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Abstract

In Econometrics, imposing restrictions without assuming underlying distributions to modelize complex

realities is a valuable methodological tool. However, if a subset of restrictions were not correctly specified,

the usual test-statistics for correctly specified models tend to reject erronously a simple null hypothesis. In

this setting, we may say that the model suffers from misspecification. We study the behavior of empirical phi-

divergence test-statistics, introduced in Balakrishnan et al. (2015), by using the exponential tilted empirical

likelihood estimators of Schennach (2007), as a good compromise between the efficiency of the significance

level for small sample sizes and the robustness under misspecification.

JEL classification: C12; C14

Keywords and phrases: Empirical likelihood, Empirical phi-divergence test statistics, Model misspecifica-

tion, Phi-divergence measures.

1 Introduction

Let X1, ...,Xn be i.i.d. observations on a data vector X with unknown distribution function F having a finite

expectation, a non-singular variance-covariance matrix and a p-dimensional parameter of interest, θ ∈ Θ ⊂ R
p.

All the information about F and θ is available in the form of r ≥ p estimating functions of the data observation

X and the parameter θ

g(X , θ) = (g1(X, θ), ..., gr(X , θ))T . (1)

∗This paper was supported by the Spanish Grants MTM-2012-33740 and ECO-2011-25706.
†Corresponding author.
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The model has a true parameter θ0 satisfying the moment condition

EF [g(X, θ0)] = 0r, (2)

where EF [·] denotes expectation taken with respect to the distribution of F of X. The parameter θ has been

traditionally estimated using two-step efficient generalized method of moments estimators (GMM). This method

of estimation was introduced by Hansen (1982). In Hayashi (2000), for instance, all the estimation techniques

are presented and discussed in the GMM framework. A GMM estimator for θ0 is θ̂GMM , defined by

θ̂GMM = argmin
θ∈Θ

gT
n (X, θ)W−1

n (θ)gn(X , θ),

where

gn(X, θ) =
1

n

n∑

i=1

g(Xi, θ) (3)

and W n is a positive semidefinite matrix. Under some regularity conditions θ̂GMM is consistent for θ0 but in

general it is not efficient if r > p. The θ̂GMM will be asymptotically efficient if the limit of the matrix W n is

the matrix

S11(θ0) = EF

[
g(X, θ0)g

T (X, θ0)
]
. (4)

A feasible version of this efficient procedure is based on obtaining an initial consistent estimator θ̂ of θ0 by,

θ̂ = argmin
θ∈Θ

gT
n (X , θ)gn(X, θ)

and then to consider

θ̂GMM = argmin
θ∈Θ

gT
n (X , θ)Ŝ−1

11 (θ̂)gn(X, θ),

with

Ŝ11(θ) =
1

n

n∑

i=1

g(Xi, θ)g
T (X i, θ). (5)

An alternative to the GMM estimator is the (CU) continuous updating estimator obtained by

θ̂CU = argmin
θ∈Θ

gT
n (X, θ)Ŝ−1

11 (θ)gn(X, θ).

The GMM estimators have nice asymptotic properties (see Gallant and White (1988), Newey and McFadden

(1990)). They are consistent, asymptotically normal and asymptotically efficient under some regularity assump-

tions. However, several authors report that the two-step GMM estimator suffers from a substantial amount

of bias in finite samples (see Altonji and Segal (1996), Andersen and Sørensen (1996) and Hansen, Heaton

and Yaron (1996)). This encourages the increasing literature on alternatives to the GMM. Maybe the most

known alternative estimators to the GMM are: the continuously updated (CU) estimator of Hansen, Heaton

and Yaron (1996), the empirical likelihood estimator (EL) of Owen (1988, 1990), Qin and Lawless (1994), and

Imbens (1997), the exponential tilting (ET) estimator of Kitamura and Stutzer (1997) and Imbens, Spady and

Johnson (1998), the minimum Hellinger distance estimator of Kitamura, Otsa and Evdokimov (2013) and the

generalized empirical likelihood (GEL) estimators of Newey and Smith (2004). Although EL estimator is prefer-

able to the previous estimators in higher-order asymptotic properties, these properties hold only under correct
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specification of the moment condition, and the asymptotic behavior of EL estimator becomes problematic un-

der misspecification. The ET estimator is inferior to the EL estimator in relation to higher-order asymptotic

properties, but remain well behaved in presence of misspecification under relative weak regularity conditions.

To overcome this problem, Schennach (2007) suggests the exponentially tilted empirical likelihood (ETEL) that

shares the same higher-order property with EL under correct specification while maintaining usual asymptotic

properties such as
√
n-consistency and asymptotic normality under misspecification.

Qin and Lawless (1994) studied the empirical likelihood ratio statistic for testing simple null hypotheses based

on the EL estimators. Later Balakrishnan et al. (2015), using EL, considered some families of test statistics

based on φ-divergence measures: empirical φ-divergence test statistics, which contain the empirical likelihood

ratio test as a particular case. Some members of this family have a better behavior for small sample sizes in

the sense of the size and power of the test. The contribution of the current paper is to extend the empirical φ-

divergence test statistics replacing the EL estimators by the ET and ETEL estimators to study their robustness,

in particular under misspecification, which is their major advantage with respect to the previous ones.

In Section 2 we introduce the ETEL estimator given by Schennach (2007) which is obtained as a combination

of EL and ET procedures to deliver an estimator and we present its asymptotic properties. Section 3 is devoted

to introduce the empirical φ-divergence statistics for testing simple null hypotheses on the basis of the ETEL

estimator and we present their asymptotic distribution. Based on it, power approximations of the empirical

φ-divergence test statistics are derived. A rigorous study of the robustness of the empirical φ-divergence test

statistics is derived in Section 4 and the asymptotic distribution of the empirical φ-divergence is developed

under misspecified alternative hypotheses. In Section 5 a simulation study is presented and finally, in Section

6 some conclusions are given.

2 Exponentially tilted empirical likelihood

Let x1, ...,xn be a realization of X1, ...,Xn. The empirical likelihood function is given by

LFn
(x1, ...,xn) =

n∏

i=1

dF (xi) =

n∏

i=1

pi,

where pi = dF (xi) = P (X = xi). Only distributions with an atom of probability at each xi have non-zero

likelihood, and without consideration of estimating functions, the empirical likelihood function LFn
is seen to

be maximized, at X1 = x1, ...,Xn = xn, by the empirical distribution function

Fn (x) =

n∑

i=1

uiI(Xi ≤ x),

which is associated with the n-dimensional discrete uniform distribution

u = (u1, ..., un)
T = ( 1n ,

n
⌣· · ·, 1

n )
T .

Let

Fn,θ (x) =

n∑

i=1

pi (θ) I(Xi ≤ x),
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be an empirical distribution function associated with the probability vector

p(θ) = (p1(θ), ..., pn(θ))
T , pi (θ) > 0,

n∑

i=1

pi (θ) = 1, (6)

and

ℓEL(θ) =
n∑

i=1

log pi (θ) (7)

the kernel of the empirical log-likelihood function. The moment conditions given in (2) can be expressed from

an empirical point of view as

EFn,θ
[g(X , θ)] =

n∑

i=1

pi (θ) g(Xi, θ) = 0r, (8)

which are the so-called estimating equations. If we are interested in maximizing (7) subject to (8), by applying

the Lagrange multipliers method it is possible to reduce the dimension of the probability vector (n), to the

number of estimating functions (r), since

pEL,i (θ) =
1

n

1

1 + tTEL(θ)g(Xi, θ)
, i = 1, ..., n, (9)

where tEL(θ) is an r-dimensional vector to be determined by solving the non-linear system of r equations,

1

n

n∑

i=1

1

1 + tTEL(θ)g(Xi, θ)
g(Xi, θ) = 0r, (10)

s.t. tTEL(θ)g(Xi, θ) >
1− n

n
.

Maximizing expression (7) is equivalent to minimize the expression

− 1

n

n∑

i=1

log (npi (θ))

and this expression can be written as the Kullback–Leibler divergence measure between the probability vectors

u and p (θ), i.e.,

DKull (u,p (θ)) =
n∑

i=1

ui log
ui

pi (θ)
.

Therefore,

θ̂EL = argmin
θ∈Θ

DKull (u,pEL (θ))

subject to the restrictions given in (8).

If we consider DKull (p (θ) ,u), rather than DKull (u,p (θ)), we get the empirical exponential tilting (ET)

estimator, considered for instance in Kitamura and Stutzer (1997). In that case

θ̂ET = argmin
θ∈Θ

DKull (p (θ) ,u) .

where

DKull (p (θ) ,u) =
n∑

i=1

pi (θ) log (npi (θ)) (11)
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and

pET,i (θ) =
exp{tTET (θ)g(Xi, θ)}

n∑

j=1

exp{tTET (θ)g(Xj , θ)}
, i = 1, ..., n, (12)

where tET (θ) is an r-dimensional vector to be determined by solving the non-linear system of r equations

1

n

n∑

i=1

exp{tTET (θ)g(X i, θ)}g(Xi, θ) = 0r. (13)

The exponentially tilted empirical likelihood (ETEL) introduced by Schennach (2007) combines EL and ET

procedures to deliver an estimator. The ETEL estimator is defined as

θ̂ETEL = argmin
θ∈Θ

DKull (u,pET (θ)) , (14)

where

pET (θ) = (pET,1 (θ) , ..., pET,n (θ))
T , (15)

and pET,i (θ) is given by (12). Theorem 1 in Schennach establishes that the ETEL estimator of θ maximizes

the kernel of the empirical log-likelihood function given by

ℓETEL(θ) =

n∑

i=1

log pET,i (θ) = − log

(
1

n

n∑

i=1

exp
{
tTET (θ) [g(Xi, θ)− gn(X , θ)]

}
)
, (16)

where tET (θ) is obtained by solving (13) and gn(X, θ) was defined in (3). In Schennach (2007, page 659) the

following important relation for this paper is presented,


 gn(X, θ0)

0p


+


 S11 (θ0) S12 (θ0)

ST
12 (θ0) 0p×p




 tET (θ̂ETEL)

θ̂ETEL − θ0


 = op(n

−1/2), (17)

with S11 (θ0) given in (4), and

S12 (θ) = EF [GX(θ)] , (18)

GX(θ) =
∂

∂θT
g(X, θ). (19)

Based on (17), we have

θ̂ETEL − θ0 = V (θ0)S
T
12 (θ0)S

−1
11 (θ0) gn(X , θ0) + op(n

−1/2),

where

V (θ0) =
(
ST

12 (θ0)S
−1
11 (θ0)S12 (θ0)

)−1

, (20)

and

tET (θ̂ETEL) = −R (θ0) gn(X , θ0) + op(n
−1/2). (21)

where

R (θ0) = S−1
11 (θ0)− S−1

11 (θ0)S12 (θ0)V (θ0)S
T
12 (θ0)S

−1
11 (θ0) .
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Expression (21) is obtained from (17). Hence,

√
n(θ̂ETEL − θ0)

L−→
n→∞

N (0p,V (θ0)) ,

and
√
ntET (θ̂ETEL)

L−→
n→∞

N (0r,R (θ0)) .

In the following section we propose a new family of empirical test statistics for testing a simple null hypothesis,

when the unknown parameters are estimated using the ETEL estimator defined in (14) and then derive their

asymptotic distribution.

3 New family of empirical phi-divergence test statistics

The empirical likelihood ratio statistic for testing

H0: θ = θ0 vs. H1: θ 6= θ0 (22)

based on the ETEL estimator has the expression

G2
n(θ̂ETEL, θ0) = 2

n∑

i=1

log pET,i(θ̂ETEL)− 2

n∑

i=1

log pET,i(θ0) (23)

= −2n
(
ℓETEL(θ0)− ℓETEL(θ̂ETEL)

)
,

where ℓETEL(•) was defined in (16). Schennach (2007) established that under H0

G2
n(θ̂ETEL, θ0)

L→
n→∞

χ2
p.

It is clear that the empirical likelihood ratio test statistic given in (23) can be expressed as

G2
n(θ̂ETEL, θ0) = 2n

(
DKull (u,pET (θ0))−DKull

(
u,pET (θ̂ETEL)

))
,

where pET (θ) is (15).

We shall denote by Φ∗ the class of all convex functions φ : R
+ −→ R such that at x = 1, φ (1) = 0,

φ′′ (1) > 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) = p limu→∞
φ(u)
u . If instead of considering the Kullback–

Leibler divergence measure, we consider a general function φ ∈ Φ∗ to define the φ-divergence measure between

the probability vectors u and p (θ) as

Dφ (u,p (θ)) =

n∑

i=1

pi (θ)φ

(
ui

pi (θ)

)
, φ ∈ Φ∗, (24)

we obtain a new family of empirical test statistics for testing (22) given by

T φ
n (θ̂ETEL, θ0) =

2n

φ′′(1)

(
Dφ (u,pET (θ0))−Dφ

(
u,pET (θ̂ETEL)

))
, (25)

i.e.,

T φ
n (θ̂ETEL, θ0) =

2

φ′′(1)

(
n∑

i=1

npET,i (θ0)φ

(
1

npET,i (θ0)

)
−

n∑

i=1

npET,i(θ̂ETEL)φ

(
1

npET,i(θ̂ETEL)

))
.
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Moreover, the empirical likelihood ratio test statistic falls inside this new family since G2
n(θ̂ETEL,n, θ0) =

T φ
n (θ̂ETEL, θ0), with φ (x) = x log x− x+ 1.

It is well-known that the family of test statistics based on φ-divergence measures has some nice and optimal

properties for different inferential problems in relation to efficiency, but especially in relation to robustness; see

Pardo (2006) and Basu et al. (2011).

For every φ ∈ Φ∗ differentiable at x = 1, the function ϕ (x) ≡ φ(x)− (x− 1)φ′ (1) also belongs to Φ∗. Then,

we have

T φ
n (θ̂ETEL, θ0) = Tϕ

n (θ̂ETEL, θ0)

and ϕ has the additional property that ϕ′ (1) = 0. Since the two divergence measures are equivalent, without

any loss of generality we can consider the set Φ = Φ∗ ∩ {φ : φ′ (1) = 0}. In what follows, we shall assume that

φ ∈ Φ.

Another family of statistics for testing the hypotheses in (22) based only on the φ-divergence measure

between pET (θ̂ETEL) and pET (θ0), namely, Dφ

(
pET (θ̂ETEL),pET (θ0)

)
, is given by

Sφ
n(θ̂ETEL, θ0) =

2n

φ′′(1)
Dφ

(
pET (θ̂ETEL),pET (θ0)

)
(26)

=
2n

φ′′(1)

n∑

i=1

pET,i (θ0)φ

(
pET,i(θ̂ETEL)

pET,i (θ0)

)
,

where φ is a function satisfying the same conditions as function φ used to construct T φ
n (θ̂ETEL, θ0).

We shall refer to both families of test statistics as empirical φ-divergence test statistics. The first family

has been applied for the first time in Broniatowski and Keziou (2012) but using the EL estimator rather than

the ETEL estimator and only in the case that the parameter dimension is equal to the number of estimating

equations (p = r). Both families were applied in Balakrishnan et al. (2015) only with the EL estimator.

Condition 1 Let ‖·‖ denote any vector or matrix norm. We shall assume the following regularity conditions

(Theorem 1 in Qin and Lawless, 1994):

i) S11 (θ0) in (4) is positive definite, and for S12 (θ0) in (18), rank(S12 (θ0)) = p;

ii) There exists a neighborhood of θ0 in which ‖g (X, θ)‖3 is bounded by some integrable function of X;

iii) There exists a neighborhood of θ0 in which GX(θ), given in (19), is continuous and ‖GX(θ)‖ is bounded

by some integrable function of X;

iv) There exists a neighborhood of θ0 in which ∂GX(θ)
∂θ is continuous and

∥∥∥∂GX(θ)
∂θ

∥∥∥ is bounded by some integrable

function of X.

The asymptotic distribution of the empirical φ-divergence test statistics, T φ
n (θ̂ETEL, θ0) and S

φ
n(θ̂ETEL, θ0),

is given in the following theorem.

Theorem 2 Under Condition 1 and under the null hypothesis given in (22),

T φ
n (θ̂ETEL, θ0), Sφ

n(θ̂ETEL, θ0)
L−→

n→∞
χ2
p.
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Proof. We shall prove the result for Sφ
n(θ̂ETEL, θ0). In a similar way can be established the result for

T φ
n (θ̂ETEL, θ0).

Let us consider

t̂ETEL = tET (θ̂ETEL) and t0 = t(θ0).

We rename Dφ

(
pET (θ̂ETEL),pET (θ0)

)
= dφ (̂tETEL, t0) as a function of t̂ETEL and t0, i.e.

dφ(̂tETEL, t0) =
n∑

i=1

exp{tT0 g(xi, θ0)}∑n
j=1 exp{tT0 g(xj , θ0)}

φ


 exp{t̂TETELg(xi, θ̂ETEL)}
∑n

j=1 exp{t̂
T

ETELg(xj , θ̂ETEL)}

/
exp{tT0 g(xi, θ0)}∑n
j=1 exp{tT0 g(xj, θ0)}


 .

A second-order Taylor expansion of dφ(̂tETEL, t0) around (0r,0r) gives

dφ(̂tETEL, t0) = dφ (0r,0r) +
∂dφ (t1, t2)

∂tT1

∣∣∣∣
t1=t2=0r

t̂ETEL +
∂dφ (t1, t2)

∂tT2

∣∣∣∣
t1=t2=0r

t0

+
1

2
t̂
T

ETEL

∂2dφ (t1, t2)

∂t1∂t
T
1

∣∣∣∣
t1=t2=0r

t̂ETEL +
1

2
tT0

∂2dφ (t1, t2)

∂t2∂t
T
2

∣∣∣∣
t1=t2=0r

t0

+ t̂
T

ETEL

∂2dφ (t1, t2)

∂t2∂t
T
1

∣∣∣∣
t1=t2=0r

t0 + o(||̂tETEL||2) + o
(
||t0||2

)
.

It is easy to show that

dφ (0r,0r) = 0,
∂dφ (t1, t2)

∂tT1

∣∣∣∣
t1=t2=0r

=
∂dφ (t1, t2)

∂tT2

∣∣∣∣
t1=t2=0r

= 0T
r ,

∂2dφ (t1, t2)

∂t1∂t
T
1

∣∣∣∣
t1=t2=0r

=
∂2dφ (t1, t2)

∂t2∂t
T
2

∣∣∣∣
t1=t2=0r

= φ′′ (1) Ŝ11 (θ0) = φ′′ (1)S11 (θ0) + op(1r×r),

∂2dφ (t1, t2)

∂t2∂t
T
1

∣∣∣∣
t1=t2=0r

= −φ′′ (1) Ŝ11 (θ0) = −φ′′ (1)S11 (θ0) + op(1r×r).

Then, we have

Sφ
n(θ̂ETEL, θ0) =

2ndφ(̂tETEL, t0)

φ′′ (1)

= nt̂
T

ETELS11 (θ0) t̂ETEL + ntT0 S11 (θ0) t0 − 2nt̂
T

ETELS11 (θ0) t0 + o(n||̂tETEL||2) + o
(
n||t0||2

)
.

Denoting

h(t(θ)) =
1

n

n∑

i=1

exp{tT (θ)g(X i, θ)}g(Xi, θ),

from (13) the Taylor expansion of h(t0) around t0 = 0r is equal to

0r = h(0r) +

(
∂

∂tT0
h(t0)|t0=0r

)
t0 + o (||t0||1r) ,

where h(0r) = gn(X , θ0),
∂

∂tT0
h(t0)|t0=0r

= Ŝ11 (θ0) = S11 (θ0) + op(1r×r), and from it the following relation

is obtained

n1/2t0 = −S−1
11 (θ0)n

1/2gn(X, θ0) + op(1r), (27)

8



Taking into account (20), (21) and (27), it holds

nt̂
T

ETELS11 (θ0) t̂ETEL = ngT
n (X , θ0)R (θ0) gn(X , θ0) + op(1),

ntT0 S11 (θ0) t0 = ngT
n (X , θ0)S

−1
11 (θ0) gn(X, θ0) + op(1),

nt̂
T

ETELS11 (θ0) t0 = ngT
n (X , θ0)R (θ0) gn(X , θ0) + op(1),

and consequently

Sφ
n(θ̂ETEL, θ0) =

2ndφ(̂tETEL, t0)

φ′′ (1)

= ngT
n (X, θ0)S

−1
11 (θ0)S12 (θ0)V (θ0)S

T
12 (θ0)S

−1
11 (θ0) gn(X, θ0) + op(1)

= ngT
n (X, θ0)S

−1
11 (θ0)S12 (θ0)V (θ0)V

−1
(θ0)V (θ0)S

T
12

(θ0)S
−1

11
(θ0) gn(X, θ0) + op(1)

=
√
n(θ̂ETEL − θ0)

TV −1 (θ0)
√
n(θ̂ETEL − θ0) + op(1)

=
(√

nV −1/2 (θ0) (θ̂ETEL − θ0)
)T √

nV −1/2 (θ0) (θ̂ETEL − θ0) + op(1).

It is clear that
√
nV −1/2 (θ0) (θ̂ETEL − θ0)

L−→
n→∞

N (0, Ip),

where Ip is the p×p identity matrix. Now, applying Lemma 3 of Ferguson (1996), we readily obtain the desired

asymptotic distribution.

Based on the asymptotic null distribution presented in Theorem 2, we reject the null hypothesis in (22), with

significance level α, in favour of the alternative hypothesis, if Sφ
n(θ̂ETEL, θ0) > χ2

p,α (or if T φ
n (θ̂ETEL, θ0) >

χ2
p,α)), where χ

2
p,α is the (1− α)-th quantile of the chi-squared distribution with p degrees of freedom. In most

cases, the power function of this test procedure cannot be derived explicitly. In the following theorem, we

present an asymptotic result, which provides an approximation of the power of the empirical φ-divergence test

statistics described previously.

Theorem 3 Under the assumption that θ∗ 6= θ0 is the true parameter value

n1/2

√
sT
Tφ
n

(θ0, θ
∗)MTφ

n
(θ0, θ

∗)sTφ
n
(θ0, θ

∗)

(
φ′′(1)T φ

n (θ̂ETEL, θ0)

2n
− µφ(θ0, θ

∗)

)
L−→

n→∞
N (0, 1) ,

where

sTφ
n
(θ0, θ

∗) = E−1
Fθ∗

[
exp{τTg(X , θ0)}

]
EFθ∗

[
exp{τTg(X , θ0)}ψ

(
EFθ∗

[
exp{τTg(X , θ0)}

]

exp{τTg(X , θ0)}

)
g(X, θ0)

]
,

(28)

τ is the solution of

EFθ∗ [exp{τT g(X, θ0)}g(X, θ0)] = 0r,

ψ(x) = φ(x) − xφ′(x), (29)

MTφ
n
(θ0, θ

∗) = E−1
Fθ∗

[
exp{τTg(X, θ0)}g(X, θ0)g

T (X , θ0)
]
EFθ∗ [exp{2τT g(X, θ0)}g(X, θ0)g

T (X, θ0)])

× E−1
Fθ∗

[
exp{τTg(X , θ0)}g(X , θ0)g

T (X, θ0)
]
, (30)
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and

µφ(θ0, θ
∗) = E−1

Fθ∗

[
exp{τT g(X, θ0)}

]
EFθ∗

[
exp{τT g(X, θ0)}φ

(
E
[
exp{τTg(X, θ0)}

]

exp{τTg(X, θ0)}

)]
. (31)

Proof. We rename Dφ (u,pET (θ)) = dφ(u, t(θ)) as a function of u and t(θ), i.e.

dφ(u, t(θ)) =




n∑

j=1

exp{tT (θ)g(Xj , θ)}




−1
n∑

i=1

exp{tT (θ)g(Xi, θ)}φ




n∑

j=1

exp{tT (θ)g(Xj , θ)}

n exp{tT (θ)g(Xi, θ)}



,

and in particular for θ = θ0 and θ = θ̂ETEL, Dφ (u,pET (θ0)) = dφ(u, t0) and Dφ(u,pET (θ̂ETEL)) =

dφ(u, t̂ETEL). Since t0
P−→

n→∞
τ , we shall consider, on one hand, the first order Taylor expansion of dφ(u, t0)

around t0 = τ

dφ(u, t0) = dφ(u, τ ) +
∂dφ (u, t0)

∂tT0

∣∣∣∣
t0=τ

(t0 − τ ) + o(||t0 − τ ||),

where

∂dφ (u, t(θ))

∂t(θ)
=




n∑

j=1

exp{tT (θ)g(Xj , θ)}




−1
n∑

i=1

exp{tT (θ)g(Xi, θ)}ψ




n∑

j=1

exp{tT (θ)g(Xj , θ)}

n exp{tT (θ)g(Xi, θ)}




g(X i, θ),

and since t̂ETEL
P−→

n→∞
0r, we shall consider, on the other hand, the first order Taylor expansion of dφ(u, t̂ETEL)

around t̂ETEL = 0r

dφ(u, t̂ETEL) = o(||̂tETEL||).

Then,

dφ(u, t0)− dφ(u, t̂ETEL) = dφ(u, τ ) + sT
Tφ
n
(θ0, θ

∗)(t0 − τ ) + o(||t0 − τ ||) + o(||̂tETEL||), (32)

where sTφ
n
, given by (28), is such that

∂dφ (u, t0)

∂t0

∣∣∣∣
t0=τ

P−→
n→∞

sTφ
n
(θ0, θ

∗).

Denoting

h(t(θ)) =
1

n

n∑

i=1

exp{tT (θ)g(X i, θ)}g(Xi, θ),

the Taylor expansion of h(t0) around t0 = τ is equal to

0r = h(τ ) +

(
∂

∂tT0
h(t0)|t0=τ

)
(t0 − τ ) + o (||t0 − τ ||1r) ,

where

h(τ ) =
1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0),

∂

∂tT0
h(t0)|t0=τ =

1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0)g
T (Xi, θ0)

= EFθ∗

[
exp{τTg(X, θ0)}g(X, θ0)g

T (X , θ0)
]
+ op(1r×r),

10



and from it the following relation is obtained

t0 − τ = −E−1
Fθ∗

[
exp{τTg(X, θ0)}g(X, θ0)g

T (X , θ0)
]
(
1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0)

)
+ op(1r).

We obtain in virtue of the Central Limit Theorem

√
n (t0 − τ )

L−→
n→∞

N
(
0r,MTφ

n
(θ0, θ

∗)
)
,

where MTφ
n
(θ0, θ

∗) is (30), since

EFθ∗ [exp{τT g(X, θ0)}g(X, θ0)] = 0r,

and

√
n

(
1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0)

)
L−→

n→∞
N (0r,EFθ∗ [exp{2τTg(X , θ0)}g(X , θ0)g

T (X, θ0)]),

On the other hand, since

dφ(u, τ ) =




n∑

j=1

exp{τT g(Xj , θ0)}




−1
n∑

i=1

exp{τTg(X i, θ0)}φ




n∑

j=1

exp{τTg(Xj , θ0)}

n exp{τTg(X i, θ0)}



,

it holds

dφ(u, t0)
P−→

n→∞
µφ(θ0, θ

∗),

where µφ(θ0, θ
∗) is (31). Hence, from (32) it follows

√
n


dφ(u, t0)− dφ(u, t̂ETEL)− µφ(θ0, θ

∗)√
sT
Tφ
n

(θ0, θ
∗)MTφ

n
(θ0, θ

∗)sTφ
n
(θ0, θ

∗)


 L−→

n→∞
N (0, 1) ,

which is equivalent to the enunciated result.

Theorem 4 Under the assumption that θ∗ 6= θ0 is the true parameter value

n1/2

√
sT
Sφ
n

(θ0, θ
∗)MSφ

n
(θ0, θ

∗)sSφ
n
(θ0, θ

∗)

(
φ′′(1)Sφ

n(θ̂ETEL, θ0)

2n
− µφ(θ0, θ

∗)

)
L−→

n→∞
N (0, 1) ,

where

sSφ
n
(θ0, θ

∗) =


s1,Sφ

n
(θ0, θ

∗)

s2,Sφ
n
(θ0, θ

∗)


 , (33)

s1,Sφ
n
(θ0, θ

∗) = −R(θ∗)EFθ∗

[
φ′

(
EFθ∗

[
exp{τTg(X , θ0)}

]

exp{τTg(X , θ0)}

)
g(X, θ∗)

]
,

s2,Sφ
n
(θ0, θ

∗) = −E−1
Fθ∗

[
exp{τT g(X, θ0)}

]
E−1
Fθ∗

[
exp{τTg(X , θ0)}g(X, θ0)g

T (X, θ0)
]

× EFθ∗

[
exp{τTg(X , θ0)}ψ

(
EFθ∗

[
exp{τTg(X , θ0)}

]

exp{τTg(X , θ0)}

)
g(X , θ0)

]
,
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MSφ
n
(θ0, θ

∗) =


 S11(θ

∗) Σ12(θ
∗, θ0)

ΣT
12(θ

∗, θ0) Σ22(θ
∗, θ0)


 , (34)

Σ12(θ0, θ
∗) = EFθ∗

[
exp{τT g(X, θ0)}g(X, θ∗)gT (X , θ0)

]
,

Σ22(θ0, θ
∗) = EFθ∗

[
exp{2τTg(X , θ0)}g(X , θ0)g

T (X, θ0)
]
.

τ , ψ and µφ(θ0, θ
∗) as in Theorem 3.

Proof. Since t̂ETEL
P−→

n→∞
0r and t0

P−→
n→∞

τ , we shall consider the first order Taylor expansion of dφ(̂tETEL, t0)

around (̂tETEL, t0) = (0r, τ ),

dφ (̂tETEL, t0) = dφ(0r, τ ) +
∂dφ(̂tETEL, τ )

∂t̂
T

ETEL

∣∣∣∣∣̂
tETEL=0r

t̂ETEL +
∂dφ(0r, t0)

∂tT0

∣∣∣∣
t0=τ

(t0 − τ )

+ o(||̂tETEL||) + o(||t0 − τ ||),

where

dφ(0r, τ ) =




n∑

j=1

exp{τT g(Xj , θ0)}




−1
n∑

i=1

exp{τTg(X i, θ0)}φ




n∑

j=1

exp{τT )g(Xj , θ0)}

n exp{τTg(X i, θ0)}



,

∂dφ

(
t̂ETEL, t0

)

∂t̂ETEL

=




n∑

j=1

exp{t̂TETELg(Xj , θ̂ETEL)}




−1
n∑

i=1

exp{t̂TETELg(Xi, θ̂ETEL)}

× φ′




n∑

j=1

exp{tT0 g(Xj , θ0)}

exp{tT0 g(Xi, θ0)}
exp{t̂TETELg(Xi, θ̂ETEL)}

n∑

j=1

exp{t̂TETELg(Xj , θ̂ETEL)}




g(Xi, θ̂ETEL)

and

∂dφ

(
t̂ETEL, t0

)

∂t0
=




n∑

j=1

exp{tT0 g(Xj , θ0)}




−1
n∑

i=1

exp{tT0 g(Xi, θ0)}

× ψ




n∑

j=1

exp{tT0 g(Xj , θ0)}

exp{tT0 g(Xi, θ0)}
exp{t̂TETELg(Xi, θ̂ETEL)}

n∑

j=1

exp{t̂TETELg(Xj , θ̂ETEL)}




g(Xi, θ0),

with ψ(x) given by (29). Then,

dφ(̂tETEL, t0) = µφ(θ0, θ
∗) + s̄T

1,Sφ
n
(θ0, θ

∗ )̂tETEL + s̄T
2,Sφ

n
(θ0, θ

∗)(t0 − τ ) + o(||̂tETEL||) + o(||t0 − τ ||), (35)

where

s̄1,Sφ
n
(θ∗, θ0) = EFθ∗

[
φ′

(
EFθ∗

[
exp{τTg(X , θ0)}

]

exp{τTg(X , θ0)}

)
g(X, θ∗)

]
, (36)

s̄2,Sφ
n
(θ∗, θ0) = E−1

Fθ∗

[
exp{τTg(X, θ0)}

]
EFθ∗

[
exp{τTg(X, θ0)}ψ

(
EFθ∗

[
exp{τTg(X, θ0)}

]

exp{τTg(X, θ0)}

)
g(X, θ0)

]
,
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are such that

dφ(0r, τ )
P−→

n→∞
µφ(θ0, θ

∗),

∂dφ

(
t̂ETEL, t0

)

∂t̂ETEL

∣∣∣∣∣∣̂
tETEL=0r

P−→
n→∞

s̄1,Sφ
n
(θ∗, θ0),

∂dφ

(
t̂ETEL, t0

)

∂t0

∣∣∣∣∣∣
t0=τ

P−→
n→∞

s̄2,Sφ
n
(θ∗, θ0).

Denoting

h(t(θ)) =
1

n

n∑

i=1

exp{tT (θ)g(X i, θ)}g(Xi, θ),

the Taylor expansion of h(t0) around t0 = τ is equal to

0r = h(τ ) +

(
∂

∂tT0
h(t0)|t0=τ

)
(t0 − τ ) + o (||t0 − τ ||1r) ,

where

h(τ ) =
1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0),

∂

∂tT0
h(t0)|t0=τ =

1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0)g
T (Xi, θ0)

= EFθ∗

[
exp{τTg(X, θ0)}g(X, θ0)g

T (X , θ0)
]
+ op(1r×r),

and from it the following relation is obtained

t0 − τ = −E−1
Fθ∗

[
exp{τTg(X, θ0)}g(X, θ0)g

T (X , θ0)
]
(
1

n

n∑

i=1

exp{τTg(Xi, θ0)}g(X i, θ0)

)
+ op(1r).

From (21) its follows

t̂ETEL = −Rgn(X, θ∗) + op(n
−1/2),

and then

s̄T
1,Sφ

n
(θ∗, θ0 )̂tETEL + s̄T

2,Sφ
n
(θ∗, θ0)(t0 − τ )

= sT
1,Sφ

n
(θ∗, θ0)gn(X , θ̂ETEL) + sT

2,Sφ
n
(θ∗, θ0)

(
1

n

n∑

i=1

exp{τTg(X i, θ0)}g(Xi, θ0)

)

=
1

n

n∑

i=1

sT
1,Sφ

n
(θ∗, θ0)g(Xi, θ̂ETEL) + sT

2,Sφ
n
(θ∗, θ0) exp{τTg(X i, θ0)}g(Xi, θ0)

=
1

n

n∑

i=1

sT
Sφ
n
(θ∗, θ0)g̃(Xi, θ̂ETEL, θ0),

where sT
Sφ
n

(θ∗, θ0) is (33),

g̃(X i, θ
∗, θ0) =


 g(X i, θ

∗)

exp{τT g(Xi, θ0)}g(Xi, θ0)


 ,

13



and taking into account that

EFθ∗

[
sT
Sφ
n
(θ∗, θ0)g̃(X , θ̂ETEL, θ0)

]
= sT

Sφ
n
(θ∗, θ0)EFθ∗

[
g̃(X , θ̂ETEL, θ0)

]
= 0,

we obtain in virtue of the Central Limit Theorem

√
n√

sT
Sφ
n

(θ∗, θ0)V arFθ∗ [g̃(X i, θ
∗, θ0)] sSφ

n
(θ∗, θ0)

(
dφ(̂tETEL, t0)− µφ(θ0, θ

∗)
)

L−→
n→∞

N (0, 1),

which is equivalent to the theorems result.

Let

βTφ
n
(θ∗) = P (T φ

n (θ̂ETEL, θ0) > χ2
p,α|θ∗),

βSφ
n
(θ∗) = P (Sφ

n(θ̂ETEL, θ0) > χ2
p,α|θ∗),

be the exact power functions of T φ
n (θ̂ETEL, θ0) and S

φ
n(θ̂ETEL, θ0) respectively, with respect to the asymptotic

critical value of the test, at θ∗ 6= θ0, for a significance level α. Notice that in practice, since the exact

distributions of T φ
n (θ̂ETEL, θ0) and S

φ
n(θ̂ETEL, θ0) are unknown, β∗

Tφ
n

(θ∗) and β∗
Sφ
n

(θ∗) are also unknown. The

following result provides an approximation for βTφ
n
(θ∗) and βSφ

n
(θ∗).

Remark 5 From Theorem 3, we can present the approximation to the asymptotic power βTφ
n
(θ∗), at θ∗ 6= θ0,

of the empirical φ-divergence test T φ
n (θ̂ETEL, θ0) for a significance level α, as

β∗
Tφ
n
(θ∗) = 1− Φ

(
νTφ

n
(θ∗, θ0)

)
≃ βTφ

n
(θ), (37)

where Φ(·) is the standard normal distribution function and

νTφ
n
(θ∗, θ0) =

n1/2

√
sT
Tφ
n

(θ0, θ
∗)MTφ

n
(θ0, θ

∗)sTφ
n
(θ0, θ

∗)

(
φ′′(1)χ2

p,α

2n
− µφ(θ0, θ

∗)

)
.

If some alternative θ∗ 6= θ0 is the true parameter, then the probability of rejecting (22) with the rejection rule

T φ
n (θ̂ETEL, θ0) > χ2

p,α , for fixed significance level α, tends to one as n → ∞. Thus, the test is consistent in

the sense of Fraser (1957). In a similar way, an approximation to the asymptotic power function βSφ
n
(θ∗), at

θ∗ 6= θ0, for the empirical φ-divergence test Sφ
n(θ̂ETEL, θ0) can be obtained as

β∗
Sφ
n
(θ∗) = 1− Φ

(
νSφ

n
(θ∗, θ0)

)
, (38)

where

νSφ
n
(θ∗, θ0) =

n1/2

√
sT
Sφ
n

(θ0, θ
∗)MSφ

n
(θ0, θ

∗)sSφ
n
(θ0, θ

∗)

(
φ′′(1)χ2

p,α

2n
− µφ(θ0, θ

∗)

)
.

From the parametric statistical inference, β∗
Tφ
n

(θ∗) and β∗
Sφ
n

(θ∗) are known to be good approximations of βTφ
n
(θ∗)

and βSφ
n
(θ∗) respectively (see for instance, Menéndez et al. (1998)). Notice that in practice, since F is unknown,

β∗
Tφ
n

(θ∗) and β∗
Sφ
n

(θ∗) are also unknown. However, in practice β∗
Tφ
n

(θ∗) and β∗
Sφ
n

(θ∗) are consistently estimated,

by replacing expectations by sample means.
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To produce some less trivial asymptotic powers that are not all equal to 1, we can use a Pitman-type local

analysis, as developed by Le Cam (1960), by confining attention to n1/2-neighborhoods of the true parameter

values. A key tool to get the asymptotic distribution of the statistic T φ
n (θ̂ETEL, θ0) (or S

φ
n(θ̂ETEL, θ0)) under

such a contiguous hypothesis is Le Calm’s third lemma, as presented in Hájek and Sidák (1967). Instead of

relying on these results, we present in the following theorem a proof which is easy and direct to follow. This

proof is based on the results of Morales and Pardo (2001). Specifically, we consider the power at contiguous

alternative hypotheses of the form

H1,n : θn = θ0 + n−1/2∆, (39)

where ∆ is a fixed vector in R
p such that θn ∈ Θ ⊂ R

p.

Theorem 6 Under Condition 1 and H1,n in (39), the asymptotic distribution of the empirical φ-divergence

test statistics Sφ
n(θ̂ETEL, θ0) and T φ

n (θ̂ETEL, θ0) is a non-central chi-squared with p degrees of freedom and

non-centrality parameter

δ(θ0) = ∆TV −1(θ0)∆. (40)

i.e.

Sφ
n(θ̂ETEL, θ0) (or T

φ
n (θ̂ETEL, θ0))

L−→
n→∞

χ2
p(δ(θ0)),

where V (θ0) was defined in (20).

Proof. We can write

√
n(θ̂ETEL − θ0) =

√
n(θ̂ETEL − θn) +

√
n (θn − θ0) =

√
n(θ̂ETEL − θn) +∆.

Under H1,n, we have
√
n(θ̂ETEL − θn)

L−→
n→∞

N (0,V (θ0))

and
√
n(θ̂ETEL − θ0)

L−→
n→∞

N (∆,V (θ0)).

In Theorem 2, it has been shown that

Sφ
n(θ̂ETEL, θ0) =

(
V (θ0)

−1/2√n(θ̂ETEL − θ0)
)T

V (θ0)
−1/2√n(θ̂ETEL − θ0) + op(1).

On the other hand, we have

V (θ0)
−1/2√n(θ̂ETEL − θ0)

L−→
n→∞

N (V (θ0)
−1/2∆, Ip).

We thus obtain

Sφ
n(θ̂ETEL, θ0)

L−→
n→∞

χ2
p(δ(θ0)),

with δ(θ0) as in (40). A similar procedure can be followed for the proof of T φ
n (θ̂ETEL, θ0).
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4 Robustness of empirical φ-divergence test statistics

In Robust Statistics, two concepts of robustness can be distinguished, robustness with respect to contamination

and robustness with respect to model misspecification. We shall understand misspecification in the sense that

(2) is not verified for any θ ∈ Θ, in particular there is misspecification for the null hypothesis in (22) if

‖EF [g(X , θ0)]‖ > 0.

For brevity, in the sequel EF [·] is denoted by E[·].
It is well-known (see Imbens et al. (1998)) that the estimating equation with respect to θ for the EL and

ET estimators are given by
n∑

i=1

ρℓ

(
xi, θ̂ℓ, tℓ(θ̂ℓ)

)
= 0, ℓ ∈ {EL,ET },

with

ρEL (x, θ, tEL(θ)) =
tTEL(θ)Gx(θ)

1 + tTEL(θ)g(x, θ)
, (41)

ρET (x, θ, tEL(θ)) = tTET (θ)Gx(θ) exp
{
tTET (θ)g(x, θ)

}
. (42)

In relation to the ETEL estimators, from Theorem 2 of Schennach (2007) the following estimating equation

with respect to θ is obtained
n∑

i=1

ρETEL

(
xi, θ̂ETEL, tET (θ̂ETEL)

)
= 0,

with

ρETEL (x, θ, tET (θ)) = tTET (θ)Gx(θ)
(
exp

{
tTET (θ)g(x, θ)

}
− expET (θ)

)
, (43)

expET (θ) =
1

n

∑n
j=1 exp

{
tTET (θ)g(xj , θ)

}
, x ∈ {xj}nj=1.

The influence functions for the three types of estimators, EL, ET, ETEL, are proportional to the ρℓ (x, θ, tℓ(θ))

function, for ℓ ∈ {EL,ET,ETEL}, respectively, given in (41)-(43),

IF(x, θ̂ℓ, Fn,θ) ∝ ρℓ

(
x, θ̂ℓ, tℓ(θ̂ℓ)

)
,

where tETEL(θ) = tET (θ). Evaluating ρEL

(
x, θ̂EL, tEL(θ̂EL)

)
at perturbations of tEL(θ̂EL) 6= 0r, it can be-

come unbounded even if g(x, θ) is bounded, i.e. the influence function of θ̂EL can be unbounded. This is in con-

trast with the influence function of θ̂ET and θ̂ETEL, since ρET

(
x, θ̂EL, tEL(θ̂ET )

)
and ρETEL

(
x, θ̂EL, tEL(θ̂ETEL)

)

are affected to a much less extent by perturbations of tET (θ̂ℓ), ℓ ∈ {ET,ETEL}, respectively. At the limiting

values of the estimators, θ̂ℓ
P−→

n→∞
θ0, tℓ(θ̂ℓ)

P−→
n→∞

0r, for ℓ ∈ {EL,ET,ETEL}, respectively, the influence

functions for the three types of estimators, are identical,

IF(x, θ̂ℓ, Fn,θ0) = V (θ0)S
T
12 (θ0)S

−1
11 (θ0) g(x, θ0),

reflecting the first order equivalence of the estimators (for a detailed proof see Lemma 1 in Balakrishnan et al.

(2015)).
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Let T (•) be the functional associated the ETEL estimator of θ, i.e.

T (Fn,θ) = θ̂ETEL, T (Fn,θ0) = θ0,

and the test-statistic Sφ
n(θ̂ETEL, θ0), given in (26), defined now through its functional

Sφ
n(Fn,θ) =

2n

φ′′(1)
Dφ (pET (T (Fn,θ)) ,pET (θ0)) =

2n

φ′′(1)

n∑

i=1

pET,i (θ0)φ

(
pET,i (T (Fn,θ))

pET,i (θ0)

)
.

Theorem 7 The first and second order influence functions of Sφ
n(Fn,θ) are

IF(x, Sφ
n , Fn,θ) =

∂

∂θT
Sφ
n(Fn,θ)

∣∣
θ=T (Fn,θ)

IF(x, θ̂ETEL, Fn,θ),

and

IF2(x, S
φ
n , Fn,θ) =

2n

φ′′(1)
IFT (x, θ̂ETEL, Fn,θ)

n∑

i=1

φ′′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)
1

pET,i (θ0)

×
(

∂

∂T (Fn,θ)
pET,i (T (Fn,θ))

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)
IF(x, θ̂ETEL, Fn,θ)

+
2n

φ′′(1)

n∑

i=1

φ′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)
IF2(x, θ̂ETEL, Fn,θ).

Proof. Let

Fn,ε,θ = (1− ε)Fn,θ + εδx, δx(s) =





0, s < x,

1, s ≥ x.
,

the ε-perturbation of Fn,θ at x. The first and second order influence functions of Sφ
n(Fn,θ) are defined as

IF(x, Sφ
n , Fn,θ) =

∂

∂ε
Sφ
n(Fn,ε,θ)

∣∣
ε=0

=
2n

φ′′(1)

n∑

i=1

φ′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)
∂

∂ε
pET,i (T (Fn,ε,θ))

∣∣∣∣
ε=0

=
2n

φ′′(1)

n∑

i=1

φ′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)(
∂

∂ε
T (Fn,ε,θ)

∣∣∣∣
ε=0

)

=
∂

∂θT
Sφ
n(Fn,θ)

∣∣
θ=T (Fn,θ)

IF(x, θ̂ETEL, Fn,θ),
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and

IF2(x, S
φ
n , Fn,θ) =

∂2

∂ε2
Sφ
n(Fn,ε,θ)

∣∣
ε=0

=
2n

φ′′(1)

n∑

i=1

φ′′
(
pET,i (T (Fn,θ))

pET,i (θ0)

) ( ∂
∂εpET,i (T (Fn,ε,θ))

∣∣
ε=0

)2

pET,i (θ0)

+
2n

φ′′(1)

n∑

i=1

φ′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)
∂2

∂ε2
pET,i (T (Fn,θ))

∣∣∣∣
ε=0

=
2n

φ′′(1)

n∑

i=1

1

pET,i (θ0)
φ′′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)(
∂

∂ε
T T (Fn,ε,θ)

∣∣∣∣
ε=0

)

×
(

∂

∂T (Fn,θ)
pET,i (T (Fn,θ))

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)(
∂

∂ε
T (Fn,ε,θ)

∣∣∣∣
ε=0

)

+
2n

φ′′(1)

n∑

i=1

φ′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)(
∂2

∂ε2
T (Fn,ε,θ)

∣∣∣∣
ε=0

)

=
2n

φ′′(1)
IFT (x, θ̂ETEL, Fn,θ)

n∑

i=1

φ′′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)
1

pET,i (θ0)

×
(

∂

∂T (Fn,θ)
pET,i (T (Fn,θ))

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)
IF(x, θ̂ETEL, Fn,θ)

+
2n

φ′′(1)

n∑

i=1

φ′
(
pET,i (T (Fn,θ))

pET,i (θ0)

)(
∂

∂T T (Fn,θ)
pET,i (T (Fn,θ))

)
IF2(x, θ̂ETEL, Fn,θ),

Corollary 8 Under the null hypothesis of the test (22), the first and second order influence functions of the

test-statistic Sφ
n(θ̂ETEL, θ0) are given by

IF(x, Sφ
n , Fn,θ0) =

∂

∂θT
Sφ
n(Fn,θ)

∣∣
θ=θ0

IF(x, θ̂ETEL, Fn,θ0) = 0,

IF2(x, S
φ
n , Fn,θ0) = IFT (x, θ̂ETEL, Fn,θ0)

∂2

∂θ∂θT
Sφ
n(Fn,θ)

∣∣
θ=θ0

IF(x, θ̂ETEL, Fn,θ0).

In particular, for large samples

IF2(x, S
φ
n , Fn,θ0) = IFT (x, θ̂ETEL, Fn,θ0)V

−1 (θ0) IF(x, θ̂ETEL, Fn,θ0)

= gT (x, θ0)S
−1
11 (θ0)S12 (θ0)V (θ0)S

T
12 (θ0)S

−1
11 (θ0) g(x, θ0). (44)

Proof. Both equalities are obtained taking into account

∂

∂θT
Sφ
n(Fn,θ)

∣∣
θ=θ0

=
2nφ′ (1)

φ′′(1)

n∑

i=1

∂

∂θT
pET,i (θ)|θ=T (Fn,θ0

)=θ0
= 0T

p ,

since φ′ (1) = 0, and

IFT (x, θ̂ETEL, Fn,θ0)
∂2

∂θ∂θT
Sφ
n(Fn,θ)

∣∣
θ=T (Fn,θ0

)=θ0
IF(x, θ̂ETEL, Fn,θ0)

= IFT (x, θ̂ETEL, Fn,θ0)
2n

φ′′(1)

n∑

i=1

φ′′ (1)
1

pET,i (θ0)

∂

∂θ
pET,i (θ)

∣∣∣∣
θ=θ0

∂

∂θT
pET,i (θ)

∣∣∣∣
θ=θ0

IF(x, θ̂ETEL, Fn,θ0)

+
2n

φ′′(1)

n∑

i=1

φ′ (1)
∂

∂θT
pET,i (θ)

∣∣∣∣
θ=θ0

IF2(x, θ̂ETEL, Fn,θ).

18



Since

∂2

∂θ∂θT
Sφ
n(Fn,θ)

∣∣
θ=θ0

= 2n

n∑

i=1

∂

∂θ
log pET,i (θ)

∣∣∣∣
θ=θ0

pET,i (θ0)
∂

∂θT
log pET,i (θ)

∣∣∣∣
θ=θ0

=2V −1 (θ0) + op(1),

an alternative expression for the second order influence function, for large sample sizes, is (44).

Notice that ∂2

∂θ∂θT Sφ
n(Fn,θ)

∣∣
θ=θ0

is the same for any φ function and plugging any estimator into Sφ
n , either

EL, ET or ETEL, IF2(x, S
φ
n , Fn,θ0) remains unchanged.

A similar results of Theorem 7 and Corollary 8 can be enuntiated for the other family of test-statistics,

T φ
n (Fn,θ).

Let θ∗,ETEL denote the ETEL’s pseudo-true value associated with the misspecified model, i.e.

θ∗,ETEL = argmin log E
[
exp

{
tT (θ) (g(X , θ)− E [g(X, θ)])

}]
,

s.t. E
[
exp

{
tT (θ)g(X , θ)

}
g(X, θ)

]
= 0r.

The ETEL’s pseudo-true value can be interpreted as the best approximation to the true value, according to the

ETEL’s estimation method.

Condition 9 We shall assume the following regularity conditions (Schennach, 2007):

i) There exists a neighborhood of θ∗,ETEL in which ∂GX(θ)
∂θ is continuous and

∥∥∥∂GX(θ)
∂θ

∥∥∥ is bounded by some

integrable function of X;

ii) E
[
supθ∈Θ exp

{
tT (θ)g(X , θ)

}]
<∞ s.t. E

[
exp

{
tT (θ)g(X , θ)

}
g(X, θ)

]
= 0r;

iii) There exists a function of X, f(X), such that ‖GX(θ)‖,
∥∥∥∂GX(θ)

∂θ

∥∥∥ are bounded by f(X) and

E
[
supθ∈Θ exp

{
k1t

T (θ)g(X , θ)
}
fk2(X)

]
<∞, k2 = 1, 2, k2 = 0, 1, 2, 3, 4, s.t. E

[
exp

{
tT (θ)g(X , θ)

}
g(X, θ)

]
=

0r.

The ETEL estimator of θ∗,ETEL, θ̂ETEL, associated with the misspecified model, is obtained in the same

manner done for the true model, in fact in practice it is not possible to know when the model is misspecified.

By following Lemma 9 of Schennach (2007), it is convenient to study, apart from the vector of parameters of

interest θ and the Lagrange multipliers vector t, two additional auxiliary variables κ ∈ R
r and τ ∈ R in a joint

vector

β = (θT , tT ,κT , τ)T .

According to Theorem 10 of Schennach (2007), by calculating first the asymptotic distribution of β̂ETEL =

(θ̂
T

ETEL, t̂
T

ETEL, κ̂
T
ETEL, τ̂ETEL)

T , and subtracting thereafter the marginal distribution of θ̂ETEL, the procedure

to calculate the asymptotic distribution of θ̂
T

ETEL is simplified, under misspecification. The following auxiliary

function

ϕ(X,β) = (ϕT
1 (X,β),ϕT

2 (X,β),ϕT
3 (X ,β), ϕ4(X,β))T ,
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with

ϕ1(X,β) = exp{tTg(X , θ)}GT
X(θ)

(
κ+ tgT (X, θ)κ − t

)
+ τGT

X(θ)t,

ϕ2(X,β) =
(
τ − exp{tTg(X , θ)}

)
g(X, θ) + exp{tTg(X, θ)}g(X , θ)gT (X, θ)κ,

ϕ3(X,β) = exp{tTg(X , θ)}g(X, θ),

ϕ4(X,β) = exp{tTg(X , θ)} − τ,

defines β̂ETEL, as the solution of 1
n

∑n
i=1 ϕ(Xi,β) = 0p+2r+1, and the pseudo-true value

β∗,ETEL = (θT
∗,ETEL, t

T
∗,ETEL,κ

T
∗,ETEL, τ∗,ETEL)

T ,

as the solution of E [ϕ(X,β)] = 0p+2r+1. Under Condition 9, the asymptotic distribution of β̂ETEL is given by

√
n(β̂ETEL − β∗,ETEL)

L−→
n→∞

N
(
0p+2r+1,Γ

−1(β∗,ETEL)Φ(β∗,ETEL)
(
Γ−1(β∗,ETEL)

)T)
,

with

Γ(β∗,ETEL) = E

[
∂

∂β
ϕ(X,β)|β=β

∗,ETEL

]
,

Φ(β∗,ETEL) = E
[
ϕ(X ,β∗,ETEL)ϕ

T (X ,β∗,ETEL)
]
,

assuming that Γ(β∗,ETEL) is nonsingular. Based on this result,

√
n(θ̂ETEL − θ∗,ETEL) −→

n→∞
N
(
0p,Σ√

nθ̂ETEL

)
, (45)

with

Σ√
nθ̂ETEL

=
(
Ip 0(2r+1)×(2r+1)

)
Γ−1(β∗,ETEL)Φ(β∗,ETEL)

(
Γ−1(β∗,ETEL)

)T

 Ip

0(2r+1)×(2r+1)


 . (46)

Lemma 10 The first derivative of (12) is given by

∂

∂θ
pET,i (θ) = pET,i (θ)

[
GT

Xi
(θ)tET (θ)− exp−1

ET (θ)expET GT (θ)tET (θ)− K̂(θ)g(Xi, θ)
]
,

where expET (θ) was defined in (43),

expET GT (θ) =
1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}GT
Xi

(θ),

K̂(θ) =
(
expET GT tETgT (θ) + expET GT (θ)

)
expET ggT

−1
(θ),

expET GT tETgT (θ) =
1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}GT
Xi

(θ)tET (θ)g
T (Xi, θ),

expET ggT (θ) =
1

n

n∑

i=1

exp{tTg(X i, θ)}g(X i, θ)g
T (Xi, θ).

(For the proof see Appendix)
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Lemma 11 The first derivative of Dφ (u,pET (θ)) is given by

∂

∂θ
Dφ (u,pET (θ)) = exp−1

ET (θ)

[
1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}ψ
(

expET (θ)

exp{tTET (θ)g(Xi, θ)}

)
GT

Xi
(θ)tET (θ)

− exp−1
ET (θ)

1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}ψ
(

expET (θ)

exp{tTET (θ)g(Xi, θ)}

)
expET GT (θ)tET (θ)

−K̂(θ)
1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}ψ
(

expET (θ)

exp{tTET (θ)g(X i, θ)}

)
g(Xi, θ)

]
, (47)

and
∂

∂θ
Dφ (u,pET (θ))

P−→
n→∞

rTφ
n
(θ),

with ψ(x) given by (29),

rTφ
n
(θ) = E−1

[
exp{tTET (θ)g(X , θ)}

]
{r1(θ)− r2(θ)− r3(θ)} , (48)

r1(θ) = E


exp{tTET (θ)g(X, θ)}ψ



E
[
exp{tTET (θ)g(X , θ)

]
}

exp{tTET (θ)g(X, θ)}


GT

X(θ)


 tET (θ),

r2(θ) = E−1
[
exp{tTET (θ)g(X, θ)}

]
E


exp{tTET (θ)g(X, θ)}ψ



E
[
exp{tTET (θ)g(X, θ)

]

exp{tTET (θ)g(X, θ)}






× E
[
exp{tTET (θ)g(X , θ)}GT

X(θ)
]
tET (θ),

r3(θ) = K(θ)E


exp{tTET (θ)g(X, θ)}ψ



E
[
exp{tTET (θ)g(X , θ)

]

exp{tTET (θ)g(X, θ)}


 g(X , θ)


 ,

K(θ) =
{
E
[
exp{tTET (θ)g(X, θ)}GT

X(θ)t
T
ET (θ)g

T (X, θ)
]
+ E

[
exp{tTET (θ)g(X, θ)}GT

X(θ)
]}

× E−1
[
exp{tTET (θ)g(X , θ)}g(X, θ)gT (X , θ)

]
, (49)

tET (θ) is the solution in t of E
[
exp

{
tTg(X, θ)

}
g(X, θ)

]
= 0r.

Let Ŝ12(θ) =
1
n

∑n
i=1GXi

(θ) be a consistent estimator of S12(θ) given in (18). It is interesting that according

to formula (42) of Schennach (2007),

∂

∂θ
DKull (u,pET (θ)) = − ∂

∂θ
ℓETEL(θ)

= K̂(θ)

(
1

n

n∑

i=1

g(Xi, θ)

)
+

(
n∑

i=1

pET,i (θ)G
T
Xi

(θ)− ŜT
12(θ)

)
tET (θ)

= K̂(θ)

(
1

n

n∑

i=1

g(Xi, θ)

)
+

[
exp−1

ET (θ)

(
1

n

n∑

i=1

exp{tTg(X i, θ)}GT
Xi

(θ)

)
− ŜT

12(θ)

]
tET (θ),

which matches (47) with φ(x) = x log x− x+ 1.

(For the proof see Appendix)
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Lemma 12 The first derivative of Dφ (pET (θ) ,pET (θ0)) is given by

∂

∂θ
Dφ (pET (θ) ,pET (θ0)) = exp−1

ET (θ)
1

n

n∑

i=1

φ′
(
pET,i (θ)

pET,i (θ0)

)
expET GT (θ)tET (θ)

+ K̂(θ)
1

n

n∑

i=1

φ′
(
pET,i (θ)

pET,i (θ0)

)
g(Xi, θ)−

1

n

n∑

i=1

φ′
(
pET,i (θ)

pET,i (θ0)

)
GT

Xi
(θ)tET (θ), (50)

where
pET,i (θ)

pET,i (θ0)
=

exp{tTET (θ)g(Xi, θ)}
exp{tTET (θ)g(Xi, θ0)}

expET (θ0)

expET (θ)
,

and
∂

∂θ
Dφ (pET (θ) ,pET (θ0))

P−→
n→∞

qSφ
n
(θ, θ0),

with

qSφ
n
(θ, θ0) = q1(θ, θ0) + q2(θ, θ0)− q3(θ, θ0), (51)

q1(θ, θ0) = E−1
[
exp{tTET (θ)g(X, θ)}

]
E


φ′


 exp{tTET (θ)g(X , θ)}
exp{tTET (θ0)g(X , θ0)}

E
[
exp{tTET (θ0)g(X, θ0)

]

E
[
exp{tTET (θ)g(X, θ)

]






× E
[
exp{tTET (θ)g(X , θ)}GT

X(θ)
]
tET (θ),

q2(θ, θ0) = K(θ)E


φ′


 exp{tTET (θ)g(X , θ)}
exp{tTET (θ0)g(X , θ0)}

E
[
exp{tTET (θ0)g(X, θ0)

]

E
[
exp{tTET (θ)g(X, θ)

]


 g(X, θ)


 ,

q3(θ, θ0) = E


φ′


 exp{tTET (θ)g(X , θ)}
exp{tTET (θ0)g(X , θ0)}

E
[
exp{tTET (θ0)g(X, θ0)

]

E
[
exp{tTET (θ)g(X, θ)

]


GT

X(θ)


 tET (θ),

tET (θ) is the solution in t of of E
[
exp

{
tTg(X , θ)

}
g(X, θ)

]
= 0r.

The following two theorems evaluate the effect of a misspecified alternative hypothesis on the asymptotic

distribution of the empirical φ-divergence test-statistics.

Theorem 13 Under the assumption that the pseudo-true parameter value θ∗,ETEL is different from θ0

n1/2

√
rT
Tφ
n

(θ∗,ETEL)Σ√
nθ̂ETEL

rTφ
n
(θ∗,ETEL)

(
φ′′(1)T φ

n (θ̂ETEL, θ0)

2n
− µTφ

n
(θ0, θ∗,ETEL)

)
L−→

n→∞
N (0, 1) ,

where Σ√
nθ̂ETEL

is given by (46), rTφ
n
(θ∗,ETEL) by (48) and

µTφ
n
(θ0, θ∗,ETEL) = E−1

[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}

]

× E


exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}φ



E
[
exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)}

]

exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)}






− E−1
[
exp{tTET (θ0)g(X, θ0)}

]

× E


exp{tTET (θ0)g(X, θ0)}φ



E
[
exp{tTET (θ0)g(X, θ0)}

]

exp{tTET (θ0)g(X, θ0)}




 ,

with tET (θ) being the solution in t of E
[
exp

{
tT g(X, θ)

}
g(X , θ)

]
= 0r.
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Proof. The first order Taylor expansion of Dφ (u,pET (θ)) around θ∗,ETEL is

Dφ (u,pET (θ)) = Dφ (u,pET (θ∗,ETEL))+
∂

∂θ
Dφ (u,pET (θ))|

θ=θ∗,ETEL

(
θ − θ∗,ETEL

)
+o
(∥∥θ − θ∗,ETEL

∥∥) .

In particular, for θ = θ̂ETEL

Dφ

(
u,pET (θ̂ETEL)

)
= Dφ (u,pET (θ∗,ETEL)) +

∂

∂θ
Dφ (u,pET (θ))|

θ=θ∗,ETEL
(θ̂ETEL−θ∗,ETEL)

+ o
(∥∥∥θ̂ETEL−θ∗,ETEL

∥∥∥
)
.

According to Theorem 11 ∂
∂θDφ (u,pET (θ)) converges in probability to a fixed vector, and so

Dφ(u,pET (θ̂ETEL)) = Dφ(u,pET (θ∗,ETEL)) + rT
Tφ
n
(θ∗,ETEL) (θ̂ETEL − θ∗,ETEL) + o(||θ̂ETEL − θ∗,ETEL||).

From (45) it holds
√
n o(||θ̂ETEL − θ∗,ETEL||) = op(1). Thus, the random variables

√
n
(
Dφ(u,pET (θ̂ETEL))−Dφ(u,pET (θ∗,ETEL))

)
and rT

Tφ
n
(θ∗)

√
n(θ̂ETEL−θ∗,ETEL)

have the same asymptotic distribution, and since

φ′′(1)
2
√
n

(
T φ
n (θ̂ETEL, θ0)− T φ

n (θ∗,ETEL, θ0)
)
=

√
n
(
Dφ

(
u,pET (θ̂ETEL)

)
−Dφ (u,pET (θ∗,ETEL))

)
,

EFθ
∗,ETEL

[
φ′′(1)T φ

n (θ∗,ETEL, θ0)

2n

]
= µTφ

n
(θ0, θ∗,ETEL),

the desired result is obtained.

Theorem 14 Under the assumption that the pseudo-true parameter value θ∗,ETEL is different from θ0

n1/2

√
qT
Sφ
n

(θ∗,ETEL, θ0)Σ√
nθ̂ETEL

qSφ
n
(θ∗,ETEL, θ0)

(
φ′′(1)Sφ

n(θ̂ETEL, θ0)

2n
− µSφ

n
(θ0, θ∗,ETEL)

)
L−→

n→∞
N (0, 1) ,

where Σ√
nθ̂ETEL

is given by (46), qSφ
n
(θ∗,ETEL, θ0) by (51) and

µSφ
n
(θ0, θ∗,ETEL) = E−1

[
exp{tTET (θ0)g(X , θ0)}

]

× E


exp{tTET (θ0)g(X , θ0)}φ


exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}

exp{tTET (θ0)g(X , θ0)}

E
[
exp{tTET (θ0)g(X , θ0)}

]

E
[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}

]




 .

with tET (θ) being the solution in t of E
[
exp

{
tT g(X, θ)

}
g(X , θ)

]
= 0r.

Proof. It is omitted since similar steps of the proof for Theorem 13 are needed.

Corollary 15 Under the assumption that the pseudo-true parameter value θ∗,ETEL is different from θ0, the

asymptotic distribution of the likelihood ratio test-statistics is given by

n1/2

√
rT
G2(θ∗,ETEL)Σ√

nθ̂ETEL
rG2(θ∗,ETEL)

(
φ′′(1)G2

n(θ̂ETEL, θ0)

2n
− µG2(θ0, θ∗,ETEL)

)
L−→

n→∞
N (0, 1) ,

where

rG2(θ∗,ETEL) = rG,2(θ∗,ETEL)− rG,3(θ∗,ETEL), (52)
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with

rG,2(θ∗,ETEL) = K(θ∗,ETEL)E [g(X, θ∗,ETEL)] ,

rG,3(θ∗,ETEL) =
{
E−1

[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}

]

×E
[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}GT

X(θ∗,ETEL)
]
− ST

12(θ∗,ETEL)
}
tET (θ∗,ETEL),

K(θ∗,ETEL) is given by (49) and

µG2(θ0, θ∗,ETEL) = log
EFθ

∗,ETEL

[
exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)}

]

EFθ
∗,ETEL

[
exp{tTET (θ0)g(X, θ0)}

]

− EFθ
∗,ETEL

[
t
T
ET (θ∗,ETEL)g(X, θ∗,ETEL)− t

T
ET (θ0)g(X, θ0)

]
. (53)

Proof. With φ(x) = x log x− x+ 1 plugged into (29)

ψ



E
[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)

]

exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}


 =

exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)}
E
[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}

] − 1,

is obtained, and then according to Theorem 13, plugging

E


ψ



E
[
exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)

]

exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)}


GT

X(θ∗,ETEL)




= E−1
[
exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)

]
E
[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}GT

X(θ∗,ETEL)
]
− ST

12(θ∗,ETEL),

E


ψ



E
[
exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)

]

exp{tTET (θ∗,ETEL)g(X, θ∗,ETEL)}


 g(X , θ∗,ETEL)


 = −E [g(X, θ∗,ETEL)] ,

E


ψ



E
[
exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)

]

exp{tTET (θ∗,ETEL)g(X , θ∗,ETEL)}




 = 0,

into r
φ
1 (θ∗,ETEL), r

φ
2 (θ∗,ETEL), r

φ
3 (θ∗,ETEL) of Theorem 13 respectively, the desired result is obtained. The

expression of (53) is a particular case of µTφ
n
(θ0, θ∗,ETEL) with φ(x) = x log x− x+ 1.

Remark 16 From the previous two theorems, we can present an approximation of the power function under

misspecification βTφ
n
(θ∗,ETEL), at θ∗,ETEL 6= θ0, of the empirical φ-divergence test T φ

n (θ̂ETEL, θ0) for a signif-

icance level α, as

β∗
Tφ
n
(θ∗,ETEL) = 1− Φ

(
νTφ

n
(θ∗,ETEL, θ0)

)
≃ βTφ

n
(θ∗,ETEL),

where

νTφ
n
(θ∗,ETEL, θ0) =

n1/2

√
rT
Tφ
n

(θ∗,ETEL)Σ√
nθ̂ETEL

rTφ
n
(θ∗,ETEL)

(
φ′′(1)T φ

n (θ̂ETEL, θ0)

2n
− µTφ

n
(θ0, θ∗,ETEL)

)
.

In a similar way, an approximation to the asymptotic power function under misspecification βSφ
n
(θ∗,ETEL), at

θ∗,ETEL 6= θ0, for the empirical φ-divergence test T φ
n (θ̂ETEL, θ0) can be obtained as

β∗
Sφ
n
(θ∗,ETEL) = 1− Φ

(
νSφ

n
(θ∗,ETEL, θ0)

)
≃ βSφ

n
(θ∗,ETEL),
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where

νSφ
n
(θ∗,ETEL, θ0) =

n1/2

√
qT
Sφ
n

(θ∗,ETEL, θ0)Σ√
nθ̂ETEL

qSφ
n
(θ∗,ETEL, θ0)

(
φ′′(1)Sφ

n(θ̂ETEL, θ0)

2n
− µSφ

n
(θ0, θ∗,ETEL)

)
.

In practice, β∗
Tφ
n

(θ∗,ETEL) and β∗
Sφ
n

(θ∗,ETEL) are unknown but their consistent estimators are obtained by re-

placing the population mean by the sample mean.

Remark 17 The class of φ-divergence measures is a wide family of divergence measures but unfortunately there

are some classical divergence measures that are not included in this family of φ-divergence measures such as the

Rényi’s divergence or the Sharma and Mittal’s divergence. The expression of Rényi’s divergence is given by

Da
Rényi (pET (θ) ,pET (θ0)) =

1

a (a− 1)
log

n∑

i=1

pET (θ)a pET (θ0)
1−a , if a 6= 0, 1, (54)

with

D0
Rényi (pET (θ) ,pET (θ0)) = lim

a→0
DRényi (pET (θ) ,pET (θ0)) = DKull (pET (θ) ,pET (θ0))

and

D1
Rényi (pET (θ) ,pET (θ0)) = lim

a→1
DRényi (pET (θ) ,pET (θ0)) = DKull (pET (θ0) ,pET (θ)) .

This measure of divergence was introduced in Rényi (1961) for a > 0 and a 6= 1 and Liese and Vajda (1987)

extended it for all a 6= 1, 0. An interesting divergence measure related to Rényi divergence measure is the

Bhattacharya divergence defined as the Rényi divergence for a = 1/2 divided by 4. Other interesting example

of divergence measure that is not included in the family of φ-divergence measures is the divergence measures

introduced by Sharma and Mittal (1997).

In order to unify the previous divergence measures, as well as another divergence measures, Menéndez et al.

(1995, 1997) introduced the family of divergences called “(h, φ)-divergence measures” in the following way

Dh
φ (pET (θ) ,pET (θ0)) = h (Dφ (pET (θ) ,pET (θ0))) ,

where h is a differentiable increasing function mapping from
[
0, φ (0) + limt→∞

φ(t)
t

]
onto [0,∞), with h(0) = 0,

h′(0) > 0, and φ ∈ Φ. In Table 1, these divergence measures are presented, along with the corresponding

expressions of h and φ.

Divergence h (x) φ (x)

Rényi 1
a(a−1) log (a (a− 1)x+ 1) , a 6= 0, 1 xa−a(x−1)−1

a(a−1) , a 6= 0, 1

Sharma-Mittal 1
b−1

{
[1 + a (a− 1)x]

b−1
a−1 − 1

}
, b, a 6= 1 xa−a(x−1)−1

a(a−1) , a 6= 0, 1

Table 1: Some specific (h, φ)-divergence measures.
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Based on the (h, φ)-divergence measures we can define two new families of empirical (h, φ)-divergence test

statistics,

Sφ,h
n

(
θ̂ETEL, θ0

)
=

2n

φ′′(1)h′(0)
h
(
Dφ

((
pET

(
θ̂ETEL

)
,pET (θ0)

)))
(55)

and

T φ,h
n

(
θ̂ETEL, θ0

)
=

2n

φ′′(1)h′(0)

(
h (Dφ (u,pET (θ0)))− h

(
Dφ

(
u,pET

(
θ̂ETEL

))))
. (56)

The results obtained in this paper for the empirical φ-divergence test statistics T φ
n (θ̂ETEL, θ0) and S

φ
n(θ̂ETEL, θ0)

can be obtained for the empirical (h, φ)-divergence test statistics defined in (55) and (56).

5 Simulation study

The aim of this simulation study is to analyze the performance of the empirical φ-divergence test-statistics when

the ETEL estimator of an unknown parameter is considered. In this regard, robustness under misspecification

and efficiency are studied, based on the design of the simulation study given in Schennach (2007). Let X be an

unknown univariate random variable, with mean θ ∈ R and variance σ2 ∈ R
+ both unknown, but it is supposed

to be known that σ2 = θ2 + 1. The corresponding moment based vectorial estimating function is g(X, θ) = 02,

with g(X, θ) = (g1(X, θ), g2(X, θ))
T ,

g1(X, θ) = X − θ, (57)

g2(X, θ) = X2 − 2θ2 − 1. (58)

By modifying (58) to

g2(X, θ) = X2 − 2θ2 − δ, δ ∈ (−2θ2,∞)− {1}, (59)

we are considering a misspecified model, with δ being a tuning parameter for the model misspecification degree.

Since the correctly specified model has a variance equal to θ2 + δ with δ = 1, less variance than the correct one

is specified when δ ∈ (−2θ2, 1), while a bigger variance than the correct one is specified when δ ∈ (1,∞). The

EL estimator of θ is given by

θ̂EL = argmin
θ∈R

(
−

n∑
i=1

log pi,EL(θ)

)
,

with

pi,EL(θ) =
1

n

1

1 +
∑2

h=1 th,EL(θ)gh(xi, θ)
, i = 1, ..., n, (60)

t1,EL(θ), t2,EL(θ) s.t.

n∑

i=1

1

1 +
∑2

h=1 th,EL(θ)gh(xi, θ)
gr(xi, θ) = 0, r = 1, 2,

the ET estimator of θ by

θ̂ET = argmin
θ∈R

n∑
i=1

pET,i(θ) log (pET,i(θ)) ,

26



with

pi,ET (θ) =
exp

{∑2
h=1th,ET (θ)gh(xi, θ)

}

∑n
i=1 exp

{∑2
h=1th,ET (θ)gh(xi, θ)

} , i = 1, ..., n, (61)

t1,ET (θ), t2,ET (θ) s.t.
n∑

i=1

exp
{∑2

h=1th,ET (θ)gh(xi, θ)
}
gr(xi, θ) = 0, r = 1, 2,

and the ETEL of θ estimator by

θ̂ETEL = argmin
θ∈R

(
−

n∑
i=1

log pi,ETEL(θ)

)
,

with pi,ETEL(θ) = pi,ET (θ), i = 1, ..., n. The test-statistics T φλ
n (θ̂ℓ, θ0) and S

φλ
n (θ̂ℓ, θ0), with ℓ ∈ {EL,ET,ETEL},

and

φλ(x) =





1
λ(λ+1)

(
xλ+1 − x− λ(x − 1)

)
, λ ∈ R− {0,−1}

lims→0 φs(x) = x log x− x+ 1, λ = 0

lims→−1 φs(x) = − logx+ x− 1, λ = −1

,

are the so-called empirical power divergence based test-statistics of Cressie and Read (1984), valid in this new

setting for testing

H0 : θ = θ0 vs. H1 : θ 6= θ0, with θ0 = 0. (62)

The expressions of the empirical power divergence based test-statistics are

T φλ
n (θ̂ℓ, θ0) =





2
λ(1+λ)

(
n∑

i=1

(npi,ℓ(θ0))
−λ −

n∑
i=1

(
npi,ℓ(θ̂ℓ)

)−λ
)
, λ ∈ R− {0,−1}

2
n∑

i=1

log
(

pi,ℓ(θ̂ℓ)
pi,ℓ(θ0)

)
, λ = 0

2n

(
n∑

i=1

pi,ℓ(θ0) log (npi,ℓ(θ0))−
n∑

i=1

pi,ℓ(θ̂ℓ) log(npi,ℓ(θ̂ℓ))

)
, λ = −1

,

Sφλ
n (θ̂ℓ, θ0) =





2n
λ(1+λ)

(
n∑

i=1

pλ+1
i,ℓ

(θ̂ℓ)

pλ
i,ℓ

(θ0)
− 1

)
, λ ∈ R− {0,−1}

2n
n∑

i=1

pi,ℓ(θ̂ℓ) log
(

pi,ℓ(θ̂ℓ)
pi,ℓ(θ0)

)
, λ = 0

2n
n∑

i=1

pi,ℓ(θ0) log
(

pi,ℓ(θ0)

pi,ℓ(θ̂ℓ)

)
, λ = −1

,

with ℓ ∈ {EL,ET,ETEL}, pi,EL(θ) given by (60) and pi,ETEL(θ) = pi,ET (θ) by (61). It is worth of mentioning

that the empirical likelihood ratio test-statistic of Qin and Lawless (1994) matches the case of λ = 0 when the

EL estimator of θ is applied, i.e. T φ0
n (θ̂EL, θ0) = G2

n(θ̂EL, θ0).

For the study of the performance of T φλ
n (θ̂ℓ, θ0) and S

φλ
n (θ̂ℓ, θ0), for illustrative purposes, a subset of tuning

parameters of the empirical power divergence based test-statistics are considered, λ ∈ {−1,−0.5, 0, 23}. When

the model is correctly specified, the population’s distribution is simulated with a standard normal distribution,

i.e. X ∼ N (θ, θ2+ δ), with θ = 0 and δ = 1 (σ2 = 1). When the model is misspecified, two cases are considered,

by simulating the population distribution either throughX ∼ N (θ, θ2+δ), with θ = 0 and δ = 0.7 (σ2 = 0.7 < 1)

or θ = 0 and δ = 1.3 (σ2 = 1.3 > 1). The pseudo true value of the ETEL estimator is θ∗,ETEL = θ0 = 0 for

δ > 1
2 , and t∗,1,ETEL = 0, t∗,2,ETEL = 1−δ

2δ , so even being a misspecified model θ̂ETEL is a consistent estimator

of the true value of θ. Using R = 10, 000 replications, the following results are obtained.
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In Figure 1 the simulated cumulative distribution functions (CDF) of θ̂EL, θ̂ET and θ̂ETEL are shown with

a sample size of n = 1000, for the correctly specified model (δ = 1) as well as the two misspecified models

(δ ∈ {0.7, 1.3}). Since the sample size is very big, the three types of estimators exhibit almost the same

CDF. The gray color line of the figures indicates the theoretical distribution with correct specification, i.e. the

reference line to be compared. Under misspecification, as expected according to Schennach (2007), the most

robust estimator under misspecification is θ̂ET (it is closer to the gray line), the least robust θ̂EL (it is further

from the gray line), and θ̂ETEL tends to be between the two. In addition, θ̂ETEL tends to be in between the

two in efficiency with respect to the exact size of the asymptotic test for small sample sizes, no as efficient as

θ̂EL but more efficient than θ̂ET . In the same way, we would like to identify a test-statistic T φλ
n (θ̂ETEL, θ0) or

Sφλ
n (θ̂ETEL, θ0) with good performance at the same in robustness under misspecification and efficiency.

The simulations showed that in robustness under misspecification Sφλ
n (θ̂ℓ, θ0) is much worse than T φλ

n (θ̂ℓ, θ0),

with ℓ ∈ {EL,ET,ETEL}, for this reason the following figures are focussed only on T φλ
n (θ̂ℓ, θ0). In Figure 2 the

simulated CDFs of T φλ
n (θ̂ℓ, θ0) are plotted with the three types of estimators and a degree of misspecification

equal to δ = 1.3, while in Figure 3 are plotted with a degree of misspecification equal to δ = 0.7. From them, the

test-statistic T φλ
n (θ̂ℓ, θ0) with λ = −1 seems to be the most robust test-statistic under misspecification. Figure

4 has been plotted to compare the performance of T φλ
n (θ̂ℓ, θ0) with λ = −1 when different types of estimators

are plugged, ℓ ∈ {EL,ET,ETEL}. As expected, the most robust test-statistic is T
φ−1
n (θ̂ET , θ0), the worst one

T
φ−1
n (θ̂EL, θ0), and T

φ−1
n (θ̂ETEL, θ0) is in between. From Figures 2 and 3, for the misspecified model (either

with δ = 1.3 or δ = 0.7), the exact significance levels can be visually compared with respect to the 0.05 nominal

level, comparing the values of the black color curves just at χ2
0.05 = 3.84 in the abscissa axis, with respect to the

gray color curve. In this regard, the exact sizes for δ = 1.3 are better than for δ = 0.7: for ETEL estimators the

exact significance levels are 0.048 (λ = −1), 0.036 (λ = −0.5), 0.031 (λ = 0), 0.025 (λ = 2
3 ) when δ = 1.3 and

0.176 (λ = −1), 0.208 (λ = −0.5), 0.258 (λ = 0), 0.391 (λ = 2
3 ) when δ = 0.7. The figures of the simulations

for Sφλ
n (θ̂ℓ, θ0), with n = 1000, were omitted, but the exact sizes are as follows: the exact significance levels

are 0.017 (λ = −1), 0.017 (λ = −0.5), 0.017 (λ = 0), 0.017 ( λ = 2
3 ) when δ = 1.3 and 0.417 (λ = −1), 0.417

(λ = −0.5), 0.418 (λ = 0), 0.419 (λ = 2
3 ) when δ = 0.7.

Figure 6 and 7 represent, only for n = 100 for illustrative purposes, the asymptotic power based on the

power-divergence test statistics T φλ
n (θ̂ETEL, 0) and Sφλ

n (θ̂ETEL, 0), βTφ
n
(θ∗) and βSφ

n
(θ∗) when the nominal

significance level is α = 0.05. There are no substantial differences for a generic small or moderate samples size.

The test-statistics T φλ
n (θ̂ETEL, 0) and S

φλ
n (θ̂ETEL, 0), with λ = −1, exhibit the exact significance levels closest

to the nominal significance level, 0.058 for T φλ
n (θ̂ETEL, 0) and 0.052 for Sφλ

n (θ̂ETEL, 0). In the results obtained

in Balakrishnan et al. (2015) Sφλ
n (θ̂EL, θ0) was found out to be much more efficient than T φλ

n (θ̂EL, θ0) with

small sample sizes, for being Sφλ
n (θ̂EL, θ0) closer to the nominal level than T φλ

n (θ̂EL, θ0). Such a difference is

less pronounced for T φλ
n (θ̂ETEL, θ0) and S

φλ
n (θ̂ETEL, θ0). The performance of T φλ

n (θ̂EL, θ0) with λ = −1 is then

relatively good in efficiency with small sample sizes as well as in robustness under misspecification (with small

and big sample sizes).

The approximation to the asymptotic power βTφ
n
(θ∗), at θ∗ 6= 0, of the power-divergence test T φλ

n (θ̂ETEL, 0)
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Figure 1: Cumulative distribution function of the three types of estimators, for n = 1000, when the model is

correctly specilied (top), and is misspecified (δ = 0.7, δ = 1.3).
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Figure 2: Cumulative distribution function of the empirical power divergence based test-statistics with the three

types of estimators, for n = 1000, when the model is misspecified with δ = 1.3.
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Figure 3: Cumulative distribution function of the empirical power divergence based test-statistics with the three

types of estimators, for n = 1000, when the model is misspecified with δ = 0.7.
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Figure 4: Cumulative distribution function of T
φ−1
n with the three types of estimators, for n = 1000, when the

model is correctly specilied (top), and is misspecified (δ = 0.7, δ = 1.3).
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for the correctly specified model, with a significance level α, is according to Remark 5 and doing some algebraic

manipulations, β∗
T

φλ
n

(θ∗) = 1− Φ
(
ν
T

φλ
n

(θ∗, 0)
)
, where

ν
T

φλ
n

(θ∗, 0) =

(
1

n
sT
T

φλ
n

(θ∗, 0)MTn
(θ∗, 0)s

T
φλ
n

(θ∗, 0)

)− 1
2

(
χ2
p,α

2n
− µφλ

(θ∗, 0)

)
,

µ
T

φλ
n

(θ∗, 0) =





1
λ(λ+1)


 exp

{
λ(λ+1)θ∗2

2(1−λθ∗2)

}

√
(1−λθ∗2)(θ∗2+1)λ

− 1


 , λ ∈ R− {0,−1}

θ∗2 − 1
2 log

(
1 + θ∗2

)
λ = 0

1
2 log

(
1 + θ∗2

)
λ = −1

,

sT
T

φλ
n

(θ∗, 0)MTn
(θ∗, 0)s

T
φλ
n

(θ∗, 0) =
θ∗2 exp

{
θ∗2
(

λ(λ+1)
1−λθ∗2 + 1

2θ∗2+1

)}

√
(2θ∗2 + 1)5 (1− λθ∗2)3 (θ∗2 + 1)λ−1

×
(
1 (λ+ 2)θ∗

)

 2θ∗4 + 4θ∗2 + 1 − θ

2θ2+1

(
θ∗4 + 3θ∗2 + 1

)

− θ∗

2θ∗2+1

(
θ∗4 + 3θ∗2 + 1

)
1

2(2θ∗2+1)2

(
6θ∗8 + 16θ∗6 + 19θ∗4 + 8θ∗2 + 1

)




 1

(λ+ 2)θ∗


 .

In particular, Figure 5 shows the approximated and exact asymptotic powers of T φλ
n (θ̂ETEL, 0) when λ = −1,

β∗
T

φ
−1

n

(θ∗) and β
T

φ
−1

n

(θ∗), for two sample sizes n = 100 and n = 200. The approximation is quite good for the

values not very close to θ0 = 0, θ∗ /∈ (−0.11, 0.11) when n = 100, and θ∗ /∈ (−0.075, 0.075) when n = 200.
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Figure 5: β∗
T

φ
−1

n

(θ∗) and β
T

φ
−1

n

(θ∗, 0) when the ETEL estimator is plugged.
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6 Conclusion

This paper introduces empirical φ-divergence test-statistics using exponentially tilted empirical likelihood esti-

mators, as alternative to the empirical likelihood ratio test-statistic. It is shown that these test-statistics follow

the same efficiency and robustness patterns of the corresponding estimators, empirical likelihood estimators,

exponential tilted estimators and exponentially tilted empirical likelihood estimators. This justifies the practical

choice of the exponentially tilted empirical likelihood estimator to be plugged into the empirical φ-divergence

test-statistics, for being a good compromise between the efficiency of the exact size of the test for small or mod-

erate sample sizes and the robustness under model misspecification. According to the results of the simulation

study, the modified empirical likelihood ratio test

T φ−1
n (θ̂ETEL, θ0) = 2n

(
n∑

i=1

pi,ET (θ0) log (npi,ET (θ0))−
n∑

i=1

pi,ET (θ̂ETEL) log(npi,ET (θ̂ETEL))

)
,

exhibits, by far, the best performance.

A possible future research could include a correction of the critical value for T
φ−1
n (θ̂ETEL, θ0) test-statistic.

For instance, in the line of Lee (2014), bootstrap critical values of T
φ−1
n (θ̂ETEL, θ0) could be studied to be

compared with the Wald type test-statistic’s bootstrap critical values proposed in the aforementioned paper.
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Appendix

Proof of Lemma 10. Taking into account (12),

∂

∂θ
pET,i (θ) =

∂

∂θ

1

n

exp{tTET (θ)g(X i, θ)}
expET (θ)

=
1

n

exp{tTET (θ)g(Xi, θ)}
[

∂
∂θ

(
tTET (θ)g(X i, θ)

)
expET (θ)− ∂

∂θ expET (θ)
]

exp2ET (θ)

= pET,i (θ)

[
∂

∂θ

(
tTET (θ)g(X i, θ)

)
− exp−1

ET (θ)
∂

∂θ
expET (θ)

]
,

where

∂

∂θ

(
tTET (θ)g(X i, θ)

)
= GT

Xi
(θ)tET (θ) +

∂

∂θ
tTET (θ)g(Xi, θ)

= GT
Xi

(θ)tET (θ)−
(
1

n

∑n
i=1 exp{tET (θ)g(Xi, θ)}GT

Xi
(θ)
(
tET (θ)g

T (X i, θ) + Ir

))

×
(
1

n

∑n
i=1 exp{tET (θ)g(Xi, θ)}g(Xi, θ)g

T (X i, θ)

)−1

g(Xi, θ),

∂

∂θ
tTET (θ) = −

(∑n
i=1pET,i (θ)G

T
Xi

(θ)
(
tET (θ)g

T (Xi, θ) + Ir

))

×
(∑n

i=1pET,i (θ) g(Xi, θ)g
T (X i, θ)

)−1

= −
(
1

n

∑n
i=1 exp{tTET (θ)g(Xi, θ)}GT

Xi
(θ)
(
tET (θ)g

T (Xi, θ) + Ir

))

×
(
1

n

∑n
i=1 exp{tTET (θ)g(X i, θ)}g(Xi, θ)g

T (Xi, θ)

)−1

according to (41) of Schennach (2007), and

∂

∂θ
expET (θ) =

1

n

n∑

i=1

exp{tTET (θ)g(X i, θ)}
∂

∂θ

(
tTET (θ)g(Xi, θ)

)

=

(
1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}GT
Xi

(θ)

)
tET (θ)

−
(
1

n

∑n
i=1 exp{tTET (θ)g(Xi, θ)}GT

Xi
(θ)
(
tET (θ)g

T (X i, θ) + Ir

))

×
(
1

n

∑n
i=1 exp{tTET (θ)g(Xi, θ)}g(X i, θ)g

T (X i, θ)

)−1
(
1

n

n∑

i=1

exp{tTET (θ)g(X i, θ)}g(X i, θ)

)

= expET GT (θ)tET (θ)− K̂(θ)expET g(θ)

= expET GT (θ)tET (θ), (63)

with

expET g(θ) =
1

n

n∑

i=1

exp{tTET (θ)g(Xi, θ)}g(Xi, θ) = 0r

from (13). Using the previous notation

∂

∂θ

(
tTET (θ)g(X i, θ)

)
= GT

Xi
(θ)tET (θ)− K̂(θ)g(Xi, θ), (64)
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and replacing (64) and (63) in the expression of ∂
∂θpET,i (θ), the desired result is obtained.

Proof of Lemma 11. Taking into account the expression of (25),

∂

∂θ
Dφ (u,pET (θ)) =

1

n

n∑

i=1

∂

∂θ
(npET,i (θ))ψ

(
1

npET,i (θ)

)
.

By plugging ∂
∂θpET,i (θ) from Theorem 10 into the previous expression, (47) is obtained. Since according to

the weak law of large numbers 1
n

∑n
i=1h(Xi)

P−→
n→∞

E[h(X)] for any integrable function h : Rp −→ R, taking the

approppriate functions in the role of h, the limiting value of ∂
∂θDφ (u,pET (θ)) is obtained.

39



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 
Tλ(EL)

Tλ(ET)

Tλ(ETEL)

δ=0.7

λ=−0.5



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 
Tλ(EL)

Tλ(ET)

Tλ(ETEL)

λ=2/3

δ=0.7



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 
Tλ(EL)

Tλ(ET)

Tλ(ETEL)

λ=0

δ=0.7



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 
Tλ(EL)

Tλ(ET)

Tλ(ETEL)

λ=−0.5

δ=1.3



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 
Tλ(EL)

Tλ(ET)

Tλ(ETEL)

λ=2/3

δ=1.3



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 
Tλ(EL)

Tλ(ET)

Tλ(ETEL)

λ=0

δ=1.3


	1 Introduction
	2 Exponentially tilted empirical likelihood
	3 New family of empirical phi-divergence test statistics
	4 Robustness of empirical -divergence test statistics
	5 Simulation study
	6 Conclusion

