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Abstract

In this paper we explore the possibilities of application of ϕ-divergence measures in inferential
problems in the field of latent class models for multinomial items. We start with the problem
of estimating the model parameters. As explained below, minimum ϕ-divergence estimators are
a natural extension of the maximum likelihood estimator, that is the usual estimator in this
problem; we study the asymptotic properties of minimum ϕ-divergence estimators, showing that
they share the same asymptotic behavior as the maximum likelihood estimator. To compare the
efficiency and robustness of the minimum ϕ-divergence estimators when the sample size is not
big enough to apply the asymptotic results, we have carried out an extensive simulation study.
Next, we deal with the problem of testing whether a model of latent classes for multinomial data
fits a set of data; again, ϕ-divergence measures can be used to generate a family of test statistics
generalizing both the likelihood ratio and the chi-squared test statistics. Finally, we treat the
problem of choosing the best model out of a sequence of nested latent class models; as before,
ϕ-divergence measures can handle the problem and we derive a family of test statistics based on
them; we study the asymptotic behavior of these test statistics, showing that it is the same as
the classical test statistics. To shed light on differences for small and moderate sample sizes, we
have carried out a simulation study.
Keywords: Latent class models, Minimum phi-divergence estimator, Maximum likelihood

estimator, Phi-divergence test statistics, Goodness-of-fit, Nested latent class models, Asymptotic
distribution.
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1. Introduction

Latent class modelling deals with situations where manifest and latent variables occur. While
manifest variables can be directly observed (e.g. item responses in a questionnaire), this is not
the case for latent variables. On the other hand, many theories in Psychology or Sociology rely
on the basis of the existence of latent variables (e.g. socioeconomic status) having influence
on the manifest variables; thus, these latent variables should be taken into account; however,
all that can be assessed are manifest indicators, as income or success or failure in a task. The
paradigm of latent class modelling is the principle of local independence, which means that
the observed associations of the manifest variables are caused by a latent variable. Otherwise
said, if this latent variable remains constant, the relationship between the observed variables
disappears. Therefore, latent class modelling is a statistical method aiming to establish the
relation between an answer pattern on a set of manifest variables and a latent categorical variable.
This probabilistic approach allows the statistical assessment of a model fitting the observed data
and permits the unmixing of these observed data into several unobservable data sets coming
from different subpopulations.
Latent class models (LCM) were introduced in [22] as a tool for building clustering based on

dichotomous observed variables and were later studied in [5], [15], [19] and [20] among many
others. From this starting point, latent class models have been successfully applied in different
fields (see e.g. [6], [3], [1], [12], [21], [17], [18], [25], [2]). An exhaustive online survey can be found
at [27]. One of them is due to Formann [14], [15] and applies to dichotomous response variables;
his proposal is characterized by two separated models, one for the class sizes and another one
for the latent response probabilities. Following this line, in [13] a family of estimators based on
phi-divergence measures were developed for binomial data. A simulation study carried out in
that paper suggested that these estimators are competitive with the classical maximum likelihood
estimator in this situation.
Formann [16] extended the previous model for dichotomous response variables to the case

of polytomous response variables; he used the maximum likelihood estimator (MLE) and the
chi-square and likelihood ratio statistics to deal with statistical inferences. As this paper works
on the same assumptions, let us explain this model with more detail: Consider a set P of N
people, P := {P1, ..., PN}; each of the individuals Pv, v = 1, ..., N, answers to k polytomous items
I1, ..., Ik. Question Ii has gi possible answers; answers to question i are denoted by ki1, ..., kigi .
Thus, the answer of person Pv to question Ii can be stored in a vector avi := (avi1, ..., avigi),
where

avij :=

{
1 if the answer of Pv to Ii is kij
0 otherwise

.

To explain the statistical relationships of the observed variables, a categorical latent variable is
postulated to exist, whose different levels define a partition on P into (fixed)mmutually exclusive
and exhaustive latent classes C1, ..., Cm whose corresponding relative sizes are w1, ..., wm, (so
m∑
i=1

wi = 1, wi ≥ 0). We denote

pjih := Pr(avih = 1|Pv ∈ Cj), j = 1, ...,m, i = 1, ..., k, h = 1, ..., gi.
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Note again that

gi∑
h=1

pjih = 1. We shall assume that within each class the answers for the dif-

ferent questions are stochastically independent. Thus, given a possible answer vector aν :=
(aν1, ..., aνk), it follows

Pr(aν |Pv ∈ Cj) =
k∏
i=1

gi∏
h=1

pavihjih ,

and consequently,

Pr(aν) =
m∑
j=1

wj

k∏
i=1

gi∏
h=1

pavihjih . (1)

Therefore, the latent class models can be understood as a finite mixture model in which the
component distributions are assumed to be multi-way cross-classification tables with all variables

mutually independent. There are g :=
k∏
i=1

gi possible answer vectors aν whose probability of

occurrence are given by Eq. (1). We will denote by Nν , ν = 1, ..., g, the number of times that
the sequence aν appears in an N -sample and

p̂ = (N1/N, ..., Ng/N). (2)

the corresponding sample proportions. The likelihood function L is given by

La1,...,ag(w1, ..., wm, p111, ..., pmkgk) = Pr(N1 = n1, ..., Ng = ng) =
N !∏g
ν=1 nν !

g∏
ν=1

Pr(aν)
nν . (3)

By nν we are denoting a realization of the random variable Nν , ν = 1, ..., g. In this model the
unknown parameters are wj and pjih. However, this basic model of unsconstrained latent class
analysis frequently fails to fit the data. In order to avoid this problem, in [16] it is proposed a
linear-logistic parametrization for the probabilities wj and pjih given by

wj =
exp(zj)
m∑
l=1

exp(zl)

, j = 1, ...,m, (4)

and

pjih =
exp(xjih)
gi∑
l=1

exp(xjil)

, j = 1, ...,m, i = 1, ..., k, h = 1, ..., gi. (5)

Now, the new parameters of the model are zj and xjih. Finally, restrictions are introduced
relating these parameters to some other explanatory parameters λr, r = 1, ..., t, and ηs, s =
1, ..., u, through
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zj = vtjη, xjih = qtjihλ,

where vectors vj,qjih are known. So we arrive to a model with t + u parameters, θ := (λ,η),
where λ and η are defined as λ := (λ1, ..., λt), η := (η1, ..., ηu). Let us denote by Θ the set in
which the parameter θ varies, i.e. the parametric space. These t+u unknown parameters can be
estimated by maximum likelihood using Eq. (3), and from these estimations, the corresponding
estimations of pjih and wj.
Let us now deal with the concept of divergence measure. These measures appear to quantify

differences between two probability distributions. There are many divergence measures, but in
this paper we will consider the family of ϕ-divergence measures introduced in [10]. Given two
discrete probability distributions p = (p1, ..., pr),q = (q1, ..., qr) over the same sample space with
r elements, we define the ϕ-divergence between p and q as

Dϕ(p,q) =
r∑
i=1

qiϕ

(
pi
qi

)
,

where ϕ is a convex function for x > 0 satisfying ϕ(1) = 0, 0ϕ(0/0) = 0 and 0ϕ(p/0) = p lim
x→∞

ϕ(x)

x
.

Let us denote the set of all functions ϕ in these conditions by Φ∗. Now, let ϕ ∈ Φ∗ be differentiable
at x = 1; then, the function ψ(x) := ϕ(x)−ϕ′(1)(x−1) also belongs to Φ∗ and has the additional
property that ψ′(1) = 0. This property, together with the convexity and ψ(1) = 0, implies that
ψ(x) ≥ 0 for any x ≥ 0. Moreover, Dψ(p,q) = Dϕ(p,q). Since the two divergence measures
coincide, we can consider the set Φ∗ to be equivalent to the set Φ := Φ∗ ∩ {ϕ : ϕ′(1) = 0}.
More details about ϕ-divergence measures can be seen e.g. in [7] and [26]. In particular, taking
ϕ0(x) = x log x− x+ 1, we obtain the so-called Kullback-Leibler divergence measure, given by

DKullback(p,q) =
r∑
i=1

pi log
pi
qi
.

Another important example of divergence measure is the Pearson divergence measure given
by

DPearson(p,q) =
r∑
i=1

1

2

(pi − qi)
2

qi
.

In the examples in the paper and in the simulations we shall consider the power-divergence
family introduced in [9], and given by

ϕ(x) ≡ ϕa(x) =


1

a(a+1)
(xa+1 − x− a(x− 1)) if a ̸= 0, a ̸= −1

x log x− x+ 1 if a = 0
− log x+ x− 1 if a = −1

. (6)

Then, Da(p,q) is given by
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Da(p,q) =


1

a(a+1)

g∑
i=1

(
pa+1
i

qai
− 1
)

if a ̸= 0, a ̸= −1

DKullback(p,q) if a = 0
DKullback(q,p) if a = −1

. (7)

The plan of the paper is as follows. In Section 2 we introduce minimum phi-divergence es-
timators for θ = (λ,η); these estimators can be seen as a natural extension of the maximum
likelihood estimator obtained from Eq. (3); besides, the asymptotic distribution of these esti-
mators is obtained. In Section 3 we focus on two problems of testing, namely the problem of
goodness-of-fit and the problem of selecting a model out of a sequence of nested models; these
problems are classically solved through the Pearson or the likelihood ratio chi-squared test statis-
tics; we shall introduce a new family of test statistics based on minimum phi-divergence that
contains as a particular case the classical test statistics; as in Section 2, we derive the asymp-
totic distribution of the members of these families of test statistics. Section 4 is devoted to a
simulation study; in it, we compare ϕ-divergence estimators and ϕ-divergence test statistics with
the classical estimators and test statistics for small and moderate sample sizes. We finish with
the conclusions.

2. Parameter estimation: Minimum Phi-divergence estimators

Let us denote Pr(aν) by p(aν ,λ,η). Based on Eq. (3), the maximum likelihood estimator (MLE)
is obtained by maximizing in λ and η the log-likelihood function,

g∑
ν=1

nν log p(aν ,λ,η).

This expression can be written as

g∑
ν=1

nν log p(aν ,λ,η) = N

g∑
ν=1

nν
N

log p(aν ,λ,η) = −NDKullback(p̂,p(λ,η)) + constant,

i.e. we must select (λ,η) minimizing the Kullback-Leibler divergence measure between the
probability vector p̂, defined in (2) and p(λ,η) defined by

p(λ,η) := (p(a1,λ,η), ..., p(ag,λ,η)) .

Based on this, we can extend MLE as follows:

Definition 1. Given a LCM for polytomous response variables with parameters λ = (λ1, ..., λt)
and η = (η1, ..., ηu), the minimum ϕ-divergence estimator MϕE of θ = (λ,η) is any θ̂ϕ =

(λ̂ϕ, η̂ϕ) satisfying

Dϕ(p̂,p(λ̂ϕ, η̂ϕ)) = inf
(λ,η)∈Θ

Dϕ(p̂,p(λ,η)). (8)
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To obtain the MϕE we must solve the following system of equations:

∂Dϕ(p̂,p(λ,η))

∂sj
= 0, j = 1, ..., u+ t (9)

being

sj :=

{
λj, j = 1, ..., t
ηj−t, j = t+ 1, ..., t+ u

.

Let us obtain these expressions:

∂Dϕ(p̂,p(λ,η))

∂λα
=

g∑
ν=1

{
∂p(aν ,λ,η)

∂λα
ϕ

(
p̂ν

p(aν ,λ,η)

)
− p̂ν

p(aν ,λ,η)
ϕ′
(

p̂ν
p(aν ,λ,η)

)
∂p(aν ,λ,η)

∂λα

}
,

with

∂p(aν ,λ,η)

∂λα
=

m∑
j=1

wj

k∏
i=1

gi∏
h=1

paνihjih

[
k∑
i=1

gi∑
h=1

avih

[
qjihα −

gi∑
l=1

pjilqjilα

]]
.

Similarly,

∂Dϕ(p̂,p(λ,η))

∂ηβ
=

g∑
ν=1

{
∂p(aν ,λ,η)

∂ηβ
ϕ

(
p̂ν

p(aν ,λ,η)

)
− p̂ν

p(aν ,λ,η)
ϕ′
(

p̂ν
p(aν ,λ,η)

)
∂p(aν ,λ,η)

∂ηβ

}
,

with

∂p(aν ,λ,η)

∂ηβ
=

m∑
j=1

wj

k∏
i=1

gi∏
h=1

paνihjih

(
vjβ −

m∑
l=1

wlvlβ

)
.

The solution of the system of equations in (9) constitutes the necessary conditions for function
Dϕ(p̂,p(λ,η)) to have an extreme point at θ∗ = (λ∗1, ...., λ

∗
t , η

∗
1, ..., η

∗
u), but in general it is difficult

to check whether it is indeed a minimum phi-divergence estimator. Apart from the problem
that a solution of the previous system may fail to minimize Dϕ(p̂,p(λ,η)), we have to deal
with the problem that several local minimums of Dϕ(p̂,p(λ,η)) could exist. To obtain a good
approximation of a global minimum and avoid a local minimum or a stationary point, we present
in Section 4 a multistart optimization algorithm. Remark however that these problems are not
due to function ϕ, as they also appear when dealing with MLE (see [16] for more details).
Let us denote by (λ0,η0) = (λ01, ..., λ

0
t , η

0
1, ..., η

0
u) the true value of the parameter (λ,η) and let

us assume that it is an interior point of the parametric space Θ. Let us denote by ∆g the set

∆g :=

{
p = (p1, ..., pg)

t : pν ≥ 0, ν = 1, ..., g,

g∑
ν=1

pν = 1

}
. (10)

In this section we shall assume that Birch’s conditions (see [4]) adapted to this problem hold:
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i) p(aν ,λ0,η0) > 0, ν = 1, ..., g. Thus, p(λ0,η0) = (p(a1,λ0,η0), ..., p(ag,λ0,η0)) is an interior
point of ∆g. In the following, we will denote p(aν ,λ0,η0) by pν(λ0,η0).

ii) The mapping p : Θ → ∆g assigning to any (λ,η) the vector p(λ,η) is continuous and
totally differentiable at (λ0,η0).

iii) The Jacobian matrix

J(λ0,η0) :=

(
∂pν(λ0,η0)

∂sj

)
ν=1,...,g

j=1,...,t+u

is of rank t+ u.

iv) The inverse mapping of p is continuous at p(λ0,η0).

Now, the following can be proved:

Theorem 1. Under Birch’s conditions and assuming ϕ(t) is twice continuously differentiable at
any t > 0, the MϕE θ̂ϕ defined in Eq. (8), for the LCM for multinomial data satisfies

θ̂ϕ = (λ0,η0)
T + IF (λ0,η0)

−1A(λ0,η0)
TD

− 1
2

p(λ0,η0)
(p̂− p(λ0,η0)) + o(∥p̂− p(λ0,η0)∥),

where IF (λ0,η0) is the Fisher information matrix for the latent class model with multinomial

data, defined by IF (λ0,η0) := (A(λ0,η0)
TA(λ0,η0))

−1 and A(λ0,η0) := D
− 1

2

p(λ0,η0)
J(λ0,η0) and

by Dp(λ0,η0) we are denoting the diagonal matrix whose diagonal is given by p(λ0,η0).

Proof: See Appendix.
We can observe in this theorem that the expansion obtained for the MϕE in LCM for multi-

nomial data does not depend on the function ϕ. Note that this also happened when dealing with
binary data, as shown in [13].

Theorem 2. Under the assumptions of the previous theorem, the MϕE θ̂ϕ for the LCM for
multinomial data satisfies

(i)
√
N(θ̂ϕ − (λ0,η0)

T )
L−→

N→∞
N (0, (A(λ0,η0)

TA(λ0,η0))
−1).

(ii)
√
N(p(θ̂ϕ)− p(λ0,η0))

L−→
N→∞

N (0,J(λ0,η0)
T (A(λ0,η0)

tA(λ0,η0))
−1

J(λ0,η0)).

Proof: See Appendix.
Following i), MϕE share the same asymptotic properties as MLE, as the asymptotic distribu-

tion does not depend on ϕ. Moreover, if we pay attention to the asymptotic variance-covariance
matrix, we can see that it is the inverse of the Fisher information matrix of the model; thus, the
MϕE are BAN (Best Asymptotically Normal) estimators. Note however that, although all phi-
divergence estimators share the same distribution for big sample sizes, differences could appear
when the sample size is not big enough to apply the asymptotic distribution.
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Example 1. We are going to find the MϕE for the set of data of Example 3 in [16]. In this
example, father’s status and son’s status of 3497 British families are compared. Eight different
status are considered and the data are given in the following table:

Father / Son 1 2 3 4 5 6 7 8
1 50 19 26 8 7 11 6 2
2 16 40 34 18 11 20 8 3
3 12 35 65 66 35 88 23 21
4 11 20 58 110 40 183 64 32
5 2 8 12 23 25 46 28 12
6 12 28 102 162 90 553 230 177
7 0 6 19 40 21 158 143 71
8 0 3 14 32 15 126 91 106

Next, two latent classes are considered; each class is characterized by the weights of their
marginal distributions and a mobility parameter. Consequently,

pijl =
exp(αji + βjl + |i− l|γj)∑
i,l [exp(αji + βjl + |i− l|γj)]

, i, l = 1, ..., 8, j = 1, 2.

Here, αji denotes the weight of father’s status i in class j, βjl denotes the weight of son’s status
l in class j, and γj is the mobility parameter for class j. Consequently, we have the constraints

αj8 = −(αj1 + ...+ αj7), βj8 = −(βj1 + ...+ βj7).

We will consider model M ′′
2 in [16], where it is imposed that γ1 = 0.

From the definition of the model, it follows that just one question is considered, referring to
“family status” with 64 possible answers (i.e. 64 combinations (i, j) in the notation explained
before). Then, we have a model with 64-5 categories and 29 parameters: 1 for class sizes, 14 for
weights in class C1, 13 for weights in class C2 and 1 for mobility parameter γ2.
For comparing different divergence measures, we shall consider the family of power phi-divergence

measures introduced in Eq. (7). We have obtained the estimations for several values of a for the
data in Table 1; the results can be seen at Table 1.
It should be noted the differences between these estimations and the estimations obtained by

Formann in [16]. The reason is that he considered additional constraints in his model. More
concretely, he assumed that p171 = p181 = p271 = p281 = 0, as sample values are taken as
structural; it is also assumed that p2i6 = 0, i = 1, ..., 8, i.e. class 2 has no individuals in the sixth
category for son’s status.

3. Goodness-of-fit and model selection

In this section we study the potential of phi-divergence measures to face the problems of goodness-
of-fit and the problem of selecting the best model out of a sequence of nested models.
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3.1 Goodness-of-fit

The typical approach to model fit in latent class models for multinomial response variables is to
compare the response pattern frequencies observed in the data to the expected values according
to the model. The predicted response pattern is computed through the parametric estimations
obtained in the latent class model. The two most common measures of goodness of fit are (see
[16]) the Pearson chi-squared statistic X2, and the likelihood ratio statistic G2, whose expressions
are:

X2 =

g∑
ν=1

(
ns −Np(yν , λ̂, η̂)

)2
Np(yν , λ̂, η̂)

, (11)

and

G2 = 2N

g∑
ν=1

p̂ν log
p̂ν

p(yν , λ̂, η̂)
. (12)

Both statistics are based on MLE and they measure the degree of concordance between the
predicted frequencies and the observed ones. The asymptotic distribution of these statistics is

chi-square with
k∏
i=1

gi − (u+ t)− 1 degrees of freedom.

These test statistics can be extended in two possible ways: first, we can use MϕE instead of
MLE. Second, both X2 and G2 measure the differences between the distribution of expected
values according to the model and the distribution of observed values; thus, we can consider
other measures of divergence to achieve this task.
Both possibilities are combined in the following family of test statistics.

Definition 2. We define the family of phi-divergence test statistics to fit the latent class
model for multinomial variables by

T ϕ2ϕ1 :=
2N

ϕ′′
1(1)

Dϕ1(p̂,p(λ̂ϕ2 , η̂ϕ2)) =
2N

ϕ′′
1(1)

g∑
ν=1

p(yν , λ̂ϕ2 , η̂ϕ2)ϕ1

(
p̂ν

p(yν , λ̂ϕ2 , η̂ϕ2)

)
. (13)

where ϕ1 and ϕ2 are phi-divergence measures.

Associated to ϕ2 we have the divergence measure that obtains the estimation θ̂ϕ2 := (λ̂ϕ2 , η̂ϕ2)
for θ := (λ, η). Associated to ϕ1 we obtain the measure of fit. This allows us to consider different
measures for the problems of estimating and testing. When ϕ2(x) = x log x − x + 1 we get the
MLE; moreover, combining ϕ2(x) = x log x − x + 1 with ϕ1(x) =

1
2
(x − 1)2 we get the Pearson

chi-square statistic X2, and combining ϕ2(x) = x log x − x + 1 with ϕ1(x) = x log x − x + 1
we recover the likelihood ratio statistic G2. Therefore, the family presented in (13) is a natural
extension of X2 and G2. Below we obtain the asymptotic distribution of T ϕ2ϕ1 .

Theorem 3. Under the hypothesis that the LCM for multinomial data with parameters λ =
(λ1, ..., λt) and η = (η1, ..., ηu) holds, the asymptotic distribution of the family of the ϕ-divergence
test statistics T ϕ2ϕ1 given in Eq. (13) is a chi-square distribution with g − (u + t) − 1 degrees of
freedom.
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Proof. See Appendix.

As for estimators, it happens that the asymptotic distribution does not depend on function
ϕ. Possible differences among test statistics may arise for samples with small or moderate size.
This point is treated in Section 4.

Example 2. Let us consider again the situation of Example 1; we will study the goodness-of-fit of
the model presented in Example 1 for different values of a for estimation and different values for
measuring differences. From Theorem 3, we know that these test statistics follow asymptotically
a distribution χ2

33. Thus, for a significance of 0.05, we accept the goodness-of-fit of the model if
the corresponding test statistic is less than 47.4. The values of the corresponding test statistics
appear in Table ??.

3.2 Model selection in nested models

Let us turn to the problem of selecting the best model out of a sequence of nested models.
A pair of nested latent models consists of a simple model and a more complex depending on
more parameters. The more complex model can be considered an extension of the simpler
one, in the sense that it contains some parameters that need to be estimated, while in the
simpler they are considered fixed and known. We shall denote by θA =

(
θA,1,θA,2,θA,3,θA,4

)
with θA,1 = (λ1, ..., λt∗) , θ

A,2 = (λt∗+1, ..., λt) , θ
A,3 = (η1, ..., ηu∗) and θA,4 = (ηu∗+1, ..., ηu) the

parameters associated to the LCM A and by θB =
(
θA,1,0,θA,3,0

)
the parameters associated

to the LCM B. We shall assume that t + u = h1 and t∗ + u∗ = h2 . It is clear that the LCM B
is nested in LCM A. Two nested latent class models for multinomial response variables can be
compared statistically (see [16]) by considering the difference of their corresponding G2 values
(or their X2 values). The expression of the classical likelihood ratio test for solving the test

H0 : LCMB against H1 : LCMA (14)

is

G2
A−B = 2

g∑
ν=1

nν log
p
(
yν , θ̂

A
)

p
(
yν , θ̂B

) , (15)

and the chi-square test statistic is given by

X2
A−B = N

g∑
ν=1

(
p
(
yν , θ̂

A
)
− p

(
yν , θ̂

B
))2

p
(
yν , θ̂B

) . (16)

It is known that these test statistics follow asymptotically a chi-square distribution whose
degrees of freedom is the difference between the degrees of freedom of the models [16]. If the
value of these statistics is nonsignificant, it is concluded that the simpler model fits as well as
the more complex one, and thus, there seems to be no benefit considering the complex model.

10



On the other hand, if the value of the statistics is significant, this means that, according to data,
the additional complexity is needed to achieve an adequate fit.
We can observe that

G2
A−B = 2N

(
DKullback

(
p̂,p(θ̂A)

)
−DKullback

(
p̂,p(θ̂B)

))
(17)

and

X2
A−B =

2N

ϕ′′ (1)
DPearson(p(θ̂

A),p(θ̂B)), (18)

Remark that in these test statistics, MLE is applied. As before, we can generalize them
considering MϕE instead of MLE and other phi-divergence measures instead of DKullback or
DPearson. Then, a generalization of (17) is obtained by

S
ϕ1,ϕ2
A−B =

2N

ϕ′′
1 (1)

(
Dϕ1

(
p̂,p(θ̂Aϕ2)

)
−Dϕ1

(
p̂,p(θ̂Bϕ2)

))
, (19)

and a generalization of (18) by

T
ϕ1,ϕ2
A−B =

2N

ϕ′′
1 (1)

Dϕ1

(
p(θ̂Aϕ2),p(θ̂

B
ϕ2
)
)
. (20)

These extensions have been considered in many statistical applications, see for example [8],
[26] and references therein. In the following theorem we shall obtain the asymptotic distribution
of the family of test statistics given in (19) and (20).

Theorem 4. Given the LCM for binary data A,B with parameters θA =
(
θA,1,θA,2,θA,3,θA,4

)
and θB =

(
θA,1,0,θA,3,0

)
, respectively, and under the null hypothesis given in (14), it follows

S
ϕ1,ϕ2
A−B

L→
N−→∞

χ2
h1−h2 , T

ϕ1,ϕ2
A−B

L→
N−→∞

χ2
h1−h2 .

Proof. See Appendix.

Example 3. Let us consider again the situation of Example 1. In [16], the model considered in
that example is just one of a nested sequence of possible models. Thus, several other situations
can be considered:

• A model with two classes and two mobility parameters γ1, γ2. This is model M ′
2.

• A model with two classes and one mobility parameter γ2. This is model M ′′
2 (the model

considered in Example 1).

• A model with two classes and no mobility parameters. This is model M2.

• A model with one class and a mobility parameter. This is model M ′
1.

• A model with one class and no mobility parameter. This is model M1

11



Consequently, we have two sequences of nested models given by

M1− > M ′
1− > M ′′

2− > M ′
2, M1− > M2− > M ′′

2− > M ′
2.

Let us apply the results of this section in order to select the best model. For this, we have
considered several different values of parameter a for estimating and several different values for
testing. The results obtained are given in next table.
CONTINUACION DEL EJEMPLO ANTERIOR

4. Simulation study

In this section we present a simulation study to see the behavior of the new minimum phi-
divergence estimators and the families of phi-divergence test statistics for latent class models for
multinomial data for different sample sizes. Instead of consider a theoretical latent class model,
we have considered 100 different models.
We start explaining the way we have defined the 100 models. In each model, we have considered

k = 3 questions. The values of gi (the number of possible answer to each question) are: g1 =
2, g2 = 3, g3 = 4. Next, we have considered m = 3 latent classes, and the number of parameters
is given by t = 3 parameters λ1, λ2, λ3 and u = 3 parameters η1, η2, η3. The theoretical values of
these parameters are: λ01 = 0.1, λ02 = 0.4, λ03 = 0.7, η01 = 0.1, η02 = 0.2, η03 = 0.3. For each model,
we have taken matrices Qi, i = 1, 2, 3, V such that all coordinates vary randomly on (0, 3). And
for each model, we have generated 1000 different samples for each of the 8 different sample sizes
N . The values of N are 200, 300, 400, 500, 600, 800, 1000, 3000.
In this simulation study we have considered the divergence measures defined in Eq. (6). In

this sense, the minimum ϕ-divergence estimator is given by λ̂ϕ, η̂ϕ satisfying

Da(p̂,p(λ̂ϕ, η̂ϕ)) = inf
(λ,η)∈Θ

Da(p̂,p(λ,η)), (21)

where

Da(p̂,p(λ,η)) :=
1

a(a+ 1)

g∑
i=1

(
p̂a−1
i

p(λ,η)ai
− 1

)
.

We have studied the following values of a: -1, -1/2, -1/4, -1/8, 0, 2/3, 1, 3/2, 3.
Let us start with the problem of estimating the parameters. First, we have to solve Eq.

(21); specially, we have to minimize the probability of obtaining a local minimum instead of
the global minimum for the function; on the other hand, we do not want the complexity of the
algorithm increasing too much; for this, we proceed as follows for each simulation l, l = 1, ..., 1000.
First, we generate Nin initial points (we use Nin = 100); next, we improve each point in its
neighborhood using a low computational cost procedure (more concretely, a variant of the Hooke
and Jeeves algorithm); if the improvement is satisfactory, we apply a good optimization algorithm
(a quasi-Newton method) from this improved point to obtain a local optimum, and next we try to
solve ∇Dϕ(p̂,p(λ,η)) = 0 from this local optimum maintaining the reduction of Dϕ(p̂,p(λ,η))
function.

12



For fixed a and given model s, s = 1, ..., 100, for simulation l we get the values

λ̂js,l, j = 1, ..., t, η̂ks,l, k = 1, ..., u,

i.e. we obtain two vectors λ̂
(l)
s = (λ̂1s,l, ..., λ̂

t
s,l) and η̂

(l)
s = (η̂1s,l, ..., η̂

u
s,l) being θ̂

(l)
s = (λ̂

(l)
s , η̂

(l)
s )

the minimum power-divergence estimator obtained for the l-th simulation using Da(p̂,p(λ,η)).
Next, θ̂s = (λ̂s, η̂s) is defined as

λ̂js =
1

n

n∑
l=1

λ̂js,l, η̂ks =
1

n

n∑
l=1

η̂ks,l.

For each a we compute the mean squared error for each λj and ηk

mse(λj) =
1

100

100∑
s=1

(λ̂js − λ0j)
2, mse(ηk) =

1

100

100∑
s=1

(η̂ks − η0k)
2

and also the mean squared error for λ and η

mseλ =
1

t

t∑
j=1

mse(λj), mseη =
1

u

u∑
k=1

mse(ηk).

We have also computed

mseλ,η =
1

t+ u
(t mseλ + u mseη)

for each combination (N, a). Similarly, we present the values of msep,msew and

msep,w =
1

j(g + 1)
(gj msep + j msew).

In Tables 2 and 3, we present the simulated averages for the 100 models. From these tables,
several conclusions may arise: first, it can be seen that the different errors diminish for every
value a when the sample size N grows; this is in consonance with the asymptotic results de-
veloped in Section 2; moreover, it can be seen that the differences among the values of a are
less significant when N increases; this was expected from the asymptotic results, too. Next, the
possible differences among the estimators could only appear for small and moderate sample sizes;
in this sense, it can be seen that a = 2/3 provides the best estimations when dealing with p,w;
for the parameters λ,η, it seems that a = 0 i.e. the MLE and a = −1/8 are the best values.
Thus, it may be concluded that there are several estimators that could be competitive with the
classical MLE.
Next, we are going to deal with the size and power of phi-divergence test statistics. For

studying the power, we have considered several alternative hypothesis; for the k-th alternative
hypothesis, we have considered modified versions of Qjk given by Qjk := Qj + fkQ

′, where Q′ is
such that all coordinates are generated randomly on (0, 1) and the different fk are 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1, 2 for k = 1, ..., 10 respectively. We have considered two nominal sizes,
namely 0,05 and 0,1. The simulated size is given by

13



α̂an :=
♯T

ϕ2/3
ϕa

> χ2
g.l.;0.05

n
,

(
or α̂an :=

♯T
ϕ2/3
ϕa

> χ2
g.l.;0.1

n

)
.

Remember that for testing the goodness of fit, the family of test statistics that we have
developed in Section 3 can apply a divergence measure for estimating and another one (possibly
different) for testing. In this study, we have considered a = 2/3 for estimating, as we have
seen in Tables 2 and 3 that this seems to be a value that obtains good estimations for p and
w. Besides, when several possibilities are compared in terms of power, it is necessary to fix the
phi-divergence test statistics that are going to be selected in the sense that only test statistics
with good behavior in terms of size are considered. For this, it is usual to fix upper and lower
bounds for the size simulated levels; a popular option for these bounds have been proposed by
Dale in [11] (see e.g. [8], [24]). Based on this criterion, we only consider the phi-divergence
test statistics whose simulated exact size α̂an satisfies |logit(1 − α̂an) − logit(1 − α)| ≤ d where
logit(p) = log( p

1−p) and d ∈ (0.035, 0.07). We have chosen d = 0.4, so that we only take under
consideration the phi-divergence test statistics such that the corresponding size is

α̂an ∈ (0.0327, 0.07625) (22)

for the nominal size α = 0.05, and

α̂an ∈ (0.06616, 0.1484) (23)

for α = 0.1. In Table 4, we present the results of sizes for several values of a. It can be seen that
the phi-divergence test statistics satisfying Eqs. (22) and (23) increases with the sample size;
again, this was expected from the asymptotic results presented in Section 3. On the other hand,
it can be observed that this convergence is very slow for negative values of a.
From Table 4, we have decided to consider the values for a given by −1/8, 0, 2/3, 1, 3/2. Now,

in Tables 5 and 6, it can be seen that the test statistic for a = −1/8 seems to show a better
behavior than the corresponding test statistics for a = 0 (the likelihood ratio test statistic) and
a = 1 (the chi-squared test statistic).

5. Conclusions

In this paper we have introduced some new inferential tools based on divergence measures in the
framework of LCM for multinomial data. First, we have considered the problem of estimating
the parameters that define the model; we have defined a family of estimators that contain the
MLE as a special case, and we have proved that the asymptotic distribution of any member of
this family coincides with the asymptotic distribution of the MLE. Besides, we have introduced
new families of test statistics, the phi-divergence test statistics, for dealing with the problems
of goodness-of-fit and selecting a model out of a nested sequence for latent class models with
multinomial data. For this, we have used the fact that the classical likelihood ratio test and chi-
squared test statistic are special cases of phi-divergence test statistics. Thus, our family seems a
natural extension of these test statistics. Besides, any test statistic in these new families shares
the same asymptotic properties as the classical test statistics.

14



The possible differences between the test statistics in these families should appear on the
performance for reduced sample sizes. To study these differences, we have conducted a simulation
study. From this simulation study, it seems that there are estimators in the family defined in the
paper that are competitive with the classical MLE. Similarly, when dealing with goodness of fit,
we have obtained a phi-divergence test statistic that seems to behave better than the classical
test statistics based on the Pearson chi-square test statistic and the maximum likelihood test
statistic.
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Appendix

Proof of Theorem 1.

We denote by lg the interior of the g-dimensional unit cube, where g :=
k∏
i=1

gi. The interior of

∆g defined in (10) is contained in lg. Let W(λ0,η0) be a neighborhood of (λ0,η0), the true value
of the unknown parameter (λ,η), on which

p : Θ → ∆g

(λ,η) 7→ p(λ,η) := (p1(λ,η), ..., pg(λ,η))

has continuous second partial derivatives. Consider the application

F := (F1, ..., Ft+u) : l
g ×W(λ0,η0) → Rt+u

whose components Fj, j = 1, ..., t+ u are defined by

Fj(p̃; (λ,η)) :=
∂Dϕ(p̃,p(λ,η))

∂sj
, j = 1, ..., t+ u,

where sj is either λj if j ≤ t or ηj−t if j > t and p̃ is a g-dimensional probability vector.
Then Fj, j = 1, ..., t+ u vanishes at (p(λ0,η0); (λ0;η0)). Since

∂

∂sr

(
∂Dϕ(p̃,p(λ,η))

∂sj

)
=

g∑
ν=1

ϕ′′
(

p̃ν
pν(λ,η)

)
p̃ν

pν(λ,η)2
∂pν(λ,η)

∂sr

∂pν(λ,η)

∂sj

p̃ν
pν(λ,η)

The (t+ u)× (t+ u) matrix JF(θ0) associated with function F at point (p(λ0,η0), (λ0,η0)) is
given by
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∂F

∂(λ0,η0)
=

(
∂F

∂(λ,η)

)
(p̃,(λ,η))=(p(λ0,η0);λ0;η0)

= ϕ′′(1)

(
g∑
l=1

1

pl(λ0,η0)

∂pl(λ0,η0)

∂sr

∂pl(λ0,η0)

∂sj

)
j=1,...,t+u
r=1,...,t+u

Next, it is a simple algebra exercise to prove that JF (θ0) is nonsingular. As JF(θ0) =
A(λ0,η0)

tA(λ0,η0)ϕ
′′(1), we conclude that this matrix is nonsingular at point (p(λ0,η0), (λ0,η0)).

Applying the Implicit Function Theorem, there exists a neighborhood U of (p(λ0,η0), (λ0,η0))
such that the matrix JF is nonsingular (in our case JF at (p(λ0,η0), (λ0,η0)) is positive definite
and then it is continuously differentiable). Also, there exists a continuously differentiable function

θ̃ : A ⊂ lg → Rt+u

such that p(λ0,η0) ∈ A and

{(p̃, (λ,η)) ∈ U : F(p̃, (λ,η)) = 0} =
{
(p̃, θ̃(p̃)) : p̃ ∈ A

}
. (24)

Let us define

ψ(λ,η) := Dϕ(p(λ0,η0),p(λ,η)).

As p(λ0,η0) ∈ A, we conclude that

F(p(λ0,η0), θ̃(p(λ0,η0))) =
∂Dϕ(p(λ0,η0),p(θ̃(p(λ0,η0))))

∂(λ,η)
= 0.

Briefly speaking, θ̃(p(λ0,η0)) is the minimum of function ψ. On the other hand, applying
(24),

(p(λ0,η0), θ̃(p(λ0,η0))) ∈ U,

and then JF is positive definite at (p(λ0,η0), θ̃(p(λ0,η0))). Therefore,

Dϕ(p(λ0,η0),p(θ̃(p(λ0,η0)))) = inf
(λ,η)∈Θ

Dϕ(p(λ0,η0),p(λ,η)),

and by the ϕ-divergence properties θ̃(p(λ0,η0)) = (λ0,η0)
T , and

∂F

∂p(λ0,η0)
− ∂F

∂(λ0,η0)

∂(λ0,η0)

∂p(λ0,η0)
= 0.

Further, we know that

∂F

∂(λ0,η0)
= ϕ′′(1)A(λ0,η0)

tA(λ0,η0).

The (i, j)-th element of the (t+ u)× g matrix
∂Fj

∂pi
is given by:
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∂

∂pi

(
∂Dϕ(p̃,p(λ,η))

∂sj

)
=

1

pi(λ,η)

(
− pi
pi(λ,η)

ϕ′′
(

pi
pi(λ,η)

))
∂pi(λ,η)

∂sj

and for (p(λ0,η0), (λ0,η0)) we have

∂

∂pi

(
∂Dϕ(p̃,p(λ,η))

∂sj

)
=

1

pi(λ0,η0)
ϕ′′ (1)

∂pi(λ0,η0)

∂sj
.

Since A(λ0,η0) = D
− 1

2

p(λ0,η0)
J(λ0,η0), then

∂F

∂p(λ0,η0)
= −ϕ′′(1)A(λ0,η0)

TD
− 1

2

p(λ0,η0)
. (25)

Then we obtain

∂(λ0,η0)

∂p(λ0,η0)
= (A(λ0,η0)

TA(λ0,η0))
−1A(λ0,η0)

TD
− 1

2

p(λ0,η0)
.

A first order Taylor expansion of the function θ̃ around p(λ0,η0) yields

θ̃(p̃) = θ̃(p(λ0,η0)) +

(
∂θ̃(p̃)

p̃

)
p̃=π

(p̃− p(λ0,η0)) + o(∥p̃− p(λ0,η0)∥).

But θ̃(p(λ0,η0)) = (λ0,η0)
t, whence

θ̃(p̃) = (λ0,η0)
t+(A(λ0,η0)

tA(λ0,η0))
−1A(λ0,η0)

tD
− 1

2

p(λ0,η0
(p̃−p(λ0,η0))+o(∥p̃−p(λ0,η0)∥).

It is well-known that the nonparametric estimation p̂ converges almost sure to the probability
vector p(λ0,η0). Therefore p̂ ∈ A and θ̃(p̂) is the unique solution of the system of equations

∂Dϕ(p̂,p(θ̃(p̂)))

sj
= 0, j = 1, ..., t+ u,

and also (p̂, θ̃(p̂)) ∈ U. Therefore, θ̃(p̂) is the minimum ϕ-divergence estimator, θ̂ϕ, satisfying
the relation

θ̂ϕ = (λ0,η0)
t + (A(λ0,η0)

tA(λ0,η0))
−1A(λ0,η0)

tD
− 1

2

p(λ0,η0)
(p̂− p(λ0,η0)) +Op(N

−1/2).

This finishes the proof.

Proof of Theorem 2.
Based on the BAN decomposition of the previous theorem it holds

√
N(θ̂ϕ − (λ0,η0)

T ) =
(
A(λ0,η0)

TA(λ0,η0)
)−1

A(λ0,η0)D
− 1

2

p(λ0,η0)

√
N(p̂− p(λ0,η0)) +Op(1).
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By the Central Limit Theorem we conclude
√
N(p̂ − p(λ0,η0))

L−→N (0,Σp(λ0,η0)), where
Σp(λ0,η0) is given by Σp(λ0,η0) = Dp(λ0,η0) − p(λ0,η0)p(λ0,η0)

T .
Now the result holds after some algebra.

Proof of Theorem 4.
In ARTICULO CL2 we proved the asymptotic distribution of the first test statistic for LCM

for binary data. Let us then prove in this case the asymptotic distribution of the second one,
the other being similar.

A second-order Taylor expansion ofDϕ1 (p, q) around (p (θ0) ,p (θ0)) at
(
p
(
θ̂Aϕ2

)
,p
(
θ̂Bϕ2

))
is given by (see the proof of Theorem 1)

Dϕ1

(
p
(
θ̂Aϕ2

)
,p
(
θ̂Bϕ2

))
=

ϕ′′
1(1)

2

(
p
(
θ̂Aϕ2

)
− p

(
θ̂Bϕ2

))T
D−1

p(θ0)

(
p
(
θ̂Aϕ2

)
− p

(
θ̂Bϕ2

))
+o(||p

(
θ̂Aϕ2

)
− p(θ0)||2) + o(||p

(
θ̂Bϕ2

)
− p(θ0)||2),

Therefore,

T
ϕ1,ϕ2
A−B =

√
N
(
p
(
θ̂Aϕ2

)
− p

(
θ̂Bϕ2

))T
D−1

p(θ0)

(
p
(
θ̂Aϕ2

)
− p

(
θ̂Bϕ2

))
+ op(||1||).

Thus, the asymptotic distribution of T
ϕ1,ϕ2
A−B is the same as the one of X tX with

X :=
√
ND

−1/2
p(θ0)

(
p
(
θ̂Aϕ2

)
− p

(
θ̂Bϕ2

))
.

On the other hand, we already know that

θ̂Aϕ2 − θ0 = J (θ0)
(
AT
AAA

)−1
AT
AD

−1/2
p(θ0)

(p̂− p (θ0)) + op(N
−1/2),

θ̂Bϕ2 − θ0 = J (θ0)
(
AT
BAB

)−1
AT
BD

−1/2
p(θ0)

(p̂− p (θ0)) + op(N
−1/2),

Let us define

WA := AA

(
AT
AAA

)−1
AT
A,WB := AB

(
AT
BAB

)−1
AT
B.

Consequently, the asymptotic distribution of X coincides with the asymptotic distribution of

√
N (WA −WB)D

−1/2
p(θ0)

(p̂− p (θ0)) .

Now,

√
N (p̂− p (θ0))

L→
N−→∞

N (0,Σ∗)

being

Σ∗ = (WA −WB)D
−1/2
p(θ0)

Σp(θ0)D
−1/2
p(θ0)

(WA −WB) .
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Consequently, it suffices to show that Σ∗ is a symmetric and idempotent matrix. Symmetry
is trivial, whence it suffices to show idempotency. Notice that

D
−1/2
p(θ0)

Σp(θ0)D
−1/2
p(θ0)

= D
−1/2
p(θ0)

[
Dp(θ0) − p(θ0)p(θ0)

T
]
D

−1/2
p(θ0)

= Id−
√

p(θ0)
√

p(θ0)
T

From the proof of Theorem 1, we know that WA

√
p(θ0) = WA

√
p(θ0) = 0. Finally,

Σ∗ = (WA −WB)
(
Id−

√
p(θ0)

√
p(θ0)

T
)
(WA −WB) = (WA −WB) (WA −WB) .

On the other hand,

WAWB = WB, WBWA = WB, WAWA = WA, WBWB = WB,

whence we conclude that

Σ∗ = (WA −WB)

and it is an idempotent matrix. We conclude that

T
ϕ1,ϕ2
A−B

L→
N−→∞

χ2
tr(Σ∗).

To obtain the degrees of freedom we compute

tr(Σ∗) = tr (WA −WB)

= tr (WA)− tr (WB)

= tr
(
AA

(
AT
AAA

)−1
AT
A

)
− tr

(
AB

(
AT
BAB

)−1
AT
B

)
= tr

(
AT
AAA

(
AT
AAA

)−1
)
− tr

(
AT
BAB

(
AT
BAB

)−1
)

= h1 − h2

This finishes the proof.
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Parameter / a -1 -1/2 -1/4 -1/8 0 2/3 1 3/2 3
α̂11 -1.959 -2.338 -2.375 -2.397 -2.470 -2.389 -2.374 -2.367 -2.451
α̂12 -0.881 -1.478 -1.489 -1.484 -1.468 -1.515 -1.490 -1.510 -1.528
α̂13 0.598 0.306 0.316 0.319 0.331 0.312 0.307 0.305 0.310
α̂14 1.238 0.905 0.921 0.926 0.937 0.929 0.915 0.917 0.945
α̂15 -0.018 -0.718 -0.729 -0.727 -0.729 -0.716 -0.727 -0.722 -0.718
α̂16 1.985 1.974 1.984 1.987 2.000 1.994 1.994 1.997 2.016
α̂17 -1.035 0.734 0.742 0.744 0.753 0.746 0.740 0.741 0.759
α̂21 0.831 0.104 0.077 0.069 0.070 0.062 0.099 0.093 0.058
α̂22 0.624 -0.083 -0.107 -0.114 -0.117 -0.114 -0.091 -0.096 -0.124
α̂23 0.594 0.237 0.219 0.214 0.213 0.213 0.234 0.233 0.223
α̂24 0.512 0.368 0.352 0.348 0.345 0.343 0.357 0.356 0.341
α̂25 -0.710 -0.721 -0.721 -0.723 -0.721 -0.727 -0.725 -0.725 -0.730
α̂26 0.612 0.881 0.893 0.898 0.896 0.890 0.865 0.864 0.873
α̂27 -0.668 -0.254 -0.225 -0.215 -0.212 -0.206 -0.233 -0.227 -0.194

β̂11 -4.752 -4.920 -4.899 -4.806 -4.061 -3.541 -2.528 -2.499 -3.041

β̂12 -0.054 -0.403 -0.228 -0.252 -0.376 -0.461 -0.591 -0.614 -0.554

β̂13 1.830 1.045 1.241 1.229 1.103 1.020 0.858 0.860 0.987

β̂14 2.351 1.678 1.882 1.872 1.746 1.657 1.476 1.475 1.591

β̂15 -0.809 0.369 0.526 0.488 0.365 0.283 0.116 0.109 0.106

β̂16 3.144 2.888 3.101 3.094 2.969 2.890 2.697 2.700 2.838

β̂17 -1.118 -1.381 -2.573 -2.569 -2.568 -2.580 -2.580 -2.580 -2.580

β̂21 -1.574 -0.499 -0.479 -0.472 -0.471 -0.459 -0.489 -0.483 -0.442

β̂22 -0.942 -0.573 -0.554 -0.548 -0.546 -0.545 -0.562 -0.553 -0.527

β̂23 -1.140 -0.325 -0.304 -0.298 -0.296 -0.290 -0.314 -0.310 -0.294

β̂24 -0.726 -0.364 -0.347 -0.343 -0.340 -0.330 -0.354 -0.352 -0.332

β̂25 -0.412 -0.424 -0.412 -0.404 -0.404 -0.405 -0.399 -0.397 -0.371

β̂26 2.852 1.437 1.390 1.373 1.369 1.348 1.403 1.388 1.303
γ̂2 -0.901 -0.561 -0.547 -0.541 -0.539 -0.530 -0.540 -0.533 -0.505

Table 1: Power-divergence estimations of the parameters αji, βji and γ2 for different values of a.
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N a mseλ mseη msep msew mseλ,η msep,w
200 -1 1.7338 3.0843 0.3379 0.0576 2.4090 0.3267

-0.5 0.0887 1.8628 0.0689 0.0402 0.9757 0.0678
-0.25 0.0818 1.8230 0.0651 0.0396 0.9524 0.0641
-0.125 0.0794 1.8081 0.0638 0.0394 0.9437 0.0629

0 0.0777 1.8047 0.0628 0.0393 0.9412 0.0618
0.667 0.0739 1.8205 0.0616 0.0399 0.9472 0.0608
1 0.0736 1.8573 0.0619 0.0405 0.9655 0.0610
1.5 0.0736 1.8997 0.0628 0.0412 0.9867 0.0619
3 0.0795 2.0635 0.0694 0.0448 1.0715 0.0684

300 -1 0.5133 1.7204 0.1265 0.0338 1.1169 0.1228
-0.5 0.0537 1.2411 0.0427 0.0273 0.6474 0.0420
-0.25 0.0511 1.2171 0.0411 0.0270 0.6341 0.0406
-0.125 0.0503 1.2101 0.0408 0.0269 0.6302 0.0402

0 0.0498 1.2084 0.0403 0.0269 0.6291 0.0398
0.667 0.0481 1.2197 0.0398 0.0272 0.6339 0.0393
1 0.0477 1.2296 0.0399 0.0274 0.6387 0.0394
1.5 0.0482 1.2557 0.0405 0.0279 0.6519 0.0400
3 0.0517 1.3614 0.0444 0.0301 0.7065 0.0438

400 -1 0.1945 1.1522 0.0626 0.0237 0.6734 0.0610
-0.5 0.0384 0.9291 0.0309 0.0208 0.4837 0.0305
-0.25 0.0372 0.9236 0.0303 0.0206 0.4804 0.0299
-0.125 0.0368 0.9180 0.0301 0.0206 0.4774 0.0297

0 0.0365 0.9174 0.0299 0.0206 0.4769 0.0295
0.667 0.0356 0.9242 0.0296 0.0207 0.4799 0.0292
1 0.0356 0.9269 0.0297 0.0209 0.4812 0.0293
1.5 0.0358 0.9464 0.0301 0.0211 0.4911 0.0298
3 0.0380 1.0176 0.0326 0.0226 0.5278 0.0322

500 -1 0.0953 0.8881 0.0392 0.0186 0.4917 0.0383
-0.5 0.0301 0.7543 0.0244 0.0169 0.3922 0.0241
-0.25 0.0295 0.7503 0.0240 0.0168 0.3899 0.0237
-0.125 0.0291 0.7452 0.0237 0.0167 0.3872 0.0234

0 0.0288 0.7480 0.0236 0.0167 0.3884 0.0233
0.667 0.0282 0.7505 0.0233 0.0168 0.3894 0.0231
1 0.0283 0.7511 0.0236 0.0169 0.3897 0.0233
1.5 0.0285 0.7646 0.0238 0.0171 0.3965 0.0235
3 0.0303 0.8198 0.0258 0.0181 0.4250 0.0254

Table 2: mse of the simulation study for several sample sizes
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N a mseλ mseη msep msew mseλ,η msep,w
600 -1 0.0543 0.6847 0.0268 0.0149 0.3695 0.0264

-0.5 0.0240 0.6127 0.0194 0.0139 0.3184 0.0192
-0.25 0.0236 0.6059 0.0191 0.0138 0.3147 0.0189
-0.125 0.0234 0.6064 0.0190 0.0138 0.3149 0.0188

0 0.0233 0.6063 0.0190 0.0138 0.3148 0.0188
0.667 0.0228 0.6058 0.0188 0.0138 0.3143 0.0186
1 0.0228 0.6073 0.0189 0.0139 0.3151 0.0187
1.5 0.0230 0.6174 0.0192 0.0141 0.3202 0.0190
3 0.0244 0.6581 0.0205 0.0149 0.3412 0.0203

700 -1 0.0353 0.5757 0.0206 0.0126 0.3055 0.0202
-0.5 0.0203 0.5329 0.0166 0.0121 0.2766 0.0164
-0.25 0.0200 0.5299 0.0164 0.0120 0.2749 0.0162
-0.125 0.0198 0.5281 0.0163 0.0120 0.2739 0.0161

0 0.0198 0.5306 0.0163 0.0120 0.2752 0.0161
0.667 0.0194 0.5298 0.0161 0.0120 0.2746 0.0160
1 0.0194 0.5342 0.0162 0.0120 0.2768 0.0160
1.5 0.0196 0.5396 0.0164 0.0122 0.2796 0.0162
3 0.0206 0.5703 0.0175 0.0127 0.2955 0.0173

800 -1 0.0263 0.5015 0.0169 0.0110 0.2639 0.0167
-0.500 0.0178 0.4669 0.0144 0.0105 0.2423 0.0143
-0.25 0.0176 0.4678 0.0143 0.0105 0.2427 0.0142
-0.125 0.0175 0.4687 0.0143 0.0105 0.2431 0.0141

0 0.0174 0.4699 0.0142 0.0105 0.2437 0.0141
0.667 0.0172 0.4703 0.0141 0.0105 0.2437 0.0140
1 0.0172 0.4673 0.0142 0.0105 0.2422 0.0140
1.5 0.0173 0.4753 0.0143 0.0107 0.2463 0.0142
3 0.0183 0.4996 0.0153 0.0112 0.2589 0.0151

1000 -1 0.0174 0.3938 0.0125 0.0088 0.2056 0.0124
-0.5 0.0141 0.3801 0.0115 0.0086 0.1971 0.0114
-0.25 0.0140 0.3786 0.0114 0.0086 0.1963 0.0113
-0.125 0.0139 0.3785 0.0114 0.0085 0.1962 0.0112

0 0.0139 0.3777 0.0113 0.0086 0.1958 0.0112
0.667 0.0137 0.3803 0.0113 0.0086 0.1970 0.0112
1 0.0137 0.3813 0.0113 0.0086 0.1975 0.0112
1.5 0.0138 0.3855 0.0114 0.0087 0.1997 0.0113
3 0.0143 0.4019 0.0120 0.0090 0.2081 0.0118

3000 -1 0.0045 0.1426 0.0037 0.0030 0.0736 0.0037
-0.5 0.0045 0.1430 0.0037 0.0030 0.0737 0.0036
-0.25 0.0045 0.1419 0.0036 0.0030 0.0732 0.0036
-0.125 0.0045 0.1424 0.0036 0.0030 0.0734 0.0036

0 0.0045 0.1428 0.0036 0.0030 0.0737 0.0036
0.667 0.0045 0.1424 0.0036 0.0030 0.0734 0.0036
1 0.0045 0.1421 0.0036 0.0030 0.0733 0.0036
1.5 0.0045 0.1428 0.0037 0.0030 0.0736 0.0036
3 0.0046 0.1446 0.0037 0.0031 0.0746 0.0037

Table 3: mse of the simulation study for several sample sizes
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N Size -1 -0.5 -0.25 -0.125 0 0.6667 1 1.5 3
200 0.10 0.3938 0.2530 0.1791 0.1546 0.1357 0.0854 0.0791 0.0803 0.1489

0.05 0.3412 0.1736 0.1072 0.0870 0.0724 0.0395 0.0364 0.0384 0.0916
300 0.10 0.2537 0.1831 0.1473 0.1341 0.1234 0.0915 0.0859 0.0864 0.1350

0.05 0.1900 0.1169 0.0848 0.0735 0.0648 0.0436 0.0411 0.0423 0.0802
400 0.10 0.1971 0.1509 0.1297 0.1210 0.1133 0.0911 0.0875 0.0876 0.1261

0.05 0.1318 0.0892 0.0700 0.0631 0.0579 0.0431 0.0410 0.0420 0.0718
500 0.10 0.1803 0.1441 0.1283 0.1223 0.1169 0.0991 0.0955 0.0955 0.1283

0.05 0.1135 0.0819 0.0685 0.0637 0.0600 0.0482 0.0466 0.0476 0.0734
600 0.10 0.1540 0.1265 0.1147 0.1097 0.1057 0.0916 0.0888 0.0895 0.1166

0.05 0.0920 0.0686 0.0597 0.0564 0.0535 0.0441 0.0427 0.0433 0.0641
700 0.10 0.1478 0.1258 0.1163 0.1119 0.1083 0.0963 0.0939 0.0940 0.1171

0.05 0.0871 0.0680 0.0609 0.0580 0.0555 0.0476 0.0463 0.0469 0.0646
800 0.10 0.1394 0.1204 0.1125 0.1089 0.1058 0.0957 0.0938 0.0939 0.1147

0.05 0.0802 0.0649 0.0588 0.0564 0.0544 0.0477 0.0466 0.0469 0.0635
900 0.10 0.1330 0.1170 0.1104 0.1074 0.1048 0.0957 0.0937 0.0938 0.1124

0.05 0.0754 0.0624 0.0570 0.0550 0.0532 0.0468 0.0457 0.0462 0.0611
1000 0.10 0.1349 0.1201 0.1139 0.1115 0.1088 0.1006 0.0990 0.0991 0.1160

0.05 0.0756 0.0638 0.0592 0.0572 0.0553 0.0493 0.0483 0.0488 0.0631
3000 0.10 0.1120 0.1082 0.1062 0.1057 0.1050 0.1018 0.1012 0.1011 0.1069

0.05 0.0593 0.0558 0.0544 0.0538 0.0534 0.0513 0.0510 0.0509 0.0561
9000 0.10 0.1037 0.1023 0.1017 0.1013 0.1010 0.1002 0.0998 0.0995 0.1014

0.05 0.0522 0.0512 0.0508 0.0506 0.0505 0.0499 0.0497 0.0497 0.0512

Table 4: Sizes of the test for different sample sizes and different values of a. Theoretical values
are 0.10 and 0.05.
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N a 0 0.01 0.05 0.2 0.4 0.6 0.8 1 2
200 -1/8 0.1546 0.1522 0.1546 0.1565 0.1971 0.2622 0.3977 0.5991 0.9965

0 0.1357 0.1335 0.1350 0.1378 0.1757 0.2391 0.3744 0.5800 0.9959
2/3 0.0854 0.0854 0.0859 0.0899 0.1185 0.1772 0.3053 0.5154 0.9928
1 0.0791 0.0787 0.0793 0.0832 0.1108 0.1679 0.2937 0.5037 0.9917
3/2 0.0803 0.0803 0.0819 0.0847 0.1128 0.1705 0.2956 0.5056 0.9912

400 -1/8 0.1210 0.1270 0.1229 0.1356 0.1963 0.3462 0.5804 0.8024 1.0000
0 0.1133 0.1189 0.1157 0.1284 0.1880 0.3373 0.5730 0.7976 1.0000
2/3 0.0911 0.0957 0.0933 0.1045 0.1612 0.3053 0.5449 0.7801 1.0000
1 0.0875 0.0915 0.0897 0.1002 0.1564 0.2993 0.5389 0.7762 0.9999
3/2 0.0876 0.0926 0.0903 0.1009 0.1579 0.3004 0.5401 0.7755 0.9999

600 -1/8 0.1097 0.1134 0.1134 0.1404 0.2307 0.4461 0.7224 0.8993 1.000
0 0.1057 0.1092 0.1090 0.1355 0.2253 0.4410 0.7188 0.8980 1.0000
2/3 0.0916 0.0951 0.0942 0.1206 0.2070 0.4213 0.7049 0.8913 1.0000
1 0.0888 0.0925 0.0915 0.1174 0.2032 0.4176 0.7021 0.8896 1.0000
3/2 0.0894 0.0925 0.0914 0.1178 0.2038 0.4178 0.7019 0.8895 1.0000

800 -1/8 0.1089 0.1103 0.1156 0.1359 0.2668 0.5416 0.8149 0.9437 1.0000
0 0.1058 0.1075 0.1127 0.1323 0.2629 0.5383 0.8131 0.9428 1.0000
2/3 0.0957 0.0974 0.1021 0.1211 0.2484 0.5255 0.8053 0.9399 1.0000
1 0.0938 0.0953 0.0996 0.1187 0.2460 0.5230 0.8040 0.9389 1.0000
3/2 0.0939 0.0954 0.1000 0.1184 0.2460 0.5233 0.8034 0.9390 1.0000

1000 -1/8 0.1115 0.1085 0.1154 0.1436 0.3074 0.6169 0.8710 0.9669 1.0000
0 0.1088 0.1062 0.1129 0.1407 0.3044 0.6145 0.8698 0.9664 1.0000
2/3 0.1006 0.0974 0.1044 0.1314 0.2935 0.6063 0.8652 0.9648 1.0000
1 0.0990 0.0958 0.1028 0.1295 0.2919 0.6044 0.8643 0.9643 1.0000
3/2 0.0987 0.0964 0.1024 0.1291 0.2923 0.6045 0.8641 0.9642 1.0000

9000 -1/8 0.1013 0.1019 0.1214 0.5032 0.9427 0.9969 0.9998 1.0000 1.0000
0 0.1010 0.1019 0.1212 0.5031 0.9426 0.9968 0.9998 1.0000 1.0000
2/3 0.1002 0.1009 0.1205 0.5022 0.9427 0.9967 0.9998 1.0000 1.0000
1 0.0998 0.1008 0.1203 0.5021 0.9426 0.9967 0.9998 1.0000 1.0000
3/2 0.0995 0.1007 0.1203 0.5023 0.9428 0.9967 0.9998 1.0000 1.0000

Table 5: Power corresponding to level 0.10 for different values of N and a and for different values
of the parameter (0, 0.05, 0.2, 0.4, 0.6, 0.8, 1, 2). Exact level corresponds to value 0
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N a 0 0.01 0.05 0.2 0.4 0.6 0.8 1 2
200 -1/8 0.0870 0.0863 0.0861 0.0889 0.1170 0.1677 0.2853 0.4883 0.9934

0 0.0724 0.0715 0.0720 0.0745 0.1002 0.1487 0.2638 0.4672 0.9922
2/3 0.0395 0.0400 0.0409 0.0428 0.0612 0.1008 0.2017 0.3990 0.9869
1 0.0364 0.0366 0.0373 0.0395 0.0567 0.0952 0.1935 0.3883 0.9853
3/2 0.0384 0.0387 0.0395 0.0416 0.0591 0.0991 0.1988 0.3942 0.9845

400 -1/8 0.0631 0.0678 0.0654 0.0726 0.1169 0.2391 0.4696 0.7265 0.9999
0 0.0579 0.0622 0.0604 0.0666 0.1101 0.2308 0.4611 0.7204 0.9999
2/3 0.0431 0.0467 0.0457 0.0508 0.0904 0.2047 0.4311 0.6978 0.9998
1 0.0410 0.0446 0.0438 0.0482 0.0873 0.2002 0.4267 0.6934 0.9998
3/2 0.0420 0.0457 0.0447 0.0495 0.0888 0.2026 0.4294 0.6946 0.9997

600 -1/8 0.0564 0.0585 0.0589 0.0761 0.1422 0.3313 0.6299 0.8538 1.0000
0 0.0535 0.0553 0.0561 0.0729 0.1377 0.3260 0.6256 0.8516 1.0000
2/3 0.0441 0.0457 0.0465 0.0622 0.1224 0.3073 0.6099 0.8432 1.0000
1 0.0427 0.0441 0.0452 0.0603 0.1199 0.3045 0.6070 0.8413 1.0000
3/2 0.0433 0.0450 0.0459 0.0610 0.1212 0.3067 0.6078 0.8410 1.0000

800 -1/8 0.0564 0.0560 0.0606 0.0735 0.1720 0.4279 0.7420 0.9155 1.0000
0 0.0544 0.0539 0.0580 0.0713 0.1687 0.4241 0.7397 0.9145 1.0000
2/3 0.0477 0.0472 0.0505 0.0630 0.1571 0.4118 0.7300 0.9101 1.0000
1 0.0466 0.0458 0.0492 0.0616 0.1547 0.4103 0.7281 0.9091 1.0000
3/2 0.0469 0.0463 0.0492 0.0626 0.1557 0.4116 0.7282 0.9084 1.0000

1000 -1/8 0.0572 0.0543 0.0603 0.0784 0.2058 0.5094 0.8155 0.9483 1.0000
0 0.0553 0.0528 0.0587 0.0763 0.2029 0.5069 0.8139 0.9479 1.0000
2/3 0.0493 0.0469 0.0518 0.0700 0.1931 0.4973 0.8084 0.9456 1.0000
1 0.0483 0.0462 0.0508 0.0691 0.1915 0.4949 0.8074 0.9449 1.0000
3/2 0.0488 0.0466 0.0513 0.0697 0.1926 0.4958 0.8078 0.9450 1.0000

9000 -1/8 0.5006 0.0512 0.0635 0.3873 0.9144 0.9951 0.9996 1.0000 1.0000
0 0.0505 0.0510 0.0633 0.3871 0.9143 0.9951 0.9996 1.0000 1.0000
2/3 0.0499 0.0503 0.0624 0.3862 0.9142 0.9951 0.9995 1.0000 1.0000
1 0.0497 0.0500 0.0622 0.3861 0.9142 0.9951 0.9996 1.0000 1.0000
3/2 0.0497 0.0500 0.0621 0.3859 0.9143 0.9951 0.9996 1.0000 1.0000

Table 6: Power corresponding to level 0.05 for different values of N and a and for different values
of the parameter (0, 0.05, 0.2, 0.4, 0.6, 0.8, 1, 2). Exact level corresponds to value 0
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