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Abstract

In this paper we introduce the concept of order cone. This concept is inspired by the
concept of order polytopes, a well-known object coming from Combinatorics with which order
cones share many properties. Similarly to order polytopes, order cones are a special type of
polyhedral cones whose geometrical structure depends on the properties of a partially ordered
set (brief poset). This allows to study the geometrical properties of these cones in terms of
the subjacent poset, a problem that is usually simpler to solve. Besides, for a given poset, the
corresponding order polytope and order cone are deeply related. From the point of view of
applicability, it can be seen that many cones appearing in the literature of monotone TU-games
are order cones. Especially, it can be seen that the cones of monotone games with restricted
cooperation are order cones, no matter the structure of the set of feasible coalitions and thus,
they can be studied in a general way applying order cones.
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1 Introduction

Consider a finite set of n players N = {1, 2, ..., n}. We will denote subsets of N by capital letters
A,B, ... and by P(N) the set of parts of N . A game v is a function v : P(N) → R satisfying
v(∅) = 0. The value v(A) represents the minimal worth coalition A can obtain if all players in A
agree to cooperate, no matter what players outside A might do.

In general, several additional conditions can be imposed on function v. One of the most natural
conditions is monotonicity in v, i.e. v(A) ≤ v(B) if A ⊂ B. This means that if players add to a
coalition, the corresponding worth increases. We will denote byMG(N) the set of all monotone games
on N . Other popular conditions are additivity, supermodularity, and many others (see (Grabisch,
2016)).

On the other hand, it could be the case that some coalitions fail to form. Thus, v cannot be
defined on some of the elements of P(N) and we have a subset FC(N) of P(N) containing all feasible
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coalitions. From now on, we will not include ∅ in FC(N). Usually, FC(N) has a concrete structure
(for example, FC(N) could be a lattice if ∅ is added). Thus, depending on the structure of FC(N),
the set of TU-games whose set of feasible coalitions is FC(N) has different properties.

With some abuse of notation, we will denote by v both the game and the corresponding point in
R|FC(N)| given by v := (v(A)){A:A∈FC(N)}. Then, the set of games on N satisfying a given condition
(monotonicity, supermodluarity , ...) and/or such that the set of feasible coalitions is FC(N) can
be seen as a set in R|FC(N)|. In many cases, this set is usually a convex polyhedron. Hence, it can
be given in terms of its vertices and extremal rays. Many papers have been devoted to solve the
problem of obtaining different geometrical aspects of these polyhedra for particular cases (see e.g.
(Grabisch and Kroupa, 2019; Shapley, 1971)).

Following this line, in this paper we introduce the concept of order cone. Order cones are defined
in terms of a poset and its structure relays on the structure of the corresponding poset. Besides,
we will show that order cones are deeply related to order polytopes. As many results are known for
order polytopes, it is possible to translate such properties to order cones.

As it will become clear below, order cones are a class of cones including the cones of monotone
games with restricted cooperation, no matter which the set FC(N) is. Thus, order cones allow to
study this set of cones in a general way. As the properties of an order cone just depend on the
structure of the corresponding poset, it suffices to study this poset, a problem that is simpler in
general than studying the set MG(FC(N)) as we will see in the examples of Section 4. Besides, it
could help to identify which conditions need to be imposed on FC(N) so that MG(FC(N)) satisfies
a property. For example, we will see that the order cone is an (infinite) pyramid if FC(N) has a top
element. Finally, using the relations between order cone and order polytope, many results known
for order polytopes can be translated to order cones. For example, we will use this property to
characterize the set of extremal rays of the cone MG(N), a problem that to our knowledge has not
been solved yet (Grabisch, 2016).

Interestingly enough, order cones can be applied to situations where monotonicity is combined
with other properties. As an example dealing with such a case, we study the cone of monotone
k-symmetric games. This also adds more insight about the relationship between order cones and
order polytopes.

Finally, order cones can be applied to other situations different to monotone games with restricted
cooperation. It should be noted that order cones just rely on a poset structure and thus, they are
very general. Thus, this concept can be applied to any family of games such that there are constraints
v(A) ≤ v(B) whenever ARB, where R is a relation on FC(N).

The rest of the paper goes as follows: In next section we introduce the basic concepts and results
about cones and order polytopes. Next, we define order cones and study some of its geometrical
properties. We then apply these results for some special cases of monotone games with restricted
cooperation. We finish with the conclusions and open problems.

2 Basic results

In order to be self-contained and fix the notation, let us start introducing some concepts and results
that will be needed throughout the paper.

A cone is a non-empty subset C of Rn such that if x ∈ C, then αx ∈ C for all α ≥ 0. Note that 0
is in any cone. Additionally, we say that the cone is convex if it is a convex set of Rn; equivalently,
a cone is convex if for any x,y ∈ C, it follows
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x+ y ∈ C.
Given a set S, we define its conic hull (or conic extension) as the smallest cone containing S.
A convex cone C is polyhedral if additionally it is a polyhedron. This means that it can be

written as

C := {x : Ax ≤ 0}, (1)

for some matrix A ∈ Mm×n of binding conditions. Two polyhedral cones are affinely isomorphic
if there is a bijective affine map from one cone onto the other. Given a polyhedral cone C and
x ∈ C,x 	= 0, the set {αx : α ≥ 0} is called a ray. In general we will identify a ray with the point
x. Notice also that for polyhedral cones, all rays pass through 0. Point x defines an extremal ray
if x ∈ C and there are n− 1 binding conditions for x that are linearly independent. Equivalently, x
cannot be written as a convex combination of two linearly independent points of C.

It is well-known that a convex polyhedron only has a finite set of vertices and a finite set of
extremal rays. The following result is well-known for convex polyhedra:

Theorem 1. Let P be a convex polyhedron on Rn. Let us denote by x1, ...,xr the vertices of P and
by v1, ..., vs the vectors defining extremal rays. Then, for any x ∈ P , there exists α1, ..., αr such that
α1 + ... + αr = 1, αi ≥ 0, i = 1, ..., r, and β1, ..., βs such that βi ≥ 0, i = 1, ..., s, satisfying that

x =

r∑
i=1

αixi +

s∑
j=1

βjvj .

Given a polyhedral cone, if x ∈ C,x 	= 0, it follows that x cannot be a vertex of C. Thus, for
a polyhedral cone, the only possible vertex is 0. Thus, for the particular case of polyhedral cones,
Theorem 1 writes as follows.

Corollary 1. For a polyhedral cone C whose extremal rays are defined by v1, ..., vs, any x ∈ C can
be written as

x =
s∑

j=1

βjvj , βj ≥ 0, j = 1, ..., s.

Consequently, in order to determine the polyhedral cone it suffices to obtain the extremal rays.
We will say that a cone is pointed if 0 is a vertex. The following result characterizes pointed

cones.

Theorem 2. For a polyhedral cone C the following statements are equivalent:

• C is pointed.

• C contains no line.

• C ∩ (−C) = 0.

Finally, in this paper we will deal with the problem of obtaining the faces of order cones. Remem-
ber that given a polyhedron P ⊆ Rn, a non-empty subset F ⊆ P is a face if there exist v ∈ Rn, c ∈ R

such that
vtx ≤ c, ∀x ∈ P, vtx = c, ∀x ∈ F .
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We denote this face as Fv,c. The dimension of a face is the dimension of the smallest affine space
containing the face. A common way to obtain faces is turning into equalities some of the inequalities
of (1) defining P.

Theorem 3. (Cook et al., 1988) Let A ∈ Mm×n. Then any non-empty face of P = {x : Ax ≤ b}
corresponds to the set of solutions to

∑
j

aijxj = bi for all i ∈ I

∑
j

aijxj ≤ bi for all i /∈ I,

for some set I ⊆ {1, . . . , m}.
The set of faces with the inclusion relation determines a lattice known as the face lattice of the

polyhedron.
Let us now recall the basic results about order polytopes. Consider a poset (P,), or P for short,

with p elements. Elements of P are denoted x, y and so on. We will say that x is covered by y,
denoted x � y, if x  y and there is no z ∈ P\{x, y} such that x ≺ z ≺ y. A subset F ⊆ P is an
upset or filter if x ∈ F and x ≺ y implies y ∈ F. We will denote by F(P ) the set of upsets of P . It is
well-known that (F(P ),⊆) is a distributive lattice (Davey and Priestley, 2002). Posets are usually
represented through Hasse diagrams. A poset is connected if the corresponding Hasse diagram is a
connected graph.

For any poset, it is possible to define a polytope on Rp, called the order polytope of P .

Definition 1. (Stanley, 1986) Given a poset (P,), we associate to P a polytope O(P ) over Rp,
called the order polytope of P , formed by the p-uples f of real numbers satisfying

• 0 ≤ f(x) ≤ 1 for every element x in P, and

• f(x) ≤ f(y) whenever x  y in P .

Thus, the polytope O(P ) consists in the order-preserving functions from P to [0, 1]. Note that
we obtain an equivalent definition if the second condition turns into

f(x) ≤ f(y) whenever x� y.

The main advantage of order polytopes is that they allow to study the properties of the polytope
in terms of the subjacent poset P . For example, if the poset is a chain, it can be shown that the
corresponding order polytope is a simplex, i.e. a generalization of a triangle in the p-dimensional
space.

Order polytopes has a tight relation with the set of capacities (see Definition 4 below). Indeed, it
can be seen (Combarro and Miranda, 2010) that the set of capacities over a finite referential N of n
elements, seen as a subset of R2n−2, is the order polytope with respect to the set P(N)\{∅, N} with
the inclusion order. Other families of normalized measures are order polytopes, too, as for example
the set of k-symmetric measures when the partition of indifference is known (Combarro and Miranda,
2010).

The following facts related to order polytopes are well-known and are discussed in (Stanley, 1986).
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Proposition 1. Given a finite poset P , the vertices of O(P ) are the characteristic functions vF of
upsets F of P , i.e.

vF (x) :=

{
1 if x ∈ F
0 otherwise

Consequently, O(P ) is a 0/1-polytope.
Next result characterizes whether two vertices are adjacent in O(P ).

Theorem 4. Let P be a finite poset and consider two upsets F1, F2 ∈ F(P ). Then the vertices vF1

and vF2 are adjacent to each other if and only if F1 ⊂ F2 and F2\F1 is a connected subposet of P .

For obtaining the k-dimensional faces of an order polytope, additionally to the general methods
presented for general polyhedrons, we can derive another way using the order structure of P . For
this, we need to consider the poset

P̂ := ⊥⊕ P ⊕�,

where we have added to P a minimum ⊥ and a maximum �. Then, O(P ) is equivalent to the
polytope given by

• 0 = f(⊥), f(�) = 1.

• f(x) ≤ f(y) whenever x  y in P̂ .

Now, note that turning an inequality of Definition 1 into an equality makes f(x) = f(y) for some
x, y such that x� y. Therefore, we can associate faces to partitions {B1, ..., Bk} of P̂ in a way such
that the face is the set of functions f such that f(x) = f(y) for all x, y in the same block. However,
not any partition defines a face. A partition {B1, ..., Bk} is connected if Bi is connected as a subposet
of P̂ . Defining Bi ≺ Bj if there exists x ∈ Bi, y ∈ Bj such that x P y, we say that the partition is
compatible if  is antisymmetric. Finally, the partition is closed if for i 	= j, there exists g ∈ O(P )
constant in each block such that g(Bi) 	= g(Bj). Now, the following holds.

Theorem 5. A closed partition of P̂ defines a face of O(P ) if and only if it is compatible and
connected.

This result is especially useful for high-dimensional faces as for example facets, as it is easy to
check if these conditions on the partition hold. For faces of small dimension, we can solve the problem
in another way. Note that any face can be defined equivalently as the convex hull of the vertices in
the face. Hence, a face can be associated to its vertices. However, not every set of vertices defines
a face. Thus, it suffices to obtain a condition for a subset of vertices to define a face. On the other
hand, in order polytopes vertices are related to upsets of P . If we focus on the set of upsets defining
a face, the following characterization arises.

Theorem 6. (Friedl, 2017) Let L ⊆ F(P ). Then, L determines a face if and only if L is an
embedded lattice of F(P ), i.e. for any two upsets F, F ′ ∈ F(P )

J ∪ J ′, J ∩ J ′ ∈ L ⇔ J, J ′ ∈ L.
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3 Order cones

Let us now turn to the concept of order cones. The idea is to remove the condition f(a) ≤ 1 from
Definition 1. Thus, the resulting set is no longer bounded. This is what we will call an order cone.
Formally,

Definition 2. Let P be a finite poset with p elements. The order cone C(P ) is the intersection of
the positive orthant and the set of points satisfying f(x) ≤ f(y) whenever x  y in P.

In other words, the order cone of a poset is formed by the p-tuples satisfying

i) 0 ≤ f(x) for every x ∈ P,

ii) f(x) ≤ f(y) whenever x  y in P.

For example, we will see in Section 4 that the set of monotone games MG(N) as a subset of
R2n−1 is an order cone with respect to the poset P = P(N)\{∅} with the partial order given by
A ≺ B ⇔ A ⊂ B. Another example is given at the end of the section.

The name order cone is consistent, as next lemma shows.

Lemma 1. Given a finite poset P , then C(P ) is a pointed polyhedral cone.

Proof. It is a straightforward consequence of the definition that C(P ) is a polyhedron. Let us then
show that it is indeed a cone. For this, take f ∈ C(P ) and consider αf, α ≥ 0. For x  y in P , we
have f(x) ≤ f(y) and thus, αf(x) ≤ αf(y). Hence αf ∈ C(P ) and the result holds.

Moreover, as f(x) ≥ 0, ∀x ∈ P, f ∈ C(P ), it follows that C(P )∩−(C(P )) = {0}, and by Theorem
2, C(P ) is a pointed cone.

Consequently, C(P ) has just one vertex, 0.

Remark 1. Consider the set Q = {1, ..., n} and let us define on Q × Q a binary relation  that
is reflexive and transitive. The pair (Q,) is known as a preposet. When  also satisfies the
antisymmetric property, then (Q,) is a poset.

For a preposet (Q,), let us consider the semispaces on Rn given by xi ≤ xj iff i  j. The
intersection of these semispaces defines a polyhedral cone known as the braid cone1 (Postnikov
et al., 2008). Braid cones has been used to define generalized permutahedra. Several properties and
more insight about this concept can be found in (Postnikov et al., 2008).

When Q is a poset, the corresponding braid cone is deeply related to the order polytope of Q.
Indeed, it just suffices to include the condition xi ≥ 0, i ∈ Q to obtain the order polytope.

Definition 2 suggests a strong relationship between order polytopes and order cones. The following
results study some straightforward aspects of this relation.

Lemma 2. Let P be a finite poset. Then, C(P ) is the conical extension of O(P ).

Proof. If f ∈ O(P ), it follows that for x, y ∈ P, x ≺ y, it is 0 ≤ f(x) ≤ f(y). Thus, f ∈ C(P ).
On the other hand, consider a cone C such that O(P ) ⊂ C. For f ∈ C(P ), and α > 0 small

enough, we have αf ∈ O(P ) ⊂ C. Then, 1
α
αf = f ∈ C, and hence C(P ) ⊆ C.

Indeed, the following holds:

1We are very grateful to an anonymous reviewer for focusing our attention on braid cones.
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Lemma 3. Consider a finite poset P . Then,

C(P ) ∩ {x : x ≤ 1} = O(P ).

Proof. ⊆) Consider f ∈ C(P ) ∩ {x : x ≤ 1}. Hence, f(x) ≤ 1, ∀x ∈ P, and if x  y, then
0 ≤ f(x) ≤ f(y) ≤ 1. Thereofore, f ∈ O(P ).

⊇) For f ∈ O(P ), we have f ∈ C(P ) by Lemma 2 and f(x) ≤ 1, ∀x ∈ P.

As C(P ) is a polyhedral cone by Lemma 1 and according to Corollary 1, this cone can be given
in terms of its corresponding extremal rays. Next theorem characterizes the set of extremal rays of
C(P ) in terms of upsets of P .

Theorem 7. Let P be a finite poset and C(P ) its associated order cone. Then, its extremal rays are
given by

{α · vF : α ∈ R
+},

where vF is the characteristic function of a non-empty connected upset F of P .

Proof. We know that extremal rays of a pointed cone are rays passing through 0. Let us show that
extremal rays of C(P ) are related to vertices of O(P ) adjacent to 0. Consider an extremal ray, that
is given by a vector v. We can assume that v is such that v ≤ 1 and there exists a coordinate i such
that vi = 1. Hence, by Lemma 3, v ∈ O(P ). Let us show that v is indeed a vertex of O(P ). If not,
there exist two different points w1,w2 ∈ O(P ) such that

v = αw1 + (1− α)w2, α ∈ (0, 1).

Besides, αw1, (1 − α)w2 ∈ C(P ). Remark that w1 and w2 are linearly independent because
there exists a coordinate i such that vi = 1. Consequently, v does not define an extremal ray, a
contradiction.

Next, let us now show that v is adjacent to 0. Otherwise, the segment [0, v] is not an edge of
O(P ). Consequently, 1

2
v can be written as

1

2
v = αy1 + (1− α)y2,

where y1,y2 ∈ O(P ) such that they are outside [0, v]. Thus,

v = 2αy1 + 2(1− α)y2.

Finally, 2αy1, 2(1 − α)y2 ∈ C(P ), so we conclude that v does not define an extremal ray, which
is a contradiction.

Now, as v is a vertex, it is related to an upset F ⊆ P. On the other hand, 0 is related to the empty
upset. As v is adjacent to 0, we can apply Theorem 4 to conclude that F = F\∅ is a connected
upset of P .

Let us now prove the reverse. Consider v an adjacent vertex to 0 in O(P ) and assume that v
does not define an extremal ray. Then, there exists w1,w2 ∈ C(P ) and not proportional to v such
that

v = w1 +w2 =
1

2
2w1 +

1

2
2w2 =

1

2
w′

1 +
1

2
w′

2.

Now, for ε > 0 small enough, we have
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εv =
1

2
εw′

1 +
1

2
εw′

2,

and εw′
1 ≤ 1, εw′

2 ≤ 1. Hence, εw′
1, εw

′
2 ∈ O(P ) by Lemma 3, and hence [0, v] is not an edge of

O(P ), in contradiction with v adjacent to 0.

Let us now turn to the problem of obtaining the faces of C(P ). As explained in Theorem 3, faces
arise when inequalities turn into equalities. Let us consider the inequality f(x) ≤ f(y) for x� y and
assume this inequality is turned into an equality. This means that x and y identified to each other;
let us call z this new element. In terms of posets, this translates into transforming P into another
poset (P ′,′) defined as P ′ := P\{x, y} ∪ {z} and ′ given by:

⎧⎨
⎩

a ′ b ⇔ a  b if a, b 	= z
z ′ b ⇔ x  b
a ′ z ⇔ a  y

Similar conclusions arise when 0 ≤ f(x) turns into an equality. Moreover, if F is the face obtained
by turning an inequality into an equality, the projection

π : F → C(P ′)
(f(a), ..., f(x), f(y), ..., f(b)) ↪→ (f(a), ..., f(z), ..., f(b))

is a bijective affine map. Consequently, the following holds.

Lemma 4. The faces of an order cone are affinely isomorphic to order cones.

Compare this result with the corresponding result for order polytopes (Stanley, 1986).

Lemma 5. For an order cone C(P ), the vertex 0 is in all non-empty faces. Consequently, all faces
can be written as Fv,0.

Proof. It suffices to show that for a non-empty face Fv,c, it is c = 0. First, vt0 ≤ c, so that c ≥ 0.
Suppose c > 0. As Fv,c is non-empty, there exist x ∈ C(P ) such that vtx = c. But then,

vt2x = 2c > c, a contradiction. Thus, c = 0 and 0 ∈ Fv,0.

With this in mind, Theorem 7 can be extended to characterize all the faces of the order cone, not
only the extremal rays.

Theorem 8. Let P be a finite poset and C(P ) and O(P ) the corresponding order cone and order
polytope, respectively. For a pair (v, 0), the set F ′

v,0 = C(P ) ∩ {x : vtx = 0} is a face of C(P ) if and
only if Fv,0 = O(P ) ∩ {x : vtx = 0} is a face of O(P ). Moreover, dim(F ′

v,0) = dim(Fv,0).

Proof. Let Fv,0 be a face of O(P ) containing 0 and let us show that it determines a face on C(P ).
First, let us show that vtx ≤ 0, ∀x ∈ C(P ). Otherwise, there exists x0 ∈ C(P ) such that vtx0 > 0.
But then vtεx0 > 0, ∀ε > 0. As ε can be taken small enough so that εx0 ≤ 1, it follows by Lemma 3
that εx0 ∈ O(P ) and as vtεx0 > 0, and we get a contradiction. Hence, the pair (v, 0) determines a
face F ′

v,0 of C(P ).
Consider now a face F ′

v,0 of C(P ). Hence, vtx ≤ 0, ∀x ∈ C(P ). But then, vtx ≤ 0, ∀x ∈ O(P )
and as 0 ∈ F ′

v,0, this determines a face of O(P ).
Let us now see that for each pair (v, 0), dim(F ′

v,0) = dim(Fv,0). First, as Fv,0 ⊆ F ′
v,0, we have

dim(Fv,0) ≤ dim(F ′
v,0).
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On the other hand, let k be the dimension of F ′
v,0. This implies that there are k vectors v1, ..., vk

linearly independent in F ′
v,0. But now, we can find ε > 0 small enough such that εv1 ≤ 1, ..., εvk ≤ 1.

Thus, εv1, ..., εvk ∈ Fv,0 and hence, dim(Fv,0) ≥ dim(F ′
v,0).

As a consequence, we can adapt Theorem 6 for order cones as follows.

Theorem 9. Let L ⊆ F(P ). Then, L determines a face of C(P ) if and only if L is an embedded
lattice of F(P ) containing the empty upset.

Remark 2. From Theorem 8, in order to find faces of an order cone, we need to look for faces of
the corresponding order polytope containing 0. As previously explained in Theorem 3, if we consider
the expression of O(P ) as a polyhedron, faces arise turning inequalities into equalities. Vertices in
the face are the vertices of the polyhedron satisfying these equalities. If we consider P̂ , vertex 0
corresponds to function

f(x) =

{
0 x 	= �
1 x = �

Consequently, 0 satisfies f(x) = f(y) when y 	= �. Thus, we look for the faces where the
inequalities turned into equalities do not depend on �.

In terms of Theorem 5, we have to look for partitions defining faces containing 0. Note that each
block Bi defines a subset of P such that all elements in Bi attain the same value for all points in the
face. Therefore, faces containing 0 mean that there is a block containing only �.

Example 1. Consider the polytope given in Figure 1 left.

1

12

2

⊥

1 2

12

�

∅

{12}

{1, 12} {2, 12}

{1, 2, 12}

Figure 1: Example of poset P (left), his extension P̂ (center) and his upset lattice (right).

In this case, we have three elements and both the order polytope and the cone order cone can be
depicted in R3, with the first coordinate corresponding to 1, the second one to 2 and the third to 12,
see Figure 2. The cone C(P ) is given by 3-dimensional vectors f satisfying

0 ≤ f(1), 0 ≤ f(2), f(1) ≤ f(12), f(2) ≤ f(12).

Let us then explain the previous results for this poset. First, let us start obtaining the vectors
defining extremal rays. According to Theorem 7, it suffices to obtain the non-empty upsets that are
connected subposets of P . Non-empty upsets of P are:

{{12}, {1, 12}, {2, 12}, {1, 2, 12}}.
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All of them are connected subposets of P . Hence, we have 4 extremal rays, whose respective
vectors are

(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).

Figure 2: Order polytope O(P ) (left) and order cone C(P ) (right).

Let us now deal with the facets. For this, consider the poset P̂ = ⊥⊕P ⊕� (see Figure 1 center).
According to Theorems 5 and 8, the facets are given by considering one of the following equalities:

f(⊥) = f(1), f(⊥) = f(2), f(1) = f(1, 2), f(2) = f(1, 2), f(1, 2) = f(�).

This translates into transforming poset P̂ in a new poset where the elements in the equality identify
to each other (see Lemma 4). The posets for the previous equalities are given in Figure 3.

⊥ ∼ 1

2

12

�

⊥ ∼ 2

1

12

�

⊥

2

1 ∼ 12

�

⊥

1

2 ∼ 12

�

⊥

1 2

12 ∼ �

Figure 3: Subposets when turning an inequaity into an equality.

Note that the facets containing 0 are those whose defining equality does not involve �, as 0
satisfies any other equality. In our case, they correspond to the first four cases. Thus, we have four
facets containing 0 and all of them are simplices (indeed triangles) because the corresponding polytope
is a chain.

For the 1-dimensional faces, we have to consider two equalities. However, we have to be careful
with the selected equalities because they might imply other equalities. For example, if we consider
f(⊥) = f(1), f(1) = f(1, 2), this also implies f(⊥) = f(2), and hence we obtain a point instead of
an edge. In our case, the edges containing 0 are given by the pairs of equalities defining an edge and
not involving �. There are four pairs in these conditions that are
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{f(⊥) = f(1), f(⊥) = f(2)}, {f(⊥) = f(1), f(2) = f(1, 2)},

{f(⊥) = f(2), f(1) = f(1, 2)}, {f(1) = f(1, 2), f(2) = f(1, 2)}.
Alternatively, we could use the characterization given in Theorem 9. In this case, we have to

consider the upset lattice (see Figure 1 right).
Hence, edges are given by pairs of upsets defining a sublattice and involving the empty upset.

Thus, the possible choices are the following pairs:

{{∅}, {12}}, {{∅}, {1, 12}}, {{∅}, {2, 12}}, {{∅}, {1, 2, 12}}.
Thus, the extremal rays of C(P ) are given by vectors (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).
For 2-dimensional faces, we have to consider all possible sublattices of height 2 and involving the

∅ upset. These sublattices are:

{{∅}, {1, 12}, {1, 2, 12}}, {{∅}, {2, 12}, {1, 2, 12}}, {{∅}, {12}, {1, 12}}, {{∅}, {12}, {2, 12}}.

Hence, the 2-dimensional faces for C(P ) are defined by vectors

{(1, 0, 1), (1, 1, 1)}, {(0, 1, 1), (1, 1, 1)}, {(0, 0, 1), (1, 0, 1)}, {(0, 0, 1), (0, 1, 1)}.
Notice that we cannot consider

{{∅}, {1, 12}, {2, 12}, {1, 2, 12}}, {{∅}, {12}, {1, 12}, {2, 12}},
because they are not embedded sublattices.

4 Application to Game Theory

In this section, we show that some well-known cones appearing in the field of monotone games can
be seen as order cones. Hence, all the results developed in the previous section can be applied to
these cones. The first example deals with the general case of monotone games when all coalitions are
feasible. We next extend this to the case where FC(N) ⊂ P(N)\{∅}. As an example of applicability
for subfamilies of monotone games satisfying a property on v but not on the set of feasible coalitions,
we also treat the case of k-symmetric monotone games.

4.1 The cone of general monotone games

Consider monotone games when all coalitions are feasible, i.e. the set MG(N). We consider MG(N)
as a subset of R2n−1 (we have removed the coordinate for ∅ because its value is fixed).This set is given
by all games satisfying v(A) ≤ v(B) whenever A ⊂ B. Thus, a game v ∈ MG(N) is characterized
by the following conditions:

• 0 ≤ v(A).

• v(A) ≤ v(B) if A ⊆ B.

11



Then, MG(N) = C(P(N)\{∅}), where the order relation ≺ on P(N)\{∅} is given by A ≺ B if
and only if A ⊂ B. For example, for |N | = 3, this poset is given in Figure 4. However, little else is
known about MG(N); for example, the set of extremal rays is not known and this question appears
in (Grabisch, 2016) as an open problem. We will study this set at the light of the results of the
previous section. Let us first deal with the extremal rays.

Corollary 2. The vectors defining an extremal ray of MG(N) are defined by non-empty upsets of
P(N)\{∅}.
Proof. Following Theorem 7, we need to find the upsets of P(N)\{∅} that are connected. But in this
case, all upsets except the empty upset, corresponding to vertex 0, contain N . Hence, all of them
are connected.

For obtaining the number of extremal rays, note that any upset in a poset is characterized in
terms of its minimal elements and that these minimal elements are an antichain of the poset. For
the boolean poset P(N), the number of antichains is known as the Dedekind numbers, Dn. The first
values of Dn are given in Table 1.

n M(n)
0 2
1 3
2 6
3 20
4 168
5 7 581
6 7 828 354
7 2 414 682 040 998
8 56 130 437 228 687 557 907 788

Table 1: First Dedekind numbers.

For MG(N), we have to remove the antichain {∅} because the poset defining the order cone
is P(N)\{∅}. Besides, the empty antichain corresponds to 0 and thus, it should be removed, too.
Hence, the number of extremal rays of MG(N) is Dn − 2.

Example 2. Let us compute the extremal rays of the order cone MG(N) where N = {1, 2, 3}. Note
that C(P ) is a cone in R7. Then, considering P = B3 \ {∅}, it suffices to compute the upsets of P .

123

2312 13

31 2

Figure 4: Boolean poset P = B3 \ {∅}.
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A list with these upsets is:

CF(P ) = {∅, {123}, {12, 123}, {13, 123}, {23, 123}, {12, 13, 123}, {12, 23, 123}, {13, 23, 123},

{12, 13, 23, 123}, {1, 12, 13, 123}, {1, 12, 13, 23, 123}, {2, 12, 23, 123}, {2, 12, 13, 23, 123}, {3, 13, 23, 123},
{3, 12, 13, 23, 123}, {1, 2, 12, 13, 23, 123}, {1, 3, 12, 13, 23, 123}, {2, 3, 12, 13, 23, 123}, {1, 2, 3, 12, 13, 23, 123}}.

Removing ∅, we have a total of 18 extremal rays. Note that D3 = 20.

Similarly, we can apply Theorem 8 to obtain all k-dimensional faces of the cone MG(N).

Corollary 3. The non-empty faces of MG(N) are given by the non-empty faces of O(P(N)\{∅})
containing vertex 0.

However, we will see that in this case we can do better.

Definition 3. Let P be a convex polytope and x be a point outside the affine space generated by P,
denoted aff(P). Point x is called apex. We define a pyramid with base P and apex x, denoted by
pyr(P,x), as the polytope whose vertices are the ones of P and x.

Note that for a pyramid pyr(P,x), any vertex of P is adjacent to x. Moreover, there is a simple
way to find faces containing x for a pyramid that we write below.

Proposition 2. For a pyramid of apex x and base P, the k-dimensional faces containing x are given
by the (k − 1)-dimensional faces of P.

From now on, in order to simplify the notation, we will assume that the last coordinate in vector
v corresponds to the value v(N).

Proposition 3. Consider the poset P(N)\{∅} with the relation order A ≺ B ⇔ A ⊂ B. Then, the
order polytope O(P(N)\{∅}) is a pyramid with apex 0 and base {(x, 1) : x ∈ O(P(N)\{∅, N}}.
Proof. Note that for any non-empty upset F , it follows that N ∈ F. Then, the characteristic function
of any non-empty upset vF satisfies vF (N) = 1. Hence, any vertex of O(P(N)\{∅}) except 0 is in
the hyperplane v(N) = 1. Consequently, O(P\{∅}) is a pyramid with apex 0. Finally, the points
v of O(P(N)\{∅}) in the hyperplane v(N) = 1 satisfy v(A) ≤ v(B) if A ⊆ B. Thus, these points
can be associated to the order polytope O(P(N)\{∅, N}), where the order relation  is given by
A  B ⇔ A ⊆ B.

This allows us to study the k-dimensional faces of MG(X) from a different point of view that
the one of Theorems 9 and 8. In particular, as apex x is adjacent to every vertex in the base P,
edges are given by segments [x,y] with y a vertex of P, thus recovering the result of Corollary 2. In
general, applying Proposition 2, the following holds.

Corollary 4. The k-dimensional faces of MG(N) are given by the (k − 1)-dimensional faces of
O(P(N)\{∅, N}).

The order polytope O(P(N)\{∅, N}) is a well-known polytope corresponding to the set of capac-
ities or fuzzy measures.

Definition 4. A capacity on X is a map μ : P(N) → R, satisfying
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i) μ(∅) = 0, μ(N) = 1 (normalization).

ii) μ(A) ≤ μ(B), ∀A ⊆ B (monotonicity).

This notion was proposed by Choquet (Choquet, 1953) and independently by Sugeno under
the name of fuzzy measure (Sugeno, 1974). These measures are also called “non-additive mesaures”
(Denneberg, 1994). From the point of view of Game Theory, capacities are just normalized monotone
games. Capacities constitute an extension of a probability distribution, where additivity is turned
into monotonicity and they have been applied in many different fields, as for example Decision Making
(see (Grabisch, 2016) and references therein). The set of capacities on a referential set N is denoted
by FM(N) and it can be seen (Combarro and Miranda, 2010) that

FM(N) = O(P(N)\{∅, N}).
It is worth-noting that the geometrical structure (apart the dimension) of O(P(N)\{∅, N}) is

quite different from the geometrical structure of O(P(N)\{∅}). For example, in O(P(N)\{∅}) all
vertices are adjacent to 0, while this is not the case forO(P(N)\{∅, N}) (see (Combarro and Miranda,
2010)).

For this order polytope, many results are known, as for example wether two vertices are adjacent
or the centroid (Combarro and Miranda, 2010, 2008). Applying Corollary 4, we conclude that 2-
dimensional faces of MG(N) are given by an edge of FM(N) = O(P(N)\{∅, N}). On the other
hand, an edge inO(P(N)\{∅, N}) is given by two adjacent vertices vF1 , vF2 . Another characterization
specific for O(P(N)\{∅, N}) is given in (Combarro and Miranda, 2008). Moreover, as both F1, F2

are adjacent to 0, the following holds.

Corollary 5. Any 2-dimensional face of MG(N) are defined in terms of 2-dimensional simplices
given by {0, vF1, vF2} where F2\F1 is a connected subposet of P(N)\{∅, N}.
Example 3. Continuing with the previous example, the previous discussion allows to derive the 2-
dimensional faces ofMG(N), as by Corollary 4 they can be given in terms of edges of O(P(N)\{∅, N}).
The upsets of P(N)\{∅, N} were given before. Now, we have to search for pairs of adjacent vertices
in O(P(N)\{∅, N}), for example using Theorem 4. It is easy but tedious to show that there are 76
pairs in these conditions.

4.2 The cone of games with restricted cooperation

Let us now treat the problem when we face a situation of restricted cooperation. Then, several
coalitions are not allowed and we have a set FC(N) ⊂ P(N)\{∅} of feasible coalitions. Many papers
have been devoted to this subject, usually imposing an algebraic structure on FC(N) (see e.g. (Faigle,
1989; Pulido and Sánchez-Soriano, 2006; Katsev and Yanovskaya, 2013; Grabisch, 2011)). From the
point of view of polyhedra, if a coalition is not feasible, this implies that this subset is removed from
FC(N). We will denote by MGFC(N)(N) the set of all monotone games whose feasible coalitions are
FC(N). Thus, a game v ∈ MGFC(N)(N) is characterized by the following conditions:

• 0 ≤ v(A), A ∈ FC(N).

• v(A) ≤ v(B) if A ⊆ B,A,B ∈ FC(N).

14



Then, MGFC(N)(N) = C(FC(N)), where the order relation ≺ on FC(N) is given by A ≺ B if
and only if A ⊂ B.

Assume first that N ∈ FC(N). This is the usual situation, as most of the solution concepts on
Game Theory assume that all players agree to form the grand coalition (see e.g. (Grabisch, 2013)).
In this case, the following holds.

Corollary 6. If N ∈ FC(N), then the set of extremal rays of MGFC(N)(N) is given by

{vF : ∅ 	= F, Fupset of FC(N)}.
Proof. Applying Theorem 7, the set of extremal rays is given by the set of vertices vF of O(FC(N))
such that F is a connected upset in FC(N). As N ∈ FC(N), it follows that all upsets are connected
subposets of FC(N), so that we have as many extremal rays as vertices in O(FC(N)) different from
0. And this value is given by the number of upsets minus one (for the empty upset corresponding to
vertex 0).

Indeed, we can translate in this case the results obtained for MG(N). Assuming the last coordi-
nate corresponds to subset N , the following holds.

Proposition 4. Assume N ∈ FC(N) and consider the poset FC(N) with the relation order A ≺
B ⇔ A ⊂ B. Then, the order polytope O(FC(N)) is a pyramid with apex 0 and base {(x, 1) : x ∈
O(FC(N)\{N}}.
Proof. It is a straightforward translation of the proof of Proposition 3.

This implies that we have two possibilities for studying MGFC(N)(N). First, we can apply the
general results for any order cones developed in Section 3. Alternatively, we can apply Proposition 2
and derive the results from the structure of the order polytope O(FC(N)\{N}) just as it has been
done for MG(N). In this last case, the following holds.

Corollary 7. The k-dimensional faces of MG(FC(N)) are given by the (k − 1)-dimensional faces
of O(FC(N)\{N}).
Example 4. Suppose a situation with four players, and assume that the only feasible coalitions are
FC(N) = {12, 23, 34, 1234}. The corresponding Hasse diagram is given in Figure 5.

12 23 34

1234

Figure 5: Hasse diagram of the poset of a game with restricted cooperation.

For this example, the non-empty upsets of FC(N) are:

F1 = {1234}, F2 = {12, 1234}, F3 = {23, 1234}, F4 = {34, 1234}, F5 = {12, 23, 1234},
F6 = {12, 34, 1234}, F7 = {23, 34, 1234}, F8 = {12, 23, 34, 1234}.

Thus, we have 8 extremal rays. For example, the extremal ray corresponding to F5 is given by
vector v = (1, 1, 0, 1), where the third coordinate corresponds to subset {34}.
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For k-dimensional faces, it just suffice to note that FC(N)\{1234} is an antichain. Then,
O(FC(N)\{N}) is a cube. For example, for finding 2-dimensional faces, we have to consider pairs of
adjacent vertices of the cube O(FC(N)\{N}) (there are 12 pairs). Similarly, for 3-dimensional faces
we have to consider 2-dimensional faces of the cube (six cases), and there is just one 4-dimensional
face.

Now, assume N 	∈ FC(N). This situation is more tricky and needs to study each case applying
Theorems 7 and 8. For example, in this situation it could happen that some vertices are not adjacent
to 0 and thus, they do not define an extremal ray. Moreover, the 2-dimensional faces are not defined
necessarily via 2-dimensional simplices.

As examples for this case, we study two situations. First, assume FC(N) is a poset with a top
element �. Thus, we can extend all the results that we have obtained when N ∈ FC(N).

Proposition 5. Consider the poset with top element FC(N) with the relation order A ≺ B ⇔ A ⊂ B
and top element �. Then, the order polytope O(FC(N)\{∅}) is a pyramid with apex 0 and base
{(x, 1) : x ∈ O(FC(N)\{�}}.
Corollary 8. The k-dimensional faces of MG(FC(N)) are given by the (k − 1)-dimensional faces
of O(FC(N)\{�}).

Suppose as a second example that FC(N) is a union of connected posets

FC(N) = P1 ∪ ... ∪ Pr, Pi connected.

In this case, the only connected upsets are the connected upsets Fi ⊆ Pi. Then, we have:

Proposition 6. If FC(N) = P1∪ ...∪Pr, where Pi is a connected poset, i = 1, ..., r, then the extremal
rays of MG(FC(N)) are given by vFi

where Fi is a non-empty connected upset of Pi.

For example, if |Pi| = 1 ∀i, then FC(N) is an antichain and the only connected upsets are the
singletons. Thus, there are just r extremal rays forMG(FC(N)). Indeed, note that the corresponding
order polytope is the r-dimensional cube and thus the vertices adjacent to 0 are ei, i = 1, ..., r.

In general, we have to study the properties of the corresponding poset.

Example 5. Assume again a 4-players game and let us consider the coalitions given in Figure 6 left.
We have in this case a 4-dimensional cone order.

Fixing the order for coordinates 12, 13, 34, 123, the vertices of the corresponding order polytope
are given in Table 2.

Upset ∅ 123 34 34, 123 12, 123
Vertex (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1)

Upset 13, 123 12, 12, 123 12, 34, 123 13, 34, 123 12, 13, 34, 123
Vertex (0,1,0,1) (1,1,0,1) (1,0,1,1) (0,1,1,1) (1,1,1,1)

Table 2: Upsets and vertices of poset of Figure 6.

Vertices defining an extremal ray are those whose corresponding upset is connected. The five
vertices in these conditions are written in boldface.
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12 13 34

123

12 13 34

123

⊥

�

Figure 6: Hasse diagram of the poset P of a game with restricted cooperation (left) and his extension
P̂ .

In order to obtain the facets of this order cone, we look for facets of the corresponding order
polytope containing 0 (Theorem 8). For this, we consider ⊥⊕P ⊕� (see Figure 6 right). As we are
looking for facets, we just turn an inequality not involving � into an equality. Then, the facets are
given in Table 3.

Restriction f(⊥) = f(12) f(⊥) = f(13) f(⊥) = f(34) f(12) = f(123) f(13) = f(123)
Vertices (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

(0,0,0,1) (0,0,0,1) (0,0,0,1) (1,0,0,1) (0,1,0,0)
(0,0,1,0) (0,0,1,0) (1,0,0,1) (1,0,1,1) (0,1,1,1)
(0,0,1,1) (0,0,1,1) (0,1,0,1) (1,1,0,1) (1,1,0,1)
(0,1,0,1) (0,1,0,1) (1,1,0,1) (1,1,1,1) (1,1,1,1)
(0,1,1,1) (1,0,1,1)

Table 3: Facets of the order cone of poset of Figure 6.

Another way to look for extremal rays is Theorem 6. For this, we need to build the lattice of
upsets, that is given in Figure 7.

Then, the extremal rays are given by upsets that together with ∅ form an embedded sublattice.
These upsets are

{123}, {34}, {12, 123}, {13, 123}, {12, 13, 123}.

4.3 The cone of k-symmetric measures

As explained before, order cones can be applied to more general situations than games with restricted
cooperation. In this subsection we will apply it to k-symmetric monotone games. We have chosen
this case because the set of k-symmetric capacities with respect to a fixed partition is an order
polytope (Combarro and Miranda, 2010).

The concept of k-symmetry appears in the theory of capacities as an attempt to reduce the
complexity (Miranda et al., 2002). The subjacent idea is that several players could act exactly in the
same way, so that we do not need to care about which players in these conditions are in a coalition
and we just need to know how many players are inside it. The key concept of k-symmetric monotone
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(12, 123) (13, 123) (34, 123)

(123) (34)

∅

(12, 13, 123) (12, 34, 123) (13, 34, 123)

(12, 13, 34, 123)

Figure 7: Lattice of upsets.

game is subset of indifference. Basically, a subset of indifference is a group of indistinguishable
elements in terms of game v. Mathematically, this translates into

v(B1 ∪ C) = v(B2 ∪ C), ∀C ⊆ X\A, B1, B2 ⊂ A, |B1| = |B2|.
This allows us to write a coalition in terms of the number of players inside each subset of indif-

ference.

Lemma 6. (Miranda et al., 2002) If {A1, ..., Ak} is a partition of indifference for N , then any C ⊆ N
can be identified with a k-dimensional vector (c1, ..., ck) with ci := |C ∩Ai|.

Then, each coalition writes (c1, ..., ck) with ci = 0, ..., |Ai|. For a given game v, it can be seen
that it is always possible to partitionate N in several subsets of indifference. Several partitions are
possible, but it can be proved (Miranda et al., 2002) that there is an only one being the coarsest.

Definition 5. We say that a game is k-symmetric with respect to the partition A1, ..., Ak if this is
the coarsest partition of N in subsets of indifference.

We denote by MGk(A1, ..., Ak) the set of monotone games v such that A1, ..., Ak are subsets of
indifference for v (but not necessarily k-symmetric; for example, any symmetric monotone game,
in which all players are indifferent, belongs to MGk(A1, ..., Ak)). Then, v ∈ MGk(A1, ..., Ak) is
characterized as follows:

• v(0, ..., 0) = 0.

• v(a1, ..., ak) ≤ v(b1, ..., bk) if ai ≤ bi, i = 1, ..., k.
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Consider then the poset

P = {(c1, ..., ck) : ci = 0, ..., |Ai|, i = 1, ..., k}
with the order relation (c1, ..., ck)  (b1, ..., bk) if and only if ci ≤ bi, i = 1, ..., k.

Then, it follows that MGk(A1, ..., Ak) = C(P\{(0, ..., 0)}) and the results of Section 3 can be
applied to obtain the geometrical aspects of this cone. Moreover, as (|A1|, ..., |Ak|) is a top element
in the poset, we can apply the results obtained for MG(N).

Corollary 9. The vectors defining an extremal ray of MGk(A1, ..., Ak) are defined by non-empty
upsets of P\{(0, ..., 0)}.
Proposition 7. Consider the poset P = {(c1, ..., ck) : ci = 0, ..., |Ai|, i = 1, ..., k}. Then, the order
polytope O(P\{(0, ..., 0)}) is a pyramid with base {(x, 1) : x ∈ O(P\{(0, ..., 0), (|A1|, ..., |Ak|)})} and
apex 0.

Corollary 10. The k-dimensional faces of MGk(A1, ..., Ak) are given by the (k − 1)-dimensional
faces of O(P\{(0, ..., 0), (|A1|, ..., |Ak|)}.

Let us study two particular cases.

Example 6. For MG1(N), the set of monotone symmetric games, the corresponding order polytope
is a chain of n elements. Thus, we have n non-empty upsets F1, ..., Fn, given by Fi := {i, ..., n} and
vFi

= (0, ..., 1, ..., 1). Therefore, we have n extremal rays.
Besides, by Theorem 4, we conclude that all vertices are adjacent to each other. Hence, we have(

n
2

)
2-dimensional faces and in general, the number of k-dimensional faces is

(
n
k

)
, for k ≥ 2.

Example 7. For the 2-symmetric case MG2(A1, A2), it has been proved in (Garćıa-Segador and
Miranda, 2020) that the order polytope FM2(A1, A2) can be associated to a Young diagram (Bandlow,
2008) of shape λ = (|A2|, ..., |A2|).

Moreover, there is a correspondence between upsets and staircase walks from (0, 0) to (a1, a2) in
a (|A1| + 1) × (|A2| + 1) grid (see Figure 8). Cell (i, j) represents the subset (i, j). In this sense,
the walk separates subsets with value 0 from subsets with value 1 (see (Garćıa-Segador and Miranda,
2020)). For example, the empty upset corresponds to the staircase walk going from (0, 0) to (a1, 0)
and then to (a1, a2).

Figure 8: Staircase walk in a 4× 4 grid and a staircase walk.

Then, the number of vertices of FM2(A1, A2) is the number of possible staircase walks, that is
given by

(
a1 + a2 + 2

a1 + 1

)
,

and by Corollary 9 the number of vertices determining an extremal ray is
(
a1+a2+2
a1+1

)− 1.
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5 Conclusions

In this paper we have introduced the concept of order cones. This concept is a natural extension of
order polytopes, a well-known object in Combinatorics with which order cones share many properties.
We have shown that all order cones are pointed, and we have derived some of their geometrical
properties. Namely, we have characterized its k-dimensional faces. In particular, we have obtained
a characterization of extremal ray in terms of the corresponding subjacent poset. The results in the
paper show that the geometrical structure of order cones can be derived from the order structure of
the subjacent poset, thus simplifying many results.

We feel that order cones could be a powerful tool to study different cones appearing in Game
Theory in a general way. As examples of applicability, in the second part of the paper, we have
applied these results to some special subfamilies of monotone games that satisfy the conditions of
order cone. We have shown that the results derived in the first part can be applied to the set of
monotone games with restricted cooperation, no matter the structure of the set of feasible coalitions.
Then, we have studied in the first place the set of monotone games when all coalitions are allowed.
For this case, we have shown that it is closely related to the order polytope of capacities, although
there are differences. In a second step, we have studied this set when a set of feasible coalitions
arises. We have shown that the set of monotone games with restricted cooperation always leads
to an order cone whose structure relays on the poset of feasible coalitions. And we have seen that
roughly speaking, there are two possible cases: the one with a top element (usually N) as a feasible
coalition, that is very similar to the general case, and the case where there are several maxima, that
leads to a more complicated problem.

Finally, we have studied an example where an order cone arises if constraints are added to the
values of the game. This shows that order cones can be applied to situations different of monotone
games with restricted cooperation. More concretely, we have studied the set of k-symmetric monotone
games.

It should be noted that order cones just rely on a poset structure and thus, they are very general.
In this paper, we have dealt with monotone games, as they are defined in terms of a natural order
structure. However, this concept is more general and can be applied to any other order. The only
condition is that there are constraints such as v(A) ≤ v(B) whenever ARB, where R is a relation
on FC(N). Indeed, general games can be seen as an order cone where the corresponding poset is an
antichain, and the same can be said for general games with restricted cooperation. From this trivial
situation, we can add other order conditions. For example, imagine that a player, say 1, always
enhances coalitions, i.e. v(B) ≤ v(B ∪ 1), ∀B ⊆ N\{1}. The geometry of the set of games satisfying
this condition can be treated as an order cone.

We have introduced order cones as a tool for dealing with the geometry of a special type of convex
cones. However, other applications may arise, as it can be seen in (Postnikov et al., 2008) for braid
cones.

In this paper, we have removed ∅ from the set of feasible coalitions as v(∅) is fixed. Note that
indeed this condition appears in an indirect way in the definition of order cone, as ∅ ⊆ A and
f(A) ≥ 0. Thus, this concept can be extended when the values for some coalitions are fixed and
these coalitions appear in some monotonicity conditions. For example, if monotonicity is kept and
we add, say v(A) = 0.5, the corresponding set of monotone games satisfying v(A) = 0.5 can be seen
as an extended order cone. We intend to study this situation in the future.
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