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Abstract

In this paper we propose a generalization of the concept of the local property for
divergence measures. These new measures will be called g-local divergence measures,
and we study some of their properties. Once this family is defined, a characterization
based on Ling’s Theorem is given. From this result, we obtain the general form of
g-local divergence measures as a function of the divergence in each element of the
reference set; this study is divided in three parts according to the cardinality of the
reference set: finite, infinite countable or non-countable. Finally, we study the problem
of componible divergence measures as a dual concept of g-local divergence measures.

Keywords: Divergence measures, local property, Ling’s Theorem, com-
ponibility.

1 Introduction

Recently, Prof. Montes [10, 11] has developed the concept of divergence measures between
two fuzzy subsets. Her approach is based on three axioms modelling the minimal require-
ments for a function that tries to measure the separation or difference between two fuzzy
subsets.
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From this first definition, it is possible to define measures of divergence between two fuzzy
partitions [13] and, at the present time, the applications of these measures to the Theory of
fuzzy questionnaires are being studied [14]. On the other hand, divergence measures have
revealed themselves as an interesting tool in Decision Making [9].

However, an important problem in the theory of divergence measures derives from the
fact that the conditions of divergence measure are too general and thus, the class of all
divergence measures is very wide. As a consequence, it is rather hard to find properties
beyond the axioms. This leads us to work with different subclasses of divergence measures,
considering additional properties.

Among all these subclasses, the most important ones from a mathematical point of view
and also in terms of the interpretation, are the so-called local and componible divergence
measures.

Unfortunately, the local (resp. componibility) property is too restrictive in many prob-
lems. The goal of this paper is to define a new property, that we will call g-local property
for generalized local property, extending the local property and increasing the practical situ-
ations in which it can be applied, but keeping at the same time its mathematical properties.

The paper is organized as follows: next section is devoted to preliminary concepts and
results that we will need in the rest of the paper. Then, in Section 3 we define g-local
divergence measures and we study some of their properties; we also give a representation
theorem based on Ling’s theorem. In Sections 4 and 5 we study the consequences of this
result for finite, infinite countable and infinite non-countable references. In Section 6 we
deal with the problem of componibility. Sections 7 and 8 are devoted to conclusions, open
problems and acknowledgements.

2 Basic concepts

Let us start with the basic concepts and results that will be needed throughout the paper.
In the sequel, we will use the following notations: Ω is the reference set; crisp subsets of Ω
are denoted by capital letters A,B and so on, while fuzzy subsets are denoted by Ã, B̃, ...;
the set of all crisp subsets of Ω is denoted by P(Ω) and the set of all fuzzy subsets by P̃(Ω).
The membership function of the fuzzy subset Ã at the point x ∈ Ω will be denoted by Ã(x).
We will also consider the standard fuzzy union, fuzzy intersection and fuzzy complementary,
i.e.

(Ã ∪ B̃)(x) = max{Ã(x), B̃(x)},
(Ã ∩ B̃)(x) = min{Ã(x), B̃(x)},

Ãc(x) = 1− Ã(x).

We will denote by Ẽ the equilibrium subset, i.e. the subset such that Ẽ(x) = 1
2
, ∀x ∈ Ω.

Finally, we will denote by ÃC the fuzzy subset defined for any C ∈ P(Ω) by

ÃC(x) =

{
Ã(x) if x ∈ C
0 otherwise

}
= Ã ∩ C(x), ∀x ∈ Ω.
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Definition 1 Let Ã be a fuzzy subset of Ω. We will call the crisp subset closest to Ã the
subset given by:

NÃ(x) =

{
1 if Ã(x) ≥ 1

2

0 otherwise

Definition 2 [12] Let Ω be a reference set. A function D : P̃(Ω) × P̃(Ω) 7→ R is called
a divergence measure between two fuzzy subsets (or divergence measure) if and
only if it satisfies the following conditions for all Ã, B̃, C̃ ∈ P̃(Ω):

1. D(Ã, Ã) = 0.

2. D(Ã, B̃) ≥ 0.

3. D(Ã, B̃) ≥ min{D(Ã ∪ C̃, B̃ ∪ C̃), D(Ã ∩ C̃, B̃ ∩ C̃)}.

First and second axioms are obvious. The third axiom models the fact that when joining
(resp. intersecting) both Ã and B̃ with another fuzzy subset C̃, the divergence should
decrease, as Ã ∪ C̃ and B̃ ∪ C̃ (resp. Ã ∩ C̃ and B̃ ∩ C̃) are more similar than Ã and B̃
(see Figure 1 below for a graphical interpretation of this axiom, in which the divergence is
defined as the area between the fuzzy subsets).

A=AUC

C=BUC

B

Figure 1: A graphical interpretation of third axiom of divergence measures.

Definition 3 [12] Let Ω be a finite reference set. A divergence measure D is said to be a
local divergence measure if and only if

D(Ã, B̃)−D(Ã ∪ Ωi, B̃ ∪ Ωi) = g(Ã(xi), B̃(xi)), ∀xi ∈ Ω,

where

Ωi(x) =

{
1 if x = xi

0 otherwise

It must be noted that in Definition 3, Ω is supposed to be a finite set. An extension of
this definition for infinite reference sets can be found in [6].

For this special class of divergence measures the following result can be proved ([10, 12]):
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Proposition 1 If we have a finite set Ω, then D is a local divergence measure if and only
if there exists an application h : [0, 1]× [0, 1] 7→ R such that

D(A,B) =
n∑

i=1

h(A(xi), B(xi)), (1)

satisfying the following conditions:

• h(x, y) = h(y, x), ∀x, y ∈ [0, 1];

• h(x, x) = 0, ∀x ∈ [0, 1];

• h(·, y) is a non-increasing function on [0,y] and non-decreasing on [y,1].

Remark that for local divergence measures each coordinate is independent of the others
and they are all equally important.

It is straightforward to see that the conditions for h in Proposition 1 are the same as
those for divergence measures over a single reference set. Then, we conclude that when
a divergence measure D presents the local property, it can be decomposed as the sum of
the divergences of the coordinates or, in other words, D can be defined from a divergence
measure h applied over each coordinate.

Definition 4 [8] A binary operator ⊥ : [0, 1] × [0, 1] 7→ [0, 1] is called a t-conorm if and
only if it satisfies the following conditions:

1. 0⊥x = x, ∀x ∈ [0, 1], 1⊥1 = 1. (Boundary conditions).

2. u⊥v = v⊥u

3. If u < u′ then u⊥v ≤ u′⊥v.

4. ⊥ is associative.

A binary operator > : [0, 1]× [0, 1] 7→ [0, 1] is called a t-norm if it satisfies conditions 2, 3
and 4, and 1 is substituted by

1’- 1>x = x, ∀x ∈ [0, 1], 0>0 = 0.

The following result, based on Ling’s theorem [7], characterizes t-conorms:

Theorem 1 [3] Let D = {(αi, βi) | i ∈ N ⊂ N} be a countable family of open disjoint
subintervals of [0,1], and let F = {fi : [αi, βi] 7→ R | i ∈ N} be a family of continuous and
strictly increasing functions with fi(αi) = 0. Then, the map ⊥ defined on [0, 1]×[0, 1] = [0, 1]2

by

x⊥y =

{
f

(−1)
i [fi(x) + fi(y)] if x, y ∈ (αi, βi)

sup(x, y) otherwise

where f
(−1)
i (z) = f−1

i [min{z, fi(βi)}] is the pseudo-inverse function of fi, is a t-conorm.
Conversely, any continuous t-conorm has this form, with a suitable choice of D and F . The
function fi is called the additive generator of the t-conorm with respect to the interval [αi, βi].
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A dual theorem can be stated for t-norms.
Consider the subset ∆ = [0, 1]−∪i∈N(αi, βi). This subset is closed and completely deter-

mines the family D.

Definition 5 [3] Any element in ∆ is called idempotent.

Idempotent elements satisfy the following property:

x ∈ ∆ ⇔ x⊥x = x.

Let us now turn to the concept of fuzziness. We need a previous definition.

Definition 6 Consider Ã, B̃ ∈ P̃(Ω). Subset Ã is said to be sharper than B̃, and we will
denote it by Ã << B̃ if and only if ∀x ∈ Ω, either Ã(x) ≤ B̃(x) ≤ 1

2
or Ã(x) ≥ B̃(x) ≥ 1

2
.

Definition 7 [4] A measure of fuzziness is a real function f : P̃(Ω) 7→ R, satisfying for
any Ã, B̃ ∈ P̃(Ω):

• f(Ã) = 0 ⇔ Ã ∈ P(X).

• If Ã << B̃, then f(Ã) ≤ f(B̃).

• f attains the maximum value in Ẽ.

• f(Ã) = f(Ãc).

Definition 8 (see e.g. [2]) A fuzzy measure is a map m̄ : P̃(Ω) 7→ [0,M ] with the
following properties:

• m̄(∅) = 0, m̄(Ω) = M.

• Ã ⊂ B̃ ⇒ m̄(Ã) ≤ m̄(B̃).

This definition extends for fuzzy subsets the one given by Sugeno in [15].

3 g-local divergence measures

Let us now define the concept of g-local divergence measure. The concept of locality is based
on the notion of diramativity which appears in Information Theory. This property is given
by the following definition.

Definition 9 [5] Given an uncertainty measure H, we say that it verifies the diramativity
property if and only if

Hn+1(A
′
1, A

′′
1, A2, ..., An)−Hn(A′

1 ∪ A′′
1, A2, ..., An) = G(A′

1, A
′′
1).
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The following can be proved:

Proposition 2 An uncertainty measure H has the diramativity property if and only if

H(A1, ..., An, B1, ..., Bm) = H(A1, ..., An, B) + H(A,B1, ..., Bm)−H(A,B),

in which A = ∪n
i=1Ai, B = ∪m

i=1Bi.

This last formula has been generalized in [1] to

H(A1, ..., An, B1, ..., Bm) = Φ(H(A1, ..., An, B), H(A,B1, ..., Bm), H(A,B)). (2)

We will follow the same way to generalize the concept of local divergence measure. Let us
consider a reference set Ω (finite or infinite) and a local divergence measure D. Let Ã, B̃ be
two fuzzy subsets of Ω and consider a crisp partition in two subsets {Ω1, Ω2} of Ω. Let us
define Ã1, Ã2, B̃1, B̃2 by

Ãi(x) =

{
Ã(x) if x ∈ Ωi

1 otherwise
, B̃i(x) =

{
B̃(x) if x ∈ Ωi

1 otherwise
, i = 1, 2.

The property
D(Ã, B̃) = D(Ã1, B̃1) + D(Ã2, B̃2), (3)

of the classical locality can be extended to the generalized on Equation 2, thus obtaining:

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(Ã2, B̃2)). (4)

Remark that Φ is associative: to show this, just consider a partition of Ω in three subsets
{Ω1, Ω2, Ω3}. Then,

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(Ã2 ∪ Ã3, B̃2 ∪ B̃3)) = Φ(D(Ã1, B̃1), Φ(D(Ã2, B̃2), D(Ã3, B̃3))).

On the other hand

D(Ã, B̃) = Φ(D(Ã1 ∪ Ã2, B̃1 ∪ B̃2), D(Ã3, B̃3)) = Φ(Φ(D(Ã1, B̃1), D(Ã2, B̃2)), D(Ã3, B̃3)),

whence the associativity.
Moreover, Φ is commutative. Let us now impose the following properties:

• u < u′ ⇒ Φ(u, v) ≤ Φ(u′, v).

• Φ(0, v) = v.

When D is a local divergence measure, then Φ(x, y) = x + y, and it is clear that in this
case Φ satisfies these properties.

This leads us to the following definition:
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Definition 10 Given a divergence measure D over a reference set Ω, we say that D is a
g-local divergence measure if and only if for any partition of Ω in two subsets {Ω1, Ω2},
it is

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(Ã2, B̃2)), (5)

where Φ satisfies

1. Φ(u, v) = Φ(v, u).

2. u < u′ ⇒ Φ(u, v) ≤ Φ(u′, v).

3. Φ is associative.

4. Φ(0, v) = v.

In this definition we are dividing our reference set Ω in two new reference sets Ω1, Ω2,
and defining new divergence measures D1, D2 from D in each reference set.

Remark that in the definition of Ãi, B̃i, we have chosen the value 1 (the maximal possible
value for the membership function) for coordinates xj 6∈ Ωi. Remark that (3) also holds if
we had chosen the value 0 instead of 1. The reason is that 0 is a neutral element while 1
is the absorbent. If we had chosen 0, the interpretation should be that we are joining two
referential sets, where in each of them a divergence measure has been defined, and we are
trying to define a new divergence measure; we will come back to this case in Section 6.

Of course, a local divergence measure is a g-local divergence measure. Let us now give
an example of a g-local divergence measure that is not local:

Example 1 Consider D(Ã, B̃) = supx∈Ω |Ã(x) − B̃(x)|. It is clear that this divergence
measure is a g-local divergence measure with Φ(x, y) = sup{x, y}, but it is not a local one.

In next proposition, we list some properties of g-local divergence measures.

Proposition 3 Let D be a g-local divergence measure. Then, ∀Ã, B̃, C̃ ∈ P̃(Ω), ∀Z, V ∈
P(Ω):

• D(Ã, B̃) = D(Ã ∪ B̃, Ã ∩ B̃).

• D(Ã ∪ Z, B̃ ∪ Z) = D(Ã ∩ Zc, B̃ ∩ Zc).

• D(Ã, B̃) ≥ supx∈Ω D(Ã(x), B̃(x)).

• For any permutation σ in Ω, D(Ã, B̃) = D(Ãσ, B̃σ).

• D(Z, Zc) = D(V, V c).

• D(Ã, B̃) ≤ D(Z,Zc).

• D(Ã, B̃) ≥ min{D(Ã, C̃), D(C̃, B̃)}, whenever Ã(x) ≤ C̃(x) ≤ B̃(x) or Ã(x) ≥ C̃(x) ≥
B̃(x), ∀x ∈ Ω.
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Proof: The proof is straightforward. It just suffices to translate the proofs for the local
case that appear in [10] for the g-local case. We prove the first one as an example:

Let us define Ω1 = {x ∈ Ω | Ã(x) ≥ B̃(x)} and Ω2 = {x ∈ Ω | Ã(x) < B̃(x)}. Then,
{Ω1, Ω2} is a partition of Ω and applying the definition of g-locality,

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(Ã2, B̃2)).

Now, by the second axiom of divergence, D(Ã2, B̃2) = D(B̃2, Ã2). Thus,

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(B̃2, Ã2)) = D(Ã1 ∩ B̃2, Ã2 ∩ B̃1),

and now, Ã1 ∩ B̃2 = Ã ∪ B̃, whereas Ã2 ∩ B̃1 = Ã ∩ B̃.

As it has been done in [10] for local measures, it is possible to define measures of fuzziness
from g-local divergence measures:

Proposition 4 Let D be a g-local divergence measure. Then, f1, f2 : P̃(Ω) 7→ R defined by

f1(Ã) = D(Z, Zc)−D(Ã, Ãc), Z ∈ P(Ω)

f2(Ã) = D(Ã, NÃ),

are measures of fuzziness.

We give an example of a divergence measure that it does not present g-locality, even if
the divergence can be decomposed as a function of the divergence on each coordinate.

Example 2 Consider a finite reference set and the divergence measure given by D(Ã, B̃) =
Πx∈Ω|Ã(x)− B̃(x)|. This divergence measure does not satisfy the conditions of Definition 10
as it can be easily checked (0 is not the neutral element but an absorbent). We will return to
this example in Section 6.

Let us now study the general form of a g-local divergence measure. Remark that any
function Φ : [0,M ]× [0, M ] 7→ [0,M ] in the conditions of Definition 10 satisfies all properties
of a t-conorm except 1) that changes into

1’) 0⊥x = x, ∀x ∈ [0,M ], M⊥M = M.
Consequently, we can apply Ling’s Theorem and Forte,Benvenuti,Kampe de Feriet’s re-

sult, thus obtaining:

Theorem 2 For any function Φ in the conditions of Definition 10, it follows that Φ can be
written as taking a suitable sequence of disjoint open intervals (αi, βi) on [0,M] and strictly
increasing functions fi : [αi, βi] 7→ R such that fi(αi) = 0, and putting

Φ(u, v) =

{
f

(−1)
i [fi(u) + fi(v)] if u, v ∈ (αi, βi)

sup(u, v) otherwise

in which f
(−1)
i denotes the pseudo-inverse function of fi. We will call fi the additive generator

of Φ over [αi, βi].
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Elements that do not belong to
⋃

i∈N(αi, βi) are therefore idempotent. If the range of D
is [0,M], we will denote by ∆ the set of idempotent elements. It is clear that ∆ is a closed
set and that 0,M ∈ ∆.

At this point, it must be remarked that the only t-conorm satisfying the local property
is the sum. Hence, g-locality provides a wide generalization of locality.

When D is a local divergence measure, then ∆ = {0,M}. However, the converse is not
true, as next example shows:

Example 3 Consider |Ω| = n and the divergence measure defined by

D(Ã, B̃) = max{
∑
x∈Ω

|Ã(x)− B̃(x)|, 1}.

It is straightforward to check that D is a continuous g-local divergence measure for which Φ
is given by

Φ(x, y) =

{
1 if x = 1 or y = 1
sup{x + y, 1} otherwise

Therefore, Φ satisfies the conditions of a t-conorm. However, 0 and M = 1 are the only
idempotent elements.

In next sections we will study some consequences of this representation theorem for
different choices of the cardinality of Ω.

4 The case of finite or countable referential set

Let us start with the finite case. We have the following:

Proposition 5 Assume Ω = {x1, ..., xn} and consider a divergence measure D. If D is a
g-local divergence measure, then ∃gn : Rn 7→ R such that

D(Ã, B̃) = gn(h1(Ã(x1), B̃(x1)), ..., hn(Ã(xn), B̃(xn))),

where, for all i = 1, ..., n, hi : [0, 1]× [0, 1] 7→ R satisfies the following conditions:

• hi(x, y) = hi(y, x), ∀x, y ∈ [0, 1];

• hi(x, x) = 0, ∀x ∈ [0, 1];

• hi(·, y) is a non-increasing function on [0,y] and non-decreasing on [y,1].

Proof: By the definition of the g-local property applied to Ω1 = {x1}, Ω2 = Ω − Ω1, it
follows

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(Ã2, B̃2)) = Φ(h1(Ã(x1), B̃(x1)), D(Ã2, B̃2)).
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Applying again the definition for D(Ã2, B̃2) with {x2}and Ω2 − {x2} we have

D(Ã2, B̃2) = Φ(h2(Ã(x2), B̃(x2)), D(Ã3, B̃3)).

Hence,
D(Ã, B̃) = Φ(h1(Ã(x1), B̃(x1)), Φ(h2(Ã(x2), B̃(x2)), D(Ã3, B̃3)))

=: g3(h1(Ã(x1), B̃(x1)), h2(Ã(x2), B̃(x2)), D(Ã3, B̃3)).

Iterating this process, we obtain that D can be written as

D(Ã, B̃) = gn(h1(Ã(x1), B̃(x1)), h2(Ã(x2), B̃(x2)), ..., hn(Ã(xn), B̃(xn))).

Finally, remark that all functions hi are indeed divergence measures over single references.
Therefore, they must satisfy the conditions of h in Proposition 1.

It must be noticed that function gn is the iterated t-conorm Φ, where the iteration is
justified by associativity.

As a consequence of this result, we will find the value of D(Ã, B̃) for Ã, B̃ ∈ P̃(Ω). We
have two different situations:

Lemma 1 Assume Ω = {x1, ..., xn} and consider a g-local divergence measure D. Let us
denote by ∆ the set of idempotent elements. If maxi{hi(Ã(xi), B̃(xi))} ∈ ∆, then D(Ã, B̃) =
maxi{hi(Ã(xi), B̃(xi))}.

Proof: We will make the proof by induction on the cardinality of Ω.
If n = 2, then g2 = Φ and the result holds by Theorem 2.
Suppose n > 2 and that the result holds until n− 1. Then,

gn(h1(Ã(x1), B̃(x1)), ..., hn(Ã(xn), B̃(xn))) =

gn−1(h1(Ã(x1), B̃(x1)), ..., Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn)))).

Now, we have two possible cases:

1. If max{hn(Ã(xn), B̃(xn)), hn−1(Ã(xn−1), B̃(xn−1))} = max{hi(Ã(xi), B̃(xi))}, then

Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))) = max{hi(Ã(xi), B̃(xi))}

and applying the induction hypothesis, the result holds.

2. Otherwise, Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))) < max{hi(Ã(xi), B̃(xi))}, as
this last value is idempotent. Applying again the induction hypothesis, the result
holds.
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Lemma 2 Assume Ω = {x1, ..., xn} and let us consider a g-local divergence measure D.
Let us suppose that maxi{hi(Ã(xi), B̃(xi))} ∈ (αi, βi) and let us denote by fi the additive
generator of Φ in (αi, βi). Then, D(Ã, B̃) can be written as

D(Ã, B̃) = f
(−1)
i [

∑

xj |hj(Ã(xj),B̃(xj))∈(αi,βi)

fi(hj(Ã(xj), B̃(xj)))].

Proof: We will make again the proof by induction on the cardinality of Ω.
For n = 2 it is g2 = Φ and the result holds.
Suppose n > 2 and assume the result holds until n− 1. Then,

gn(h1(Ã(x1), B̃(x1)), ..., hn(Ã(xn), B̃(xn))) =

gn−1(h1(Ã(x1), B̃(x1)), ..., Φ[hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))]).

Now, we have three possibilities:

1. If both x = hn(Ã(xn), B̃(xn)) and y = hn−1(Ã(xn−1), B̃(xn−1)) are in (αi, βi), then

Φ(x, y) = f
(−1)
i (fi(x) + fi(y)) ∈ (αi, βi]. (6)

In such a case, we have again two possible cases:

(a) If Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))) = βi, then D(Ã, B̃) = βi by
Lemma 1. On the other hand,

βi ≥ f
(−1)
i (

∑

xj |hj(Ã(xj),B̃(xj))∈(αi,βi)

fi(hj(Ã(xj), B̃(xj)))) ≥ f
(−1)
i (fi(x) + fi(y)) = βi,

whence the result.

(b) If Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))) ∈ (αi, βi), then f
(−1)
i = f−1

i in
Equation 6, and the result holds by the induction hypothesis.

2. If only one of them, say hn(Ã(xn), B̃(xn)), is in (αi, βi), then

Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))) = hn(Ã(xn), B̃(xn)),

and the result holds applying the induction hypothesis.

3. Otherwise, Φ(hn−1(Ã(xn−1), B̃(xn−1)), hn(Ã(xn), B̃(xn))) < αi, and applying again the
induction hypothesis, the result holds.

Lemma 1 and Lemma 2 show that, in order to compute D(Ã, B̃), some coordinates may
not affect the final value; in particular, if we are in the conditions of Lemma 1, it suffices
to know the value of function hx corresponding the coordinate x where the maximum is
reached. Let us see an example.
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Example 4 Suppose n = 3 and ∆ = [0, 0.25] ∪ [0.75, 1]. Let us consider f1 : [0.25, 0.75] ×
[0.25, 0.75] 7→ R given by f1(x) = x2 − 0.0625; finally, hi(x, y) = |x− y|, ∀i.

Now, define the fuzzy subsets Ã ≡ (0.4, 0.5, 0.1) and B̃ = ∅. Then, by Lemma 2,

D(Ã, B̃) = f
(−1)
1 (f1(Ã(x1)) + f1(Ã(x2))) = f−1

1 (0.285) = 0.5895.

On the other hand, if we consider C̃ ≡ (0.5, 0.8, 0), then

D(C̃, B̃) = 0.8,

by Lemma 1.

Let us now turn to the infinite countable case. First, note that, as in the finite case, we
can define a function hx(Ã(x), B̃(x)), ∀x ∈ Ω (consider hx(Ã(x), B̃(x)) = D(Ã1, B̃1) with
Ω1 = {x}). Now, the following can be proved:

Theorem 3 Assume Ω is an infinite countable reference set. Consider Ã, B̃ ∈ P̃(Ω) and a
continuous g-local divergence measure D.

1. If ∃maxx∈Ω{hx(Ã(x), B̃(x))}, then:

(a) If maxx∈Ω{hx(Ã(x), B̃(x))} ∈ ∆, then

D(Ã, B̃) = max
x∈Ω

{hx(Ã(x), B̃(x))}.

(b) Suppose maxx∈Ω{hx(Ã(x), B̃(x))} 6∈ ∆ and assume maxx∈Ω{hx(Ã(x), B̃(x))} ∈
(αi, βi). Then,

D(Ã, B̃) = f
(−1)
i (

∑

x|hx(Ã(x),B̃(x))∈(αi,βi)

fi(hx(Ã(x), B̃(x)))).

2. If 6 ∃maxx∈Ω{hx(Ã(x), B̃(x))}, then:

(a) If supx∈Ω{hx(Ã(x), B̃(x))} ∈ ∆− [∪i∈Nβi], then

D(Ã, B̃) = sup
x∈Ω

{hx(Ã(x), B̃(x))}.

(b) If supx∈Ω{hx(Ã(x), B̃(x))} ∈ (αi, βi], for some i ∈ N , then

D(Ã, B̃) = f
(−1)
i (

∑

x|hx(Ã(x),B̃(x))∈(αi,βi)

fi(hx(Ã(x), B̃(x)))).

12



Proof: Given Ã, B̃, let us define the families of fuzzy subsets {Ãn}n∈N, {B̃n}n∈N by

Ãn(xi) =

{
Ã(xi) if i ≤ n
0 otherwise

, B̃n(xi) =

{
B̃(xi) if i ≤ n
0 otherwise

Then, as Ãn → Ã and B̃n → B̃, it follows that D(Ãn, B̃n) → D(Ã, B̃), by the continuity of
D.

Suppose ∃maxx∈Ω{hx(Ã(x), B̃(x))} ∈ ∆. Suppose indeed that this maximum is reached
in xi. Then, for n ≥ i,

D(Ãn, B̃n) = gn+1(hx1(Ãn(x1), B̃n(x1)), ..., hxn(Ãn(xn), B̃n(xn)), D(∅, ∅)) = hxi(Ãn(xi), B̃n(xi)),

by Lemma 1 , whence
D(Ã, B̃) = hxi

(Ã(xi), B̃(xi)).

On the other hand, suppose ∃maxx∈Ω{hx(Ã(x), B̃(x))} ∈ (αi, βi). Suppose indeed that
the maximum is reached in xj. Then, for n ≥ j, by Lemma 2,

D(Ãn, B̃n) = gn+1(hx1(Ãn(x1), B̃n(x1)), ..., hxn(Ãn(xn), B̃n(xn)), D(∅, ∅))

= f
(−1)
i (

∑
∗

fi(hxk
(Ã(xk), B̃(xk)))),

where the sum applies to

∗ = {xk|hxk
(Ã(xk), B̃(xk)) ∈ (αi, βi), k ≤ n}.

Now, taking limits, we obtain that

D(Ã, B̃) = f
(−1)
i (

∑
∗∗

fi(hx(Ã(x), B̃(x)))),

where the sum applies to

∗∗ = {xk|hxk
(Ã(xk), B̃(xk)) ∈ (αi, βi)}.

Suppose on the other hand that the supremum is not reached. In order to simplify the
formulas, let us denote P = supx∈Ω{hx(Ã(x), B̃(x))}.

If P ∈ ∆ − [∪i∈Nβi], then, ∃j such that P ∈ (βj, αj+1]. Besides, there exists i such that

hxi
(Ã(xi), B̃(xi)) > βj. Thus, for n ≥ i, by Lemma 1,

D(Ãn, B̃n) = gn+1(hx1(Ãn(x1), B̃n(x1)), ..., hxn(Ãn(xn), B̃n(xn)), D(∅, ∅)) = sup
k

hxk
(Ãn(xk), B̃n(xk)),

and then
D(Ã, B̃) = sup

k
{hxk

(Ã(xk), B̃(xk))} = P.

13



Finally, assume P ∈ (αj, βj]. Then, there exists i such that hxi
(Ã(xi), B̃(xi)) > αj. Thus,

for n ≥ i, by Lemma 2,

D(Ãn, B̃n) = gn+1(hx1(Ãn(x1), B̃n(x1)), ..., hxn(Ãn(xn), B̃n(xn)), D(∅, ∅))

= f
(−1)
i (

∑
∗

fi(hxk
(Ã(xk), B̃(xk)))).

Now, taking limits, we obtain that

D(Ã, B̃) = f
(−1)
i (

∑
∗∗

fi(hx(Ã(x), B̃(x)))).

This completes the proof.

5 The non-countable case

Suppose now that an Ω is a non-countable reference set. For this case, we will follow the same
approach of Bertoluzza and Cariolaro ([2]) in the case of fuzzy measures of fuzzy subsets.
Let us start with a definition:

Definition 11 We define the discriminant element of a pair of fuzzy subsets Ã, B̃ by

Γ(Ã, B̃) = sup
α,β,C

D(αC, βC),

where C are the crisp subsets of Ω and α ≥ β are such that

(Ã ∩ B̃)C ⊂ βC ⊂ αC ⊂ (Ã ∪ B̃)C .

An example of suitable values of α, β for a given C can be seen in Figure 2.

A

B

C

  α

β

Figure 2: A graphical interpretation of Γ(Ã, B̃)

The value of Γ(Ã, B̃) can be computed using next proposition:
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Proposition 6 Let D be a divergence measure and for fixed α, β ∈ [0, 1] let us define

Cα,β = {x ∈ Ω| (Ã ∪ B̃)(x) ≥ α, (Ã ∩ B̃)(x) ≤ β}.
Then, Γ(Ã, B̃) = supα,β D(αCα,β, βCα,β).

Proof: Let us fix α, β. By definition, (Ã ∩ B̃)Cα,β
⊂ βCα,β ⊂ αCα,β ⊂ (Ã ∪ B̃)Cα,β

,
whence

Γ(Ã, B̃) ≥ sup D(αCα,β, βCα,β).

Now, for any ε > 0, there exist α0 ≥ β0 and C ∈ P(X) such that (Ã ∩ B̃)C ⊂ β0C ⊂
α0C ⊂ (Ã ∪ B̃)C and D(α0C, β0C) ≥ Γ(Ã, B̃)− ε.

On the other hand, C ⊂ Cα0,β0 , and hence D(α0C, β0C) ≤ D(α0Cα0,β0 , β0Cα0,β0), whence

Γ(Ã, B̃) ≤ sup D(αCα,β, βCα,β).

This finishes the proof.

Note that D(αC, βC) ≤ D(Ã, B̃) for any crisp subset C satisfying the conditions of
Definition 11 and then, Γ(Ã, B̃) is a lower approximation of D(Ã, B̃).

In order to simplify the results below, we will suppose Ã(x) ≥ B̃(x), ∀x ∈ Ω. This is
not restrictive for g-local divergence measures, as we have already proved that D(Ã, B̃) =
D(Ã ∪ B̃, Ã ∩ B̃) (Proposition 3). Now, the following can be shown:

Proposition 7 Let D be a continuous g-local divergence measure. If Γ(Ã, B̃) ∈ ∆, then
D(Ã, B̃) = Γ(Ã, B̃).

Proof: Let us consider the crisp subset of Ω defined by

{x ∈ Ω | Ã(x)− B̃(x) ≥ 1

n
}.

This subset can be partitioned by the family {Cn
i,j}i,j, where

Cn
i,j = {x ∈ Ω | i + 1

n
≥ Ã(x) >

i

n
,

j + 1

n
≥ B̃(x) >

j

n
}, i > j, i, j = 0, ..., n− 1.

Let us now define:

Ãn(x) =

{
i
n

if x ∈ Cn
i,j

Ã(x)+B̃(x)
2

otherwise
B̃n(x) =

{
j+1
n

if x ∈ Cn
i,j

Ã(x)+B̃(x)
2

otherwise

It is clear that B̃ ⊂ B̃n ⊂ Ãn ⊂ Ã. Moreover, Ãn ↑ Ã and B̃n ↓ B̃; then, by the continuity
of D, it is D(Ãn, B̃n) ↑ D(Ã, B̃).

If we apply now the definition of g-local property we obtain

D(Ãn, B̃n) = gm({D(
i

n
Cn

i,j,
j + 1

n
Cn

i,j)}i,j, 0) ≤ gm({Γ(Ã, B̃)}i,j, 0) = Γ(Ã, B̃),

as Γ(Ã, B̃) ∈ ∆.
Then, taking limits D(Ã, B̃) ≤ Γ(Ã, B̃) and the result is proved.

What happens when Γ(Ã, B̃) 6∈ ∆?
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Lemma 3 Let D be a continuous g-local divergence measure. If Γ(Ã, B̃) ∈ (αi, βi), then
D(Ã, B̃) ∈ [Γ(Ã, B̃), βi].

Proof: We already know that Γ(Ã, B̃) ≤ D(Ã, B̃).
Let us consider Ãn, B̃n as in Proposition 7. Then, we know that D(Ãn, B̃n) ↑ D(Ã, B̃).
If we apply the definition of g-local property we obtain

D(Ãn, B̃n) = gm({D(
i

n
Cn

i,j,
j + 1

n
Cn

i,j)}i,j, 0) ≤ gm({Γ(Ã, B̃)}i,j, 0) = f
(−1)
i (mΓ(Ã, B̃)) ≤ βi,

as stated.

Now, let us give a method for obtaining the exact value of D(Ã, B̃). This result is based
on the research of Bertoluzza and Cariolaro [2]. They work with fuzzy measures of fuzzy
subsets and they obtain an explicit formula for m̄(C̃). In the following, we will assume that
Γ(Ã, B̃) ∈ (αi, βi).

If D is continuous and D(∅, ∅) = 0, D(Ω, ∅) = M , then we have that for any Ã, B̃ ∈
P̃(Ω), there exists C̃ ∈ P̃(Ω) depending on Ã, B̃, i.e. C̃Ã,B̃ such that D(Ã, B̃) = D(C̃, ∅).
Consequently, we can define an equivalence relation over the set of all pairs of fuzzy subsets
and therefore, it suffices to obtain the value of D(C̃Ã,B̃, ∅). Now, it is easy to prove (see, for
example [16]) that

Lemma 4 m̄(C̃) := D(C̃, ∅) is a fuzzy measure over fuzzy subsets.

We are now in conditions to apply the results of Bertoluzza and Cariolaro. They find
the value of m̄(C̃) from the values of the measure over crisp subsets. Let us denote by m
this restriction. Analogously, we will denote by Φ̄ the t-conorm defining m̄ and by Φ the
t-conorm defining m.

First, for a fixed α ∈ [0, 1], we define

ϕα(x) := m̄(αC),

where C ∈ P(Ω) such that m(C) = x. Now, consider

T0 := {α |ϕα(M) ≤ αi}.

The idea of this definition is the following: We consider the α-levels of C̃. For some values
of α, we have that m̄(αF ) < αi,∀F ∈ P(Ω). These values of α are then excluded of the
evaluation of m̄(C̃) as the corresponding α-levels have no influence in the final value of m̄(C̃).
The set of these values of α is T0.

For the other α-levels, α 6∈ T0 , it follows that there exists a minimal measure of the crisp
subset such that m̄(αF ) ∈ (αi, βi). This value is given by

ξ(α) := sup{x ∈ [0,M ] |ϕα(x) ≤ αi}.
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In [2], it is shown that the minimal value of m(F ) in this conditions is an αj. This leads us
to the following definition:

Tj := {δ ∈ [0, 1] | ξ(δ) = αj}.
However, some of these subsets Tj must be excluded, too. The set of excluded Tj is given by

T ′
j := {δ ∈ Tj | lim

ε→0
m(C̃α+ε

α ) < αj}

where C̃α+ε
α = {x ∈ Ω |α ≤ C̃(x) ≤ α + ε}. The sets T ′

j are indeed the α-levels whose
measure do not reach the minimal value for being in the interval (αi, βi); therefore, these
α-cuts are removed. The remaining α-levels define the subset Jj = Tj − T ′

j , from which we
define

Ωj := {x ∈ Ω | C̃(x) ∈ Jj}.
Then, we have:

Theorem 4 [2] Let f̄ be the additive generator of the restriction of Φ̄ to the interval (αi, βi),
and let fj be the additive generator of the restriction of Φ to the interval (αj, βj). Let us
define

C̃j(x) =

{
C̃(x) if x ∈ Ωj

0 otherwise

Then, we have

m̄(C̃j) = f̄
(−1)
j [

∫

Ωj

k(C̃j)d(fj ◦m)],

where k is defined by the solution of Equation

m̄(αC) = f̄
(−1)
j (k(α)fj(m(C))).

If fj ◦m is additive, then we can decompose the integral:

m̄(C̃j) = f̄
(−1)
j [

∑
r

∫

Ωj∩Ωr

k(C̃j)d(fj ◦m)],

where {Ωr}r is a collection of disjoint sets such that m(Ωr) < m(Ω),
∑

r m(Ωr) > m(Ω).
Finally,

m̄(C̃) = f̄
(−1)
j [

∑
j∈I

f̄ ◦m(C̃j)].

6 The problem of componibility

In this section we study briefly the problem of componibility. Let us return to Example 2.
This example is very special because indeed all coordinates are independent of each other
and are all equally important. The condition that this divergence measure does not satisfy
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is that 0 (i.e. when coordinates are the same) is not the neutral element but the absorbent
of function Φ.

Suppose now normalized divergence measures over two reference sets. Then, if we join
these reference sets and we want to define a new divergence measure from the initial ones, it
makes sense to consider 0 as absorbent. This translates to the condition Φ(u, 1) = u. Then,
we obtain the following definition:

Definition 12 Given a normalize divergence measure D over a reference set Ω, we say that
D is a componible divergence measure if and only if

D(Ã, B̃) = Φ(D(Ã1, B̃1), D(Ã2, B̃2)), (7)

where Φ satisfies

• 1.- Φ(u, v) = Φ(v, u).

• 2.- u < u′ ⇒ Φ(u, v) ≤ Φ(u′, v).

• 3.- Φ is associative.

• 4’.- Φ(1, v) = v.

It comes out that Φ is a t-norm, whence we obtain the following representation theorem:

Theorem 5 For any function Φ in the conditions of Definition 12, it follows that Φ can be
written as taking a suitable sequence of disjoint open intervals (αi, βi) on [0,M] and strictly
decreasing functions fi : [αi, βi] 7→ R such that fi(βi) = 0, and putting

Φ(u, v) =

{
f

(−1)
i [fi(u) + fi(v)] if u, v ∈ (αi, βi)

inf(u, v) otherwise

in which f
(−1)
i denotes the pseudo-inverse function of fi.

Then, all the results we have obtained for local divergence measures have their dual results
for componible divergence measures. However, the interpretation is completely different. In
the first case, we have one divergence measure and we want to define two new divergence
measures satisfying some properties; in the second case, we have two divergence measures
and we want to define a new divergence measure satisfying some conditions over the joint
reference set.
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7 Conclusions

We have given a generalization of local divergence measures based on the relationship between
local divergence measures and the property of diramativity for uncertainty measures. This
new divergence measures keep most of the properties of local divergence measures. Also a
representation theorem of generalized local divergence measures is provided based on Ling’s
Theorem. Starting from this result, we have studied in detail the finite, infinite countable or
infinite non-countable cases, using for the first two the Montes approach and for the last one
the Bertoluzza and Cariolaro’s. Finally, in Section 6 we have introduced the dual concept of
componible divergence measures.
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