀λ ∈ [0, 1].

As a consequence, we have

Corollary 1 If F ⊆ Rp is a convex polyhedron and h is an isometry on F , then f maps vertices in vertices.

On the other hand, as we have seen in Section 2, vertices of O(P ) can be identified with filters. With this
identification, for a filter L, hf,F,F ′(L) is another filter given by

hf,F,F ′(L)f(i) =
{

1 if i ∈ L ∩ F or i ∈ Lc ∩ F ′

0 if i ∈ Lc ∩ F or i ∈ L ∩ F ′

Otherwise said, if we define G′ := {f(i) : i ∈ F ′}, then hf,F,F ′(L) is the filter whose elements are

{f(i) : i ∈ L ∩ F} ∪G′\{f(i) : i ∈ L ∩ F ′}. (2)

As hf,F,F ′ is defined by the images of the vertices, this characterizes hf,F,F ′ .
Next theorem, which is the main result in the paper, shows that, in fact, all isometries of O(P ) arise from

induced isometries.

Theorem 1 Let h : O(P ) → O(P ) be an isometry; then, there exists a bijection f : P → P and two filters F, F ′

determining a partition on P and satisfying conditions 1-3 such that h = hf,F,F ′ .

Proof: It suffices to prove the result for vertices, i.e. for filters on P. We will prove the theorem in several
lemmas.

First, remark that as h takes vertices in vertices, there exists a filter F such that h(F ) = P . Also, there exists
a filter F ′ such that h(F ′) = ∅. Consider the filters G := h(P ) and G′ := h(∅), too. Since h keeps distances,

|P | = d2(P, ∅) = d2(G,G′) = |G \G′|+ |G′ \G|,

whence we conclude that {G,G′} is a partition of P .

Lemma 3 Consider two filters K1,K2 ⊆ P such that K1 ⊆ K2. Then,

h(K1) ∩G ⊆ h(K2) ∩G. (3)

h(K2) ∩G′ ⊆ h(K1) ∩G′. (4)

Proof: Let us denote |K1| = k1, |K2| = k2. As K1 ⊆ K2, d2(K1, K2) = k2 − k1, whence d2(h(K1), h(K2)) =
k2 − k1. On the other hand,

d2(h(K1), h(K2)) = x1 + x2 + y1 + y2, (5)

where
x1 := |(h(K1) \ h(K2)) ∩G|, x2 := |(h(K2) \ h(K1)) ∩G|,
y1 := |(h(K1) \ h(K2)) ∩G′|, y2 := |(h(K2) \ h(K1)) ∩G′|.

Define also
t := |h(K1) ∩ h(K2) ∩G|, u := |h(K1) ∩ h(K2) ∩G′|.

Then,

k1 = d2(∅,K1) = d2(h(∅), h(K1)) = d2(G′, h(K1)) = |G′ \ h(K1)|+ |h(K1) \G′| = (|G′| − y1 − u) + (x1 + t),

since G and G′ are complementary. Analogously,

k2 = (|G′| − y2 − u) + (x2 + t).
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Consequently,

k2 − k1 = (|G′| − y2 − u) + (x2 + t)− (|G′| − y1 − u)− (x1 + t) = y1 − y2 + x2 − x1,

and, since k2− k1 = x1 +x2 + y1 + y2 by Eq. (5) and x1, x2, y1, y2 ≥ 0, we conclude that x1 = 0 and y2 = 0. This
implies that

h(K1) ∩G ⊆ h(K2) ∩G, h(K2) ∩G′ ⊆ h(K1) ∩G′.

This finishes the proof.

Lemma 4 The isometry h induces an order isomorphism between the lattice of filters contained in F and the
lattice of filters containing G′.

Proof: As a particular case of the previous lemma, if K is a filter such that K ⊆ F, applying Eq. (4), G′ =
h(F )∩G′ ⊆ h(K)∩G′, whence G′ ⊆ h(K). Consequently, if K1 ⊆ K2 ⊆ F, then G′ = h(K1)∩G′ = h(K2)∩G′;
on the other hand, by Eq. (3), h(K1) ∩G ⊆ h(K2) ∩G, so we conclude that h(K1) ⊆ h(K2).

If h is an isometry, the inverse of h is also an isometry. For h−1, filter G plays the role of F, G′ the role of F ′,
F that of G and F ′ that of G′. Applying the previous lemma to h−1, we can conclude that for two filters L1, L2

such that L1 ⊆ L2, it is

h−1(L1) ∩ F ⊆ h−1(L2) ∩ F, h−1(L2) ∩ F ′ ⊆ h−1(L1) ∩ F ′.

Consider two filters L1 and L2 such that G′ ⊆ L1 ⊆ L2. Then, h−1(Li)∩F ′ ⊆ h−1(G′)∩F ′ = ∅, i = 1, 2, since
h−1(G′) = ∅. Thus, h−1(Li) ⊆ F, i = 1, 2, and, as L1 ⊆ L2, it follows that h−1(L1) ⊆ h−1(L2) ⊆ F.

Therefore, h induces an order isomorphism between the lattice of filters contained in F and the lattice of filters
containing G′.

Lemma 5 Suppose A1, ..., An are filters in F. Then,

h(A1 ∪ ... ∪An) = h(A1) ∪ ... ∪ h(An), h(A1 ∩ ... ∩An) = h(A1) ∩ ... ∩ h(An).

Proof: It suffices to prove the result for n = 2 and unions. The result follows by induction for general n and
the same can be done for intersections.

Suppose then A1, A2 ∈ F. As Ai ⊆ A1 ∪ A2 ⊆ F, i = 1, 2, we conclude that h(Ai) ⊆ h(A1 ∪ A2), whence
h(A1) ∪ h(A2) ⊆ h(A1 ∪A2).

On the other hand, as h(Ai) ⊆ h(A1) ∪ h(A2), i = 1, 2, it is Ai ⊆ h−1(h(A1) ∪ h(A2)), i = 1, 2, whence
A1 ∪A2 ⊆ h−1(h(A1) ∪ h(A2)) and h(A1 ∪A2) ⊆ h(A1) ∪ h(A2).

Consider an element x ∈ F and x↑ the principal filter generated by x. Then, x↑ ⊆ F, whence G′ ⊆ h(x↑).
Notice that x↑ is a join-irreducible filter, so h(x↑) is also join-irreducible among the filters containing G′. Hence,
h(x↑) is of the form G′∪y↑ with y ∈ G. Moreover, for any filter of the form G′∪y↑, y ∈ G, it is h−1(G′∪y↑) = x↑,
for some x ∈ F. For otherwise, h−1(G′∪y↑) would not be join-irreducible, contradicting that h (and h−1) induces
an order isomorphism between the lattice of filters contained in F and the filter of lattices containing G′.

Define f1 : F → G by f1(x) := y, where y ∈ G is such that h(x↑) = G′ ∪ y↑. By construction, f1 is bijective
and by Lemma 4, it satisfies that for x1, x2 ∈ F, x1 ¹ x2 ⇔ f1(x1) ¹ f1(x2), i.e. f1 is isotone on F .

Lemma 6 If K is a filter contained in F, then

h(K) = G′ ∪ {f1(x) : x ∈ K}.
Proof: We know that K = ∪x∈Kx↑. Applying the previous lemma,

h(K) = h(
⋃

x∈K

x↑) =
⋃

x∈K

h(x↑) =
⋃

x∈K

(G′ ∪ f1(x)↑) = (
⋃

x∈K

f1(x)↑) ∪G′ = G′ ∪ {f1(x) : x ∈ K}. (6)

This finishes the proof.
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Lemma 7 The isometry h induces a reverse-order isomorphism between the lattice of filters contained in F ′ and
the lattice of filters contained in G′.

Proof: Take a filter K contained in F ′. We have by Eq. (3) that h(K) ∩G ⊆ h(F ′) ∩G = ∅ by definition of
F ′; thus, h(K) ⊆ G′. Therefore, if K1 ⊆ K2 ⊆ F ′ we will have by Eq. (4) h(K2) ⊆ h(K1) ⊆ G′. By a similar
argument h−1 takes filters contained in G′ to filters contained in F ′, also reversing the order. Therefore, h induces
a reverse-order isomorphism between the lattice of filters contained in F ′ and the lattice of filters contained in
G′.

The same as Lemma 5, the following can be proved:

Lemma 8 Suppose A1, ..., An are filters in F ′. Then,

h(A1 ∪ ... ∪An) = h(A1) ∩ ... ∩ h(An), h(A1 ∩ ... ∩An) = h(A1) ∪ ... ∪ h(An).

Take x in F ′. Consider x↑ the principal filter generated by x. Clearly x↑ ⊆ F ′. Since x↑ is a join-irreducible
filter, then h(x↑) is a meet-irreducible filter; for otherwise, h(x↑) = A ∩B, whence x↑ = h−1(A ∩B) = h−1(A) ∪
h−1(B) and x↑ would not be join-irreducible, a contradiction. Therefore, G′ \h(x↑) is a join-irreducible ideal and
thus it is principal, generated by an element y of G′, i.e. G′ \ h(x↑) = y↓.

Define f2 : F ′ → G′ by f2(x) := y, where y ∈ G′ is such that G′ \ h(x↑) = y↓. As for f1, f2 is bijective.

Lemma 9 For x1, x2 ∈ F ′, x1 ¹ x2 ⇔ f2(x2) ¹ f2(x1), i.e. f2 is antitone on F ′.

Proof: For x1, x2 ∈ F ′, it is x1 ¹ x2 if and only if x↑2 ⊆ x↑1. This is equivalent to h(x↑1) ⊆ h(x↑2) and
G′ \ h(x↑2) ⊆ G′ \ h(x↑1), so it is equivalent to f2(x2) = y2 ¹ y1 = f2(x1).

Lemma 10 If K is a filter contained in F ′, then

h(K) = G′ \ {f2(x) : x ∈ K}.
Proof: Consider K ⊆ F ′. Clearly, K = ∪x∈Kx↑. Therefore,

h(K) = h(
⋃

x∈K

x↑) =
⋂

x∈K

h(x↑) =
⋂

x∈K

(G′ \ {y ∈ G′ : y ¹ f2(x)}) = G′ \
⋃

x∈K

{y ∈ G′ : y ¹ f2(x)} = G′ \ {f2(x) : x ∈ K}.

(7)

This finishes the proof.

Define f : P → P by

f(x) :=
{

f1(x) if x ∈ F
f2(x) if x ∈ F′

which by construction satisfies the three conditions on f, F and F ′ necessary to define the corresponding isometry
hf,F,F ′ . Note that f(F ) = G and f(F ′) = G′.

Lemma 11 h = hf,F,F ′ .

Proof: By Eq. (2), it suffices to prove that if L is a filter of P, then

h(L) = {f(x) : x ∈ L ∩ F} ∪ (G′ \ {f(x) : x ∈ L ∩ F ′}).
Consider L1 = L ∩ F and L2 = L ∩ F ′. As L1 ⊆ L, by Eq. (3),

h(L1) ∩G ⊆ h(L) ∩G (8)

and as L2 ⊆ L and Eq. (4),
h(L) ∩G′ ⊆ h(L2) ∩G′ = h(L2), (9)
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Figure 1: Poset P

From Eq. (6), we know that h(L1)∩G = {f(x) : x ∈ L∩F}, and from Eq. (7), h(L2) = G′\{f(x) : x ∈ L∩F ′},
so it is enough to show that h(L1)∩G = h(L)∩G and h(L)∩G′ = h(L2) for which, by Eq. (8) and (9), it suffices
to prove that |h(L1) ∩G| = |L1| is equal to |h(L) ∩G| and |h(L) ∩G′| = |h(L2)|. Define

a := |L1|, a′ := |L2|, b := |h(L) ∩G|, b′ := |h(L) ∩G′|, f := |F |, f ′ := |F ′|, g := |G|, g′ := |G′|.

As h is an isometry, f ′ = d2(∅, F ′) = d2(h(∅), h(F ′)) = d2(G′, ∅) = g′ and f = d2(P, F ′) = d2(h(P ), h(F ′)) =
d2(G, ∅) = g. Also,

f − a + a′ = d2(L, F ) = d2(h(L), h(F )) = d2(h(L), P ) = g − b + g′ − b′ = f − b + f ′ − b′,

and
a + a′ = d2(L, ∅) = d2(h(L), h(∅)) = d2(h(L), G′) = b + g′ − b′ = b + f ′ − b′,

from which a = b and f ′ − a′ = b′. Then,

|h(L1) ∩G| = |{f(x) : x ∈ L ∩ F}| = |L1| = a = b = |h(L) ∩G|,

and
|h(L2)| = |G′ \ {f(x) : x ∈ L ∩ F ′}| = f ′ − a′ = b′ = |h(L) ∩G′|,

whence h(L) := {f(x) : x ∈ L ∩ F} ∪ (G′ \ {f(x) : x ∈ L ∩ F ′}), as stated.

Then, h and hf,F,F ′ coincide on the vertices of O(P ) and consequently, they must be equal.

Let us now see some consequences of this result. Notice that in the proof of Theorem 1, filters G,G′ form a
disconnection of P (they are disjoint filters) and that h(∅) = G′. This provides us with the following corollary:

Corollary 2 A necessary condition for a filter to be the image of ∅ under an isometry h is that its complement
is disconnected from it.

However, the condition is not sufficient:

Example 2 Consider P = {i, j, k, l} such that i ≺ k, j ≺ k, i and j are not comparable and l is not comparable
with i, j, k (see Figure 1).

If hf,F,F ′({i, j, k}) = ∅ for a choice of f, F, F ′, this implies that F ′ = {i, j, k}. By Remark 1, this means that
{i, j, k} is isomorphic to f({i, j, k}), that is not possible, as no filter of P has this structure.

Corollary 2 leads to a characterization of the order polytopes whose isometry group is transitive, i.e., any vertex
can be applied to any other vertex.

Proposition 1 The isometry group of O(P ) acts transitively on the vertices if and only if P is an antichain.
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Proof: Suppose P is an antichain. Consider two vertices of O(P ) given by the filters F1 and F2. Define
F := (P \ (F1 ∪ F2)) ∪ (F1 ∩ F2) and F ′ = P \ F ; as P is an antichain, both F and F ′ are filters. Define f = Id.
Then, it is easy to check that hf,F,F ′(F1) = F2, whence the isometry group is transitive.

Now suppose that P is not an antichain. Consider i, j in P such that i ≺ j. Then j↑ is not disconnected from
its complement and hence, there is no isometry h such that h(∅) = j↑ by Corollary 2. Thus, the isometry group
of O(P ) does not act transitively.

Another straight consequence of Theorem 1 is the following:

Corollary 3 If P is connected, then either F = P or F = ∅.

The proof lays in the fact that F and F ′ are filters. Now, the following can be proved:

Proposition 2 Suppose P is a chain 1 ≺ 2... ≺ n. Then, the only isometries on O(P ) are the identity and the
dual application hf,∅,P given by f(i) = n− i + 1.

Proof: As P is connected, it is either F = P or F = ∅. If F = P, then P and f(P ) are isomorphic by Remark
1, whence f(P ) is a chain and thus f is the identity map.

If F = ∅, then F ′ = P and necessarily P and f(P ) are isomorphic by Remark 1. Thus, f(P ) is a chain such
that f(n) ≺ f(n− 1) ≺ ... ≺ f(1), whence the result.

4 The group H0

As we have proved in the previous section, {F, F ′} determines a partition of P in two filters. In this section,
we are going to study the isometries satisfying F = P or, equivalently, h(∅) = ∅. We will denote this set by H0.
Remark that H0 is given by the mappings f such that hf,P,∅ is an isometry. Note also that H0 is never empty, as
the identity map determines an isometry in H0. Moreover, it is easy to check that H0 is a subgroup of the group
of isometries. The following result completely determines H0.

Corollary 4 The group H0 is isomorphic to the group of order automorphisms of P (isomorphisms keeping the
order structure of P ).

Proof: It is a direct consequence of Remark 1.

However, H0 is not always a normal subgroup of the group of isometries of O(P ), as it is shown in next example.

Example 3 Consider an antichain of two elements i, j. Then, the corresponding order polytope can be identified
with the unit square and thus, the set of isometries corresponds with the set of symmetries of the unit square.
The filter ∅ is associated with a vertex of the square and H0 is the set of symmetries fixing this vertex, and it is
a well-known fact that this subgroup is not a normal subgroup of the group of symmetries of the unit square.

In next proposition, we give a characterization for H0 to be a normal subgroup.

Proposition 3 H0 is a normal subgroup of the group of isometries of O(P ) if and only if every filter K such
that there exists an isometry h satisfying h(∅) = K is a fixed point of every isometry in H0.

Proof: Take h and isometry of O(P ) and let us denote K := h(∅). Take g ∈ H0. Then, h−1gh ∈ H0 if and
only if h−1(g(h(∅))) = ∅, which is equivalent to h−1(g(K)) = ∅, which in turn is equivalent to g(K) = h(∅) = K,
whence the result.

For the particular case of connected posets, the following result can be stated.

Proposition 4 If P is connected, then:
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1. H0 is a normal subgroup of O(P ).

2. If P is autodual, then H0 is a subgroup of index 2.

3. If P is not autodual, then H0 = O(P ).

Proof: If P is connected and h is an isometry, then either h(∅) = ∅ or h(∅) = P by Corollary 2. Thus, P is
fixed by all isometries in H0, and we conclude from the previous proposition that H0 is normal.

If P is autodual, then there exists an order reversing bijection f : P → P. Consider the isometry hf,∅,P . Clearly,
hf,∅,P (∅) = P and hence hf,∅,P 6∈ H0. Consider another isometry g 6∈ H0. Since P is connected, from Corollary 3,
it is g(P ) = ∅. Then, g−1(hf,∅,P (∅)) = ∅ and consequently, g−1hf,∅,P ∈ H0. Thus, hf,∅,P H0 = gH0, so there are
two different cosets of H0 (H0 and hf,∅,P H0).

If P is not autodual, such order reversing bijection does not exist and h(∅) = ∅ for any isometry, whence
H0 = O(P ).

For example, if P is a chain, then P is connected and autodual. In Proposition 2 we have shown that there
are only two isometries, the identity map and the isometry given by the dual application. In this case H0 has
only one element, the identity map, and it is a normal trivial subgroup of the group of isometries on O(P ).

5 Example of application: Isometries on the set of fuzzy measures

In this section, we are going to apply the previous results to obtain in a very simple way the set of isometries of
FM(A1, ..., Ap) and FM(X). The set of isometries of these order polytopes has been already obtained in [18].

As we have stated in Section 2, FM(A1, ..., Ap) is the order polytope of the poset

P (A1, ..., Ap) := {(i1, ..., ip) : ij ∈ {0, ..., |Aj |}, i, j ∈ Z} \ {(0, ..., 0), (|A1|, ..., |Ap|)}.

As P (A1, ..., Ap) is connected and autodual [2], we can apply Corollary 4 and Proposition 4 to conclude that it
suffices to find the set of order automorphisms of P (A1, ..., Ap).

On the other hand, note that P (A1, ..., Ap) is a product of chains except for the top and bottom elements.
Thus, the following can be shown:

Theorem 2 If a poset P is a product of p chains of sizes a1, ..., ap except the top and bottom elements, then the
group of automorphisms of P is generated by the functions fj,k given by:

fj,k(c1, ..., cj , ..., ck, ..., cp) = (c1, ..., ck, ..., cj , ..., cp),

where j, k are such that aj = ak. We call this mapping the transposition between the chains j and k.

Proof: Clearly, any function in the conditions of the theorem is an order automorphism of P . It suffices to
show that any order automorphism can be written as a composition of such functions.

Notice that elements ec,i := (0, ..., c, ..., 0), with c > 0 in the i-th coordinate are the join-irreducible elements in
P . Moreover, any element of P can be obtained as a supremum of elements ec,i. Thus, any order automorphism of
P is determined by the images of the elements ec,i. As any order automorphism f takes join-irreducible elements
in join-irreducible elements, it follows that f(ec,i) = ed,j . On the other hand, e↓c,i has exactly c elements and e↑c,i

has (a1 + 1)...(ai−1 + 1)(ai+1 + 1)...(ap + 1)(ai − c + 1)− 1 elements. Hence, straightforward calculus shows that
ec,i can only be applied to a ed,j with c = d and ai = aj , whence the result.

Define g : P (A1, ..., Ap) → P (A1, ..., Ap) by g((c1, ..., cp)) = (|A1| − c1, ..., |Ap| − cp). Then, g is an isomor-
phism between P (A1, ..., Ap) and its dual poset. We will call such mapping g the dual application. Thus, by
Proposition 4 we conclude:

Theorem 3 The group of isometries on FM(A1, ..., Ap) is generated by the isometries induced by transpositions
between subsets of indifference of the same cardinality, and by the isometry induced by the dual application.
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Figure 2: Poset P

Suppose that we partitionate {A1, ..., Ap} in r classes such that Ai and Aj are in the same class if they have the
same cardinality. Assume that we have r classes C1, ..., Cr whose cardinalities are c1, ..., cr, respectively. Then,
the number of isometries on FM(A1, ..., Ap) is

c1!...cr!2.

For the general case FM(X), all subsets of indifference have the same cardinality. Morevoer, compositions of
transpositions are permutations on X. Therefore, the following holds:

Theorem 4 The group of isometries on FM(X) is given by the isometries induced by permutations, and com-
positions of permutations with the dual application. Then, we have n!2 isometries on FM(X).

For a given permutation π, the corresponding isometry h in H0 is given by

h(µ)(A) = µ(π(A)), A ⊆ X, µ ∈ FM(X).

Note that it is straightforward to check that these mappings are isometries. What is interesting in this result is
that there are no other isometries.

6 Upper bound of the number of isometries on O(P )

In this section we look for upper and lower bounds for the number of isometries on O(P ). We have already shown
that at least there is an isometry on O(P ) (the identity map). In some cases, this is the only isometry, as next
example shows:

Example 4 Consider the poset P given in Figure 2. Since P is connected and not autodual, by Proposition 4, it
follows that any isometry is in H0. From Corollary 4, H0 is isomorphic to the set of order automorphism of P,
that in this case is the trivial group.

In the rest of the section, we are going to look for upper bounds. Related to antichains, the following can be
proved:

Lemma 12 If P is an antichain, then the number of isometries on O(P ) is |P |! 2|P |.

Proof: If P is an antichain, then no pair of elements can be compared; thus, F can be any subset of P, whence
we have 2|P | possible choices. For fixed F and F ′, f can be any bijection on P, i.e. we have |P |! possibilities for
f . Joining both facts, the result holds.

In Example 1 we have found all the eight isometries for O(P ) when P is the antichain of two elements. As a
corollary, we can conclude the following:
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Corollary 5 |P |! 2|P | is an upper bound for the cardinality of the set of isometries on O(P ).

Proof: It suffices to remark that for a given partition {F, F ′}, the number of possible choices for f is bounded
by |P |!. As the number of possible partitions is bounded by 2|P |, the result holds.

Moreover, the following can be shown.

Lemma 13 Consider a poset P with p elements. Then, the number of isometries on O(P ) is p! 2p if and only if
P is an antichain.

Proof: The ”if” part is Lemma 12. Let us prove the ”only if” part. For this, suppose that P is not an
antichain. Then, there exist i, j ∈ P such that i ≺ j. As any isometry is given by two filters F, F ′, we conclude
that either i, j ∈ F or i, j ∈ F ′. But then, we are avoiding the possibilities i ∈ F, j ∈ F ′ and i ∈ F ′, j ∈ F. Thus,
the number of isometries on O(P ) is bounded by p! (2p − 2), whence the result.

Assume now that P is connected and let us look for an upper bound for the isometries on O(P ).

Proposition 5 Let P be a connected poset such that |P | = p. Then, the number of isometries on O(P ) is bounded
by (p− 1)! for p > 4. If p = 1, 2, 3, the number of isometries is 2. If p = 4, the number of isometries is bounded
by 8.

Proof: If p = 1, 2, 3, then the number of isometries is exactly 2. For p = 1, 2, the result is trivial. For p = 3,
we have two possibilities:

• The chain of length 3, that by Proposition 2 has only two isometries.

• The poset {x1, x2, x3} with x1 ≺ x2, x1 ≺ x3 and its dual. In this case, as P is not autodual, O(P ) = H0,
that is determined by the group of order isomorphisms on P, and this group has clearly two elements.

Therefore, let us assume p > 3. By Theorem 1, we know that any isometry on O(P ) is given by a mapping f
and two filters F, F ′. As P is connected, we necessarily have by Corollary 3 that either F = P or F = ∅.

Assume F = P. Then, f is isotone on P and P and f(P ) are order isomorphic posets. As P and f(P ) are
order isomorphic, if f(i) = j we necessarily need that i↑ is isomorphic to j↑ and i↓ is isomorphic to j↓ by Remark
1.

Let us consider the equivalence relation given by iRj if and only if i↑ and j↑ are isomorphic and i↓ and j↓ are
isomorphic. Suppose iRj; then, i and j cannot be compared if i 6= j. On the other hand, as P is connected, there
is a sequence i = i1, i2, ..., is = j such that either ik ≺ ik+1 or ik Â ik+1, ∀k = 1, ..., s − 1, whence there exists k
such that i ≺ k or k ≺ i. Therefore, there are at least two equivalence classes. Consider the different equivalence
classes C1, ..., Cr, and let us denote their corresponding cardinalities by c1, ..., cr, respectively.

Thus, if F = P, the number of possible mappings f is bounded by c1!...cr!, because if f(i) = j, we necessarily
need iRj, i.e., i and j are in the same equivalence class. Remark that this is just an upper bound, as the image
on an equivalence class can determine the image of other elements.

As c1 + ... + cr = p, and r ≥ 2 the value c1!...cr! attains its maximum when r = 2 and c1 = p − 1, c2 = 1.
Consequently, an upper bound for the number of isometries when F = P is (p − 1)! Note that this bound is
attained when there is a top element or a bottom element and the other elements of P cannot be compared.

If F = ∅ is possible, then P is autodual. Then, we have two possibilities:

• There are only two equivalence classes. As P is autodual, this implies that both have the same number of
elements (so p is even), whence the number of isometries when F = P is bounded by (p

2 !)2. In this case,
by Proposition 4, the number of isometries on O(P ) is bounded by 2(p

2 !)2 ≤ (p − 1)! if p > 4. If p = 4,
then 2 4

2 !2 > (4 − 1)!, so that the number of isometries on O(P ) is bounded by 8. This bound is achieved
when we consider a poset with four elements {i1, i2, i3, i4} such that i1, i2 ≺ i3, i4 and i1, i2 and i3, i4 are
incomparable.
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• Otherwise, there are at least three equivalent classes, whence the number of isometries when F = P is
bounded by (p − 2)! By Proposition 4, the number of isometries is bounded by 2(p − 2)! ≤ (p − 1)! This
finishes the proof.

Let us now turn to the problem of determining the number of isometries if P has r connected components.
Let us denote the connected components by P1, ..., Pr. We will denote the number of isometries on O(P ) by n.
Similarly, the number of isometries on O(P ) that are in H0 will be denoted by s. For poset Pi, we will use the
notation ni and si, respectively.

Proposition 6 Suppose P has r connected components P1, ..., Pr such that Pi is not isomorphic to Pj nor to the
dual of Pj if j 6= i. Then, the number of isometries on O(P ) is

n =
r∏

i=1

ni.

Proof: By Theorem 1, we know that any isometry on O(P ) is given by a partition {F, F ′} of P and a mapping
f. As F, F ′ are filters, this implies that any connected component Pi is contained in either F or F ′. Then, f(Pi)
is order isomorphic to Pi if Pi ⊆ F or f(Pi) is order isomorphic to Pi if Pi ⊆ F ′ by Remark 1. Thus, it follows
by hypothesis that f maps Pi in Pi and therefore, the restriction of h to Pi is an isometry on Pi. Hence, any
isometry on O(P ) is a direct product of r isometries, one in each Pi, i = 1, ..., r. In other words, O(P ) is the direct
product of O(Pi), i = 1, ..., r. This finishes the proof.

Corollary 6 Suppose P has r connected components P1, ..., Pr such that Pi is not isomorphic to Pj nor to
Pj , j 6= i. Suppose also that Pi is not autodual for any i = 1, ..., r. Then, the number of isometries on O(P ) is

n =
r∏

i=1

si.

Proof: It suffices to remark that all the isometries on O(Pi) are in H0 by Proposition 4, whence si = ni, i =
1, ..., r. Now, it suffices to apply Proposition 6.

Corollary 7 Suppose P has r connected components P1, ..., Pr such that Pi is not isomorphic to Pj nor to
Pj , j 6= i. Then, the number of isometries on O(P ) is

n = 2k
r∏

i=1

si,

where k is the number of components that are autodual.

Proof: If Pi is autodual, then ni = 2si by Proposition 4. Now, apply Proposition 6.

Let us now allow isomorphisms between the connected components of P .

Corollary 8 Suppose P has r connected components P1, ..., Pr such that Pi is not autodual nor isomorphic to
Pj , j 6= i. We can partitionate the set {P1, ..., Pr} in m subsets such that if Pi and Pj are in the same subset,
then they are isomorphic. Let us denote by cj , j = 1, ..., m the number of connected components in the j-th class.
Then, the number of isometries on O(P ) is

n =
r∏

i=1

si

m∏

j=1

cj !
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Proof: It suffices to note that by hypothesis f(Pi) is isomorphic to Pi. Then, if Pi is in the j-th class of
equivalence, f(Pi) can be any connected component in the class. As f is one-to-one, the number of possibilities
for f(P1), ..., f(Pr) is

∏m
j=1 cj ! Then, for each isometry on O(P ) such that f(Pi) = Pi, ∀i, we can generate

∏m
j=1 cj !

new isometries. As Pi is not autodual by hypothesis, the result follows from Corollary 6.

Let us now allow isomorphisms between the connected components of P and their duals.

Corollary 9 Suppose P has r connected components P1, ..., Pr such that Pi is not autodual i = 1, ..., r. We can
partitionate the set {P1, ..., Pr} in m subsets such that if Pi and Pj are in the same subset, then they are isomorphic
or Pi is isomorphic to Pj. Let us denote by cj , j = 1, ..., m the number of components Pi in the j-th class. Then,
the number of isometries on O(P ) is

n =
r∏

i=1

si

m∏

j=1

cj !

Joining all these results, the following can be stated.

Theorem 5 Suppose P has r connected components P1, ..., Pr. We can partitionate the set {P1, ..., Pr} in m
classes such that if Pi and Pj are in the same class, then they are isomorphic or Pi is isomorphic to Pj. Let us
denote by cj , j = 1, ...,m the number of components Pi in the j-th class. Then, the number of isometries on O(P )
is

n = 2k
r∏

i=1

si

m∏

j=1

cj !,

where k is the number of components Pi that are autodual.

Proof: The only case that we need to treat is the case in which there are components that are autodual.
Consider a class of autodual components, namely Cj . Then, if Pi is in the class, the number of isometries
generated by the class is cj !2cj

∏
Pi∈Cj

si. Therefore, the result holds.

This result allows us to determine upper bounds for the number of isometries on O(P ) when P is not connected
applying Proposition 5. The following holds:

Corollary 10 Suppose P has r connected components P1, ..., Pr. We can partitionate the set {P1, ..., Pr} in m
classes such that if Pi and Pj are in the same class, then they are isomorphic or Pi is isomorphic to Pj. Let us
denote by cj , j = 1, ...,m the number of components Pi in the j-th class. Then, the number of isometries on O(P )
is bounded by

2k8l
∏

pi≥5

(pi − 1)!
m∏

j=1

cj !,

where k is the number of components that have one, two or three elements and l is the number of components of
4 elements.

Note that two classes of isomorphic components are formed by components with one element and with two
elements. If r = p, then all connected components are singletons and we obtain the result for antichains of Lemma
12. Finally, the following result can be stated.

Theorem 6 The number of isometries on O(P ) where P is a poset with r connected components and |P | = p >
r − 3 is bounded by

2r−1(r − 1)!(p− r)!

This bound is attained when r − 1 connected components are singletons and the other component is such that it
has either an upper bound or a lower bound and the other elements of the component cannot be compared.

If p = r + 3, the component that is not a singleton has 4 elements and the bound is

2r−1(r − 1)!8.
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If p = r + 2 or p = r + 1, the number of isometries

2r(r − 1)!

Finally, if p = r, the number of isometries is (see Lemma 12)

2rr!

Proof: Suppose there are u connected components with at least 5 elements in m′ equivalence classes. Then,∏
pi≥5(pi − 1)!

∏m′

i=1 cj ! ≤ (
∑u

i=1 pi − 1)! On the other hand, if there are t elements summing all the elements
in components of 1, 2, 3 or 4 elements, it holds that 2k8l

∏r
i=m′+1 ci! ≤ 2t(

∑r
i=m′+1 ci)! Joining these facts, the

result holds.

7 Conclusions and open problems

In this paper, we have obtained the general form of the group of isometries over an order polytope. Next, we
have applied these results for the special order polytopes of the set of fuzzy measures and the set of p-symmetric
measures when the indifference partition is fixed. We have also studied the subgroup of isometries satisfying
h(∅) = ∅ and we have derived upper bounds for the number of isometries on an order polytope. In all these
results, we have shown that the order structure of the poset plays a fundamental role. We think this results could
shed light on the properties of these polytopes.

The problem of obtaining the set of isometries is related to the problem of identification of fuzzy measures [6].
On the other hand, it has been shown that the number of vertices of the polytope FM(X) coincides with the
Dedekind numbers [19]. Thus, it is necessary to define a subfamily with a reduced number of vertices. In this
sense, if we additionally impose that it comes from a poset, the results in this paper provide us with the set of
isometries.

In the theory of fuzzy measures, there is an important subfamily of fuzzy measures called k-additive measures
[12]. It can be proved that the set of fuzzy measures being at most k-additive is a convex polytope, too. However,
this polytope is not an order polytope; hence, we cannot apply the results in the paper to determine its group of
isometries. On the other hand, as this polytope is a subpolytope of FM(X), the results that we have obtained
could offer a glimpse about the solution of the problem. The same can be said for other subfamilies of fuzzy
measures, as belief functions [7, 22] or possibility measures [9].
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