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Abstract: The Rao’s score, Wald and likelihood ratio tests are the most common procedures for
testing hypotheses in parametric models. None of the three test statistics is uniformly superior to
the other two in relation with the power function, and moreover, they are first-order equivalent and
asymptotically optimal. Conversely, these three classical tests present serious robustness problems, as
they are based on the maximum likelihood estimator, which is highly non-robust. To overcome this
drawback, some test statistics have been introduced in the literature based on robust estimators, such
as robust generalized Wald-type and Rao-type tests based on minimum divergence estimators. In
this paper, restricted minimum Rényi’s pseudodistance estimators are defined, and their asymptotic
distribution and influence function are derived. Further, robust Rao-type and divergence-based
tests based on minimum Rényi’s pseudodistance and restricted minimum Rényi’s pseudodistance
estimators are considered, and the asymptotic properties of the new families of tests statistics are
obtained. Finally, the robustness of the proposed estimators and test statistics is empirically examined
through a simulation study, and illustrative applications in real-life data are analyzed.

Keywords: Rényi’s pseudodistance; minimum Rényi’s pseudodistance estimators; restricted
minimum Rényi’s pseudodistance estimators; Rao-type tests; divergence-based tests

1. Introduction

Let (X , βX , Pθ)θ∈Θ be the statistical space associated with the random variable X,
where βX is the σ-field of Borel subsets A ⊂ X and {Pθ}θ∈Θ is a family of probability
distributions defined on the measurable space (X , βX ), whit Θ an open subset of Rp and
p ≥ 1. We assume that the probability measures Pθ are described by densities fθ(x) =
dPθ/dµ(x), where µ is a σ-finite measure on (X , βX ). Given a random sample X1, . . . , Xn,
of the random variable X with density belonging to the parametric family Pθ, the most
popular estimator for the model parameter θ is the maximum likelihood estimator (MLE),
which maximizes the likelihood function of the assumed model. The MLE has been widely
studied in the literature for general statistical models, and it has been shown that, under
certain regularity conditions, the sequence of MLEs of θ, θ̂n, is asymptotically normal and
it satisfies some desirable properties, such as consistency and asymptotic efficiency. That is,
the MLE is the BAN (best asymptotically normal) estimator. However, in many popular
statistical models, the MLE is markedly non-robust against deviations, even very small
ones, from the parametric conditions.

To overcome the lack of robustness, minimum distance (or minimum divergence) esti-
mators (MDEs) have been developed. MDEs have received growing attention in statistical
inference because of their ability to conciliate efficiency and robustness. In parametric
estimation, the role of divergence or distance measures is very intuitive: the estimates
of the unknown parameters are obtained by minimizing a suitable divergence measure
between the estimated from data and the assumed model distributions. There is a growing
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body of literature that recognizes the importance of MDEs in terms of robustness, without
a significant loss of efficiency, with respect to the MLE. See, for instance, the works of
Beran [1], Tamura and Boes [2], Simpson [3,4], Lindsay [5], Pardo [6], and Basu et al. [7]
and the references therein.

Let G denote the unknown distribution function, with associated density g, underlying
the data. The minimum divergence (distance) functional evaluated at G, T(G), is defined as

d(g, fT(G)) = min
θ∈Θ

d(g, fθ), (1)

with d(g, fθ) being a distance or divergence measure between the densities g and fθ. As
the true distribution underlying the data is unknown, given a random sample, we could
estimate the model parameter θ, substituting in the previous expression the true distribution
G by its empirical estimation Gn. Therefore, the MDE of θ is given by

θ̂n = T(Gn), (2)

When dealing with continuous models, it is convenient to consider families of diver-
gence measures for which non-parametric estimators of the unknown density function are
not needed. From this perspective, the density power divergence (DPD) family, leading
to the minimum density power divergence estimators (MDPDEs) (see Basu et al. [7]), as
well as the Rényi’s pseudodistance (RP), leading to the minimum Rényi’s pseudodistance
estimators (MRPE) (see Broniatowski et al. [8]) between others, play an important role. The
results presented in Broniatowski et al. [8] in the context of independent and identically
distributed random variables were extended for the case of independent but not identically
distributed random variables by Castilla et al. [9].

In many situations we have additional knowledge about the true parameter value, as
it must satisfy certain constraints. Then, the restricted parameter space has the form

{θ ∈ Θ/ g(θ) = 0r}, (3)

where 0r denotes the null vector of dimension r, and g : Rp → Rr is a vector-valued
function such that the p× r matrix

G(θ) =
∂gT(θ)

∂θ
(4)

exists and is continuous in θ, and rank(G(θ)) = r. Here, superscript T represents the
transpose of the matrix. In the following, the restricted parameter space given in (3) is
denoted by Θ0, as in most situations, it will represent a composite null hypothesis.

The most popular estimator of θ under the non-linear constraint given in (3) is the
restricted MLE (RMLE) that maximizes the likelihood function subject to the constraint
g(θ) = 0r (see Silvey [10]). The RMLE encounters similar robustness problems to the
MLE. To overcome such deficiency, the restricted MDPDEs (RMDPDEs) were introduced in
Basu et al. [11] and their theoretical robustness properties were later studied in Ghosh [12].

The main purpose in this paper is extending the theory developed for the MRPE to
the restricted parameter space setting, yielding to the restricted MRPE (RMPRE), where
the parameter space has the form (3). The rest of the paper is as follows: In Section 2,
MRPE is introduced. Section 3 presents RMPRE, and its asymptotic distribution as well
as its influence function are obtained. In Section 4, two different test statistics for testing
composite null hypothesis, based on the RMRPE, are developed, and explicit expressions of
the statistics are presented for testing in normal populations. Section 5 presents a simulation
study, where the robustness of the proposed estimators and test statistics is empirically
shown. Section 6 deals with real-data situations. Finally, some conclusions are presented in
Section 7.
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2. Minimum Rényi Pseudodistance Estimators

In this section, we introduce the MRPE. We derive the estimating equations of the
MRPE and recall its asymptotic distribution.

Let X1, . . . , Xn be a random sample of size n from a population having true and
unknown density function g, modeled by a parametric family of densities fθ with θ ∈ Θ ⊂
Rp. The RP between the densities fθ and g is given, for τ > 0, by

Rτ( fθ, g) =
1

τ + 1
log
(∫

fθ(x)τ+1dx
)
+

1
τ(τ + 1)

log
(∫

g(x)τ+1dx
)

− 1
τ

log
(∫

fθ(x)τ g(x)dx
)

..

The RP can be defined for τ = 0 taking continuous limits, yielding the expression

R0( fθ, g) = lim
τ↓0

Rτ( fθ, g) =
∫

g(x) log
g(x)
fθ(x)

dx.

Then, the RP coincides with the Kullback–Leibler divergence (KL) between g and fθ,
at τ = 0 (see Pardo, 2006).

The RP was considered for the first time by Jones et al. [13]. Later Broniatowski et al. [8]
established some useful properties of the divergence, such as the positivity of the RP for
any two densities and for all values of the parameter τ, Rτ( fθ, g) ≥ 0 and uniqueness of
the minimum RP within a parametric family, that is, Rτ( fθ, g) = 0 if and only if fθ = g. The
last property justifies the definition of the MRPEs as the minimizer of the RP between the
assumed distribution and the empirical distribution of the data. It is interesting to note that
the so-called RP by Broniatowski et al. [8] had been previously considered by Fujisawa and
Eguchi [14] under the name of γ-cross entropy. In that paper, some appealing robustness
properties of the estimators based on such entropy are shown.

Given a sample X1, . . . , Xn, from Broniatowski et al. [8] it can be seen that minimizing
Rτ( fθ, g) leads to the following definition.

Definition 1. Let (X , βX , fθ)θ∈Θ⊂Rp be a statistical space. The MRPE based on the random
sample X1, . . . , Xn for the unknown parameter θ is given, for τ > 0, by

θ̂τ(X1, . . . , Xn) = arg sup
θ∈Θ

n

∑
i=1

fθ(Xi)
τ

Cτ(θ)
, (5)

where

Cτ(θ) =

(∫
fθ(x)τ+1dx

) τ
τ+1

.

Further, at τ = 0, θ̂0(X1, . . . , Xn) minimizes the KL divergence, and thus the MRPE
coincides with the MLE for τ = 0. Based on the previous definition (5), differentiating, we
obtain that the estimating equations of the MRPE are given by

n

∑
i=1

Ψτ(xi; θ) = 0p, (6)

with

Ψτ(x; θ) = fθ(x)τ(uθ(x)− cτ(θ)),

uθ(x) =
(

uθ1(x), . . . , uθp(x)
)T

, uθi (x) = ∂
∂θi

log fθ(x),

∂Cτ(θ)
∂θ = Cτ(θ)cτ(θ)τ, (7)
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being

cτ(θ) =
1

κτ(θ)
ξτ(θ) =

(
cτ,1(θ), . . . , cτ,p(θ)

)T , (8)

ξτ(θ) =
∫

fθ(x)τ+1uθ(x)dx, (9)

κτ(θ) =
∫

fθ(x)τ+1dx. (10)

The MRPE is an M-estimator and thus its asymptotic distribution and influence
function (IF) can be obtained based on the asymptotic theory of the M-estimators. Bronia-
towski et al. [8] studied the asymptotic properties and robustness of the MRPEs. The next
result recalls the asymptotic distribution of the MRPEs.

Theorem 1. Let θ0 be the true unknown value of θ. Then,

√
n(θ̂τ − θ0)

L→
n→∞

N
(
0p, V τ(θ0)

)
(11)

where
Vτ(θ) = Sτ(θ)

−1Kτ(θ)Sτ(θ)
−1 (12)

with

Sτ(θ) = −E

[
∂Ψτ(X; θ)T

∂θ

]
, (13)

Kτ(θ) = E
[
Ψτ(X; θ)ΨT

τ (X; θ)
]
. (14)

Castilla et al. [15] introduced useful notation for the computation of Vτ(θ).

Sτ(θ) = Jτ(θ)− 1
κτ(θ)

ξτ(θ)ξτ(θ)
T , (15)

Kτ(θ) = J2τ(θ) +
1

κτ(θ)

(
κ2τ(θ)
κτ(θ)

ξτ(θ)ξτ(θ)
T − ξτ(θ)ξ2τ(θ)

T − ξ2τ(θ)ξτ(θ)
T
)

, (16)

where
Jτ(θ) =

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx, (17)

and κτ(θ) and ξτ(θ) are as in (9) and (10), respectively.
Toma and Leoni-Aubin [16] defined new robust and efficient measures based on the

RP. Later, Toma et al. [17] considered the MRPE for general parametric models and de-
veloped a model selection criterion for regression models. Broniatowski et al. [8] applied
the method to the multiple regression model (MRM) with random covariates. Subse-
quently, Castilla et al. [18] developed Wald-type tests based on MRPE for the MRM, and
Castilla et al. [19] studied the MRPE for the MRM in the ultra-high dimensional set-up.
Further, Jaenada and Pardo [20,21] considered the MRPE and Wald-type test statistics for
generalized linear models (GLM). Despite Wald-type test statistics, there exist others rele-
vant test statistics having an important role in the statistical literature: the likelihood-ratio
and Rao (or score) tests, which are based on restricted estimators, usually the RMLE. Then,
it makes sense to develop robust versions of these popular statistics based on the RMRPE.

3. The Restricted Minimum Rényi Pseudodistance Estimator: Asymptotic Distribution
and Influence Function of RMRPE

In this section, we introduce the RMRPE and we derive its asymptotic distribution.
Moreover, we study its robustness properties through its influence function (IF).
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Definition 2. The RMRPE functional T̃τ(G) evaluated at the distribution G is defined by

Rτ(g, fT̃τ(G)) = min
θ∈Θ0

Rτ(g, fθ),

given that such a minimum exists.
Accordingly, given random sample X1, . . . , Xn from the distribution G, the RMRPE of θ is

defined as

θ̃τ = arg sup
θ∈Θ0

n

∑
i=1

fθ(Xi)
τ

Cτ(θ)
.

Next, the result states the asymptotic distribution of the RMRPE, θ̃τ = T̃τ(G).

Theorem 2. Suppose that the true distribution satisfies the conditions of the model and let us
denote by θ0 ∈ Θ0 the true parameter. Then, the RMRPE θ̃τ of θ obtained under the constraints
g(θ) = 0r has distribution

n1/2(θ̃τ − θ0)
L−→

n−→∞
N (0p, Στ(θ0))

where
Στ(θ0) = P∗τ(θ0)Kτ(θ0)P∗τ(θ0)

T ,

P∗τ(θ0) = Sτ(θ0)
−1 −Qτ(θ0)G(θ0)

TSτ(θ0)
−1, (18)

Qτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
. (19)

and Sτ(θ0) is defined in (13), evaluated at θ = θ0.

Proof. See Appendix A.

To analyze the robustness of an estimator, Hampel et al. [22] introduced the concept of
the influence function (IF). Since then, the IF has been widely used in statistical literature to
measure robustness in different statistical contexts. Intuitively, the IF describes the effect of
an infinitesimal contamination of the model on the estimate. Then, IFs associated to locally
robust (B-robust) estimators should be bounded. Let us now obtain the IF of RMRPE and
analyze its boundedness to asses the robustness of the proposed estimators. We consider
the contaminated model gε(x) = (1− ε) fθ(x) + ε∆x, with ∆x the indicator function in
x, and we denote θ̃τ,ε = T̃τ(Gε), being Gε the distribution function associated to gε. By
definition, θ̃τ,ε is the minimizer of Rτ(g, fθ) subject to g(θ̃τ,ε) = 0. Following the same
steps as in Theorem 5 in Broniatowski et al. [8], it can be seen that the influence function of
T̃τ in fθ is given by

IF(x, T̃τ , θ) = Mτ(θ)
−1[ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ], (20)

where cτ(θ) was defined in (8) and

Mτ(θ) =
1∫

fθ(x)τ+1dx

[∫
fθ(x)τ+1dx

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx

−
(∫

fθ(x)τ+1uθ(x)dx
)(∫

fθ(x)τ+1uθ(x)dx
)T
]

,

with the additional condition that g(θ̃τ,ε) = 0. Note that expression (20) corresponds to
the IF of the unrestricted MRPE. Differentiating this last equation gives, at ε = 0,

G(θ)T IF(x, T̃τ , θ) = 0. (21)

Based on (20) and (21) we have
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(
Mτ(θ)

G(θ)T

)
IF(x, T̃τ , θ) =

(
[ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ]

0

)
.

Therefore,

(
Mτ(θ)T G(θ)

)( Mτ(θ)

G(θ)T

)
IF(x, T̃τ , θ) = Mτ(θ)

T [ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ]

and

IF(x, T̃τ , θ) =
(

Mτ(θ)
T Mτ(θ) + G(θ)G(θ)T

)−1
Mτ(θ)

T [ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ]. (22)

Note that matrices Mτ(θ) and G(θ) involved in the expression (22) are defined except
for the model and tuning parameters θ and τ, and so the boundedness of the IF of the
RMRPE depends, therefore, on the boundedness of the factor

[ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ].

Therefore, the boundedness of the IF of the RMRPE depends directly on the bound-
edness of IF of the MRPE, stated in (20). The IF of the MRPE has been widely studied for
general statistical models, concluding that the MRPEs are robust for positive values of τ,
and that such robustness increases with the tuning parameter. A whole discussion can be
found in the work of Broniatowski et al. [8]. Hence, the same properties hold for RMRPEs.

4. Robust Test Statistics Based on RMRPEs

In this section, we develop two statistics based on the RMRPEs for testing composite
null hypothesis, and their asymptotic distributions are obtained. Both procedures are par-
ticularized to standard deviation testing (with unknown mean) under normal populations,
and explicit expressions of the test statistics are obtained.

4.1. Testing Based on Divergence Measures

In this section, we present the family of Rényi’s pseudodistance test statistics (RPTS)
for testing the null hypothesis given in (3). This family of test statistics is given by

Tγ(θ̂τ , θ̃τ) = 2nRγ( fθ̂τ
, fθ̃τ

). (23)

The RPTS, Tγ(θ̂τ , θ̃τ), can be understood as a measure between the best unrestricted
estimator of the model parameter, and the best estimator satisfying the null hypothesis.
Large values of the RPTS indicate that the model densities associated with the restricted and
unrestricted estimators are far away one from the other, and so the null hypothesis is not
supported by the observed data. Hence, we should reject H0 for large enough Tγ(θ̂τ , θ̃τ).
We can observe that the family of RPTS defined in (23) depends on two tuning parameters,
τ and γ. The first is used for estimating the unknown parameters, while the second is
applied to obtain the family of test statistics. The following theorem presents the asymptotic
distribution of the family of RPTS defined in (23).

Theorem 3. The asymptotic distribution of Tγ(θ̂τ , θ̃τ) defined in (23) coincides, under the null
hypothesis H0 given in (3), with the distribution of the random variable

r

∑
i=1

λ
τ,γ
i (θ0)Z2

i ,

where Z1, . . . , Zr are independent standard normal variables, λ
τ,γ
1 (θ0), . . . , λ

τ,γ
r (θ0) are the nonzero

eigenvalues of Mγ,τ(θ0) = Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0) and k = r. The matrices Aγ(θ0)and
Bτ(θ0) are given by,
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Aγ(θ0) =
Sγ(θ0)

κτ(θ0)
, (24)

Bτ(θ0) = Qτ(θ0)G(θ0)
TSτ(θ0)

−1. (25)

Proof. See Appendix A.

Rényi’s Pseudodistance Test Statistics for Normal Populations

Under the N (µ, σ2) model, consider the problem of testing

H0 : σ = σ0 versus H1 : σ 6= σ0 (26)

where µ is an unknown nuisance parameter. In this case, the unrestricted and null parameter
spaces are given by Θ = {(µ, σ2) ∈ R2|µ ∈ R, σ2 ∈ R+} and Θ0 = {(µ, σ) ∈ R2|σ =

σ0, µ ∈ R}, respectively. If we consider the function g(θ) = σ− σ0, with θ = (µ, σ)T , the
null hypothesis H0 can be written as

H0 : g(θ) = 0

and we are in the situation considered in (26). We can observe that in our case G(θ) =

(0, 1)T . Based on (6) and taking into account the fact that fθ(x) is the normal density with
mean µ and variance σ2, the MRPE θ̂τ = (µ̂τ , σ̂τ)T of θ = (µ, σ)T is the solution of the
system of nonlinear equations

n
∑

i=1
(Xi − µ) exp

{
− τ

2

(
Xi−µ

σ

)2
}

= 0

n
∑

i=1

{(
Xi−µ

σ

)2
− 1

1+τ

}
exp

{
− τ

2

(
Xi−µ

σ

)2
}

= 0

while the RMRPE θ̃β = (µ̃τ , σ0)
T , when σ = σ0 is the solution of the nonlinear equation

n

∑
i=1

{(
Xi − µ

σ0

)2
− 1

1 + τ

}
exp

{
−τ

2

(
Xi − µ

σ0

)2
}

= 0.

After some algebra (see the Appendix A) we obtain that the RPTS for testing (26)
under normal populations can be expressed as

Tγ(θ̂τ , θ̃τ) = 2nRγ

(
N (µ̂τ , σ̂2

τ),N (µ̃τ , σ0)
)

(27)

=
2n

γ(γ + 1)
log

 1
σ̂τσ

γ
0


√

σ̂2
τ + γσ2

0√
γ + 1

γ+1+ n
(µ̂τ − µ̃τ)

2(
γσ2

0 + σ̂2
τ

)
Based in (27), and taking into account that the eigenvalue of the matrix Aγ(θ)Bτ(θ)Kτ(θ)Bτ(θ)
is given by (see Appendix A)

lτ,γ(σ) =
1
2

(τ + 1)3

(γ + 1)2(2τ + 1)
5
2

(
3τ2 + 4τ + 2

)
,

we apply Theorem 3 such that

lτ,γ(σ0)
−1

 2n
γ(γ + 1)

log

 1
σ̂τσ

γ
0


√

σ̂2
τ + γσ2

0√
γ + 1

γ+1+ n
(µ̂τ − µ̃τ)

2(
γσ2

0 + σ̂2
τ

)
 L→

n→∞
χ2

1.
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Note that the RPTS is indexed by two tuning parameters, γ and τ, the first controlling
the robustness of the pseudodistance and the second controlling the robustness on the
estimation. For simplicity, we use γ = τ for the normal population application.

Remark 1. For τ = γ = 0, the RPTS coincides with the asymptotic likelihood ratio test for
testing (26). Indeed, for τ = 0, we have that the MLE and RMLE are given, respectively, by

θ̂ = (X, σ̂2
n =

1
n

n

∑
i=1

(Xi − X)2) and θ̃ = (X, σ2
0 ).

Now, the expression of the Kullback–Leibler divergence (the RP for γ = 0) between two normal
densities, N (µ1, σ1) and N (µ2, σ2), is given by

lim
γ→0

Rγ(N (µ1, σ1),N (µ2, σ2)) =
σ2

2 − σ2
1

2σ2
1

+ ln
σ1

σ2
+

1
2
(µ1 − µ2)

2

σ2
1

. (28)

and thus the RPTS for γ = τ = 0 is

T0(θ̂, θ̃) = n
σ2

0
σ̂2

n
− n + 2n ln

σ̂n

σ0
.

On the other hand, the likelihood ratio for testing (26) is given by

λ(X1, . . . , Xn) =

(
σ̂n

σ0

)n/2
e
−n σ̂2

n
2σ2

0 en/2,

and so, both expressions are related through

−2 ln λ(X1, . . . , Xn) = T0(θ̂, θ̃).

4.2. Rao’s-Type Tests Based on RMRPE

Rao test statistics are one of the most popular score test statistics for testing a simple
and composite null hypothesis in general statistical models. For the simple null hypothesis
testing, it requires no parameter estimation, but for composite ones, the classical Rao test is
based on the likelihood score function associated with the restricted MLE (see Rao [23]).
Basu et al. [24] generalized Rao’s procedure by using score functions associated with
RMDPDEs, bringing in a considerable gain of robustness of the Rao-type test obtained.
In this section, we develop Rao-type test statistics based on the score function associated
to RMRPEs.

Let us consider the τ−score function associated to the RMRPE,

ψτ(x; θ) = fθ(x)τ(uθ(x)− cτ(θ)),

so the estimating equations for the MRPE are given by

n

∑
i=1

ψτ(xi; θ) = 0p.

Then, the τ-score statistic can be defined as

Ψτ(θ) =
n

∑
i=1

ψτ(xi; θ) =

(
n

∑
i=1

ψ1
τ(xi; θ), . . . , ∑n

i=1 ψk
τ(xi; θ)

)T

.

However, taking expectations in the corresponding quantities, it is not difficult to
show that
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E

[(
τ

Cτ(θ)
fθ(X)τ(uθ(X)− cτ(θ))

)
θ=θ0

]
= 0p

E
[(

fθ(X)2τ(uθ(X)− cτ(θ))(uθ(X)− cτ(θ))
T
)

θ=θ0

]
= Kτ(θ0),

where Kτ(θ) is defined in (16), and so, by the central limit theorem, the τ-score statistic is
asymptotically normal,

1√
n

Ψτ(θ)
L→

n→∞
N
(
0p, Kτ(θ)

)
. (29)

The previous convergence motivates the definition of the Rao-type test statistics.

4.2.1. Rao-Type Test Statistics for Testing Simple Null Hypothesis

We first consider the simple null hypothesis test

H0 : θ = θ0 vs. H1 : θ 6= θ0. (30)

Then, the Rao-type test statistics Rτ(θ0) for testing (30) is defined as

Rτ(θ0) =
1
n

Ψτ(θ0)
TKτ(θ0)

−1Ψτ(θ0).

Note that here the last test statistics depend on τ through the matrices Ψτ(θ0) and
Kτ(θ0) involved in the definition, and again, the robustness of the statistics increases with
τ. Moreover, the last matrix may have an explicit expression for certain statistical models,
but otherwise it would have to be estimated from the sample.

Further, from (29), we have that, under the null hypothesis,

Rτ(θ0)
L→

n→∞
χ2

p

with p being the dimension of the parameter space. Then, the null hypothesis is rejected if
Rτ(θ0) > χ2

p,α, where χ2
p,α denotes the upper α-quantile of a chi-square distribution with p

degrees of freedom.

4.2.2. Rao-Type Test Statistics for Testing Composite Null Hypothesis

Next, let us consider composite null hypothesis of the form

H0 : g(θ) = 0r vs. H1 : g(θ) 6= 0r, (31)

where the function g : Rp → Rr is a differentiable vector-valued function. Then, any vector
θ satisfying the null hypothesis belongs to a restricted parameter space given in (3). The
generalized Rao-type test statistic associated to the RMRPE with tuning parameter τ, θ̃τ ,
for testing (31) is given by

Rτ

(
θ̃τ

)
=

1
n

Ψτ(θ̃τ)
TQτ(θ̃τ)

[
Qτ(θ̃τ)

TKτ(θ̃τ)Qτ(θ̃τ)
]−1

Qτ(θ̃τ)
TΨτ(θ̃τ). (32)

Using similar arguments to Basu et al. [24], it is possible to show that, under general
regularity conditions, the Rao-type test statistics Rτ

(
θ̃τ

)
have an asymptotic chi-square

distribution with r degrees of freedom under the null hypothesis given in (31). Therefore,
the rejection region of the test is given by

{X1, . . . , Xn : Rτ(θ̃τ) > χ2
r,α}.

Again, the tuning parameter τ controls the trade-off between efficiency and robustness
of the test. Indeed, for τ = 0, the generalized Rao type test statistic Rτ=0

(
θ̃0

)
coincides

with the classical Rao test for composite null hypothesis.
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4.2.3. Rao Test for Normal Populations

Consider the test defined in (26) for testing the standard deviation value of a normal
population with unknown mean. The explicit expression of the main matrices involved in
the definition (32) for such testing procedure and assumed parametric model is given by

ψτ(X; (µ, σ)) =

X− µ

σ2
1(

σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2

,

((
X− µ

σ

)2
− 1

1 + τ

)
1
σ

1(
σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2


T

,

Kτ((µ, σ)) =
1
σ2

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

(
1 0
0 3τ2+2+4τ

(1+τ)2(1+2τ)

)
,

Qτ((µ, σ)) =

(
0
1

)
.

The step-by-step calculation of such values are detailed in the Appendix A. Then, the
Rao-type test for composite null hypothesis of the form (31) is given by

Rτ(µ̃) =
1
n
(1 + 2τ)3/2(1 + τ)2(1 + 2τ)

3τ2 + 4τ + 2

[
n

∑
i=1

((
xi − µ̃

σ0

)2
− 1

τ + 1

)
e−

τ
2

(
xi−µ̃

σ0

)2
]2

where (µ̃τ , σ0) denotes the RMRPE with tuning parameter τ. Note that, for τ = 0, µ̃τ=0 = X.
Then, the Rao-type test statistic based on RMRPE with τ = 0 (the restricted MLE) coincides
with the classical Rao test.

5. Simulation Study: Application to Normal Populations

In this section, we empirically analyze the performance of the proposed estimators
under the normal parametric model and RPTS and Rao-type test statistics for the problem of
testing (26) in terms of efficiency and robustness. We examine the accuracy of the RMRPEs,
and we further examine the robustness properties of both families of estimators under
different contamination scenarios. Further, we investigate the empirical level and power of
the proposed test statistics under different sample sizes and contamination scenarios.

Let us consider a univariate normal model with true parameter value θ0 = (µ = 0,
σ = 1), and the problem of testing

H0 : σ = 1 vs. H1 : σ 6= 1. (33)

The restricted parameter space is then given by

Θ0 = {(µ, 1) : µ ∈ R}.

In order to evaluate the robustness properties of the estimators and test statistics, we
introduce contamination in data by replacing a ε% of the observations by a contaminated
sample, where ε denotes the contamination level. We generate five different scenarios
of contamination:

• Pure data.
• Scenario 1: Slightly contaminated data. We replace a ε% of the samples by a contami-

nated sample from a normal distribution, N (0,
√

3).
• Scenario 2: Heavily contaminated data. We replace a ε% of the samples by a contami-

nated sample from a normal distribution, N (0,
√

5)

Further, in order to evaluate the power of the test, we consider an alternative true
parameter value θ1 = (0, 0.7) which does not satisfy the null hypothesis (33) (or equivalently
the restrictions of the parameter space). In this scenario, contaminated parameters are set
θ1 = (0, 1.2) for slightly and θ1 = (0, 1.5) for heavily contamination.
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Figure 1 shows the root mean square error (RMSE) of the RMRPE of the scale pa-
rameter σ, for different values of the tuning parameter τ = 0, 0.2, 0.4, 0.6 and τ = 0.8
over R = 10,000 replications. As expected, large values of the tuning parameter produce
more robust estimators, which is particularly advantageous for the heavily contaminated
scenario. Furthermore, even when introducing very low levels of contamination in data,
ε = 5%, the RMRPE with moderate value of the tuning parameter outperforms the classical
MLE, without a significant loss of efficiency in the absence of contamination.

(a) (b)

Figure 1. RMSE of the RMRPE under increasing contamination levels (slightly contaminated
at left and heavily contaminated at right) for different values of the tuning parameter τ over
R = 10,000 replications. (a) Scenario 1, (b) Scenario 2.

On the other hand, Figure 2 presents the empirical level and power of both RPTS
and Rao-type test statistics based on RMRPEs for different values of the tuning parameter,
τ = 0, 0.2, 0.4, 0.6, 0.8, under increasing contamination levels. The empirical level and power
are computed as the mean number of rejections over R = 10,000 replications. The empirical
level produced by the classical ratio and Rao-type tests rapidly increases and separates
from levels obtained with any robust test. Regarding the empirical power, all robust tests
with moderate and large values of the tuning parameter outperform the classical estimator
within their family under contaminated scenarios, but Rao-type test statistics based on
RMRPEs are more conservative than RPTSs, thus exhibiting lower levels and powers. Then,
the proposed test statistics provides an appealing alternative to classical likelihood ratio
and Rao tests, with a small loss of efficiency in favor of a clear gain in terms of robustness.

Figure 2. Cont.
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(a) (b)

Figure 2. Empirical level and power under increasing contamination (slightly contaminated at left
and heavily contaminated at right) over R = 10,000 repetitions. (a) Scenario 1, (b) Scenario 2.

On the other hand, the sample size could play a crucial role in the performance of the
tests, even more accentuated when there exists data contamination. Figure 3 shows the
sample size effect on the performance of the tests in terms of empirical level, under a 10%
of contamination level in data. As discussed, Rao-type test statistics based on RMRPEs
is more conservative and so tests based on RMRPEs with positive values of the tuning
parameter produce lower empirical levels. Here, it outperforms the poor performance of
the classical Rao-type test statistics with respect to any other. Moreover, when the sample
size increases, the performance gap between non-robust and robust methods is widening.

(a) (b)

Figure 3. Empirical level under increasing sample sizes for 10% of contamination level (slightly
contaminated at left and heavily contaminated at right) over R = 10,000 repetitions. (a) Scenario 1,
(b) Scenario 2.

Following the discussions in the preceding sections, larger values of the tuning param-
eter produce more robust but less efficient estimators. Therefore, the optimal value of τ
should obtain the best trade-off between efficiency and robustness. Warwick and Jones [25]
first introduced a useful data-based procedure for the choice of the tuning parameter for the
MDPDE based on minimizing the asymptotic MSE of the estimator. However, this method
depends on the choice of a pilot estimator, and Basak et al. [26] improved the method by
removing the dependency on an initial estimator. The proposed algorithm was developed
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ad hoc for the MDPDE, but it can be easily adapted to the MRPE and RMRPE by simply
substituting the expression of the variance of the MDPDE by the variance of the MRPPE or
the RMRPE, respectively.

6. Real Data Application

Finally, we illustrate the outperformance of the proposed test statistics in two real data
applications, where the gathered information contains some outlying observations. Both
real dataset are modeled under the normal model, and hypothesis tests on the standard
deviation of the population are performed.

6.1. Telephone-Fault Data

We consider the data on telephone line faults presented and analyzed by Welch [27]
and Simpson [4]. The dataset consist of n = 14 ordered differences between the inverse test
rates and the inverse control rates in matched pairs of areas,

−988,−135,−78, 3, 59, 83, 93, 110, 189, 197, 204, 229, 289, 310.

Basu et al. ([24,28]) modeled these differences as a normal random variable and pointed
out that the first observation is a clear outlier, as its value is distant from the rest of the
data. They tested simple and composite null hypotheses for the mean under the normal
model, as well as a simple null hypothesis assuming a known mean. Here, we propose to
test for the standard deviation of the normal distribution. Note that, computing the MLE of
the sample with full and clean data (after removing the outlying observation), we obtain
(µ̂, σ̂) = (40.36, 323.08), and (µ̂, σ̂) = (119.46, 134.82), respectively. Accordingly, the outlier
clearly influences the model parameter estimates, playing a crucial role on the rejection of
any null hypothesis. We consider the composite null hypothesis

H0 : σ = 135 vs. H1 : σ 6= 135, (34)

where the value σ = 135 has been chosen according to the estimation with clean data.
Figure 4 presents the RPTS (top) and Rao (bottom) test statistics (left) and p-values

(right) for the telephone data against increasing tuning parameters. While it is clearly seen
that both classical tests fail to not reject the null hypothesis when fitting the model with the
original data, the decision turns around sharply as the tuning parameter τ crosses and goes
beyond 0.2 for the RPTS and 0.15 for Rao-type test statistics based on MRPEs. On the other
hand, the decision of not rejecting is agreed by all statistics when fitting the model with
clean data. This example illustrates the great applicability of the robust methods, which are
not too affected by a such outlying observation, and the good performance of the proposed
statistics under contaminated observations, which stay stable.

Figure 4. Cont.



Entropy 2022, 24, 616 14 of 28

Figure 4. RPTS (top) and Rao-type test statistics (bottom), jointly with their associated p-valuess
(right), for testing (34) with original and cleaned (after outliers removal) telephone-fault data.

6.2. Darwin’s Plant Fertilization Data

Darwin [29] performed an experiment to determine whether self-fertilized plants and
cross-fertilized plants have different growth rates. He sowed in pots pairs of Zea mays
plants, one self-fertilized and the other cross-fertilized, and after a specific time period, the
height of each plant was measured. A particular sample of n = 15 pairs of plants led to the
following paired differences (cross-fertilized minus self-fertilized).

−67,−48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75

A parametric approach to analyze the data as a random sample from a normal dis-
tribution with unknown mean and standard deviation was developed by Basu et al. [24].
Here, there is not any huge outlying observation, but the first two observations seem to
be distant from the rest of the sample, influencing the model parameter estimates and
test decisions. Indeed, the MLE, computing with original data, is (µ̂, σ̂) = (20.93, 37.74),
while the MLE, when removing the two first observations, switches to (µ̂, σ̂) = (33, 21.54).
Therefore, removing influential observations may alter the decision of a test. According to
these results, we consider the testing problem

H0 : σ = 23 vs. H1 : σ 6= 23. (35)

Figure 5 shows the test statistics (left) and corresponding p-values (right) for the two
families of statistics considered, the RPTS (top) and Rao-type test statistics (bottom) against
the tuning parameter value τ. Again, test statistics based on RMRPE with large enough
tuning parameters do not reject the null hypothesis, unlike tests based on low values of
τ = 0, including the RMLE. The disagreement departs when using the clean data, as all
tests agree on not rejecting the null hypothesis.

Figure 5. Cont.
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Figure 5. RPTS (top) and Rao-type test statistics (bottom), jointly with their associated p-values
(right), for testing (35) with original and cleaned (after outliers removal) Darwing data.

7. Concluding Remarks

In this paper, we presented for the first time the family of RMRPEs. We derived
their asymptotic distribution, and proved some suitable properties as consistency under
the parameter restriction and robustness against data contamination. Further, based on
these RMRPEs, we generalized two important families of statistics, namely RPTS and Rao-
type tests, for testing a composite null hypothesis. Moreover, we obtained some explicit
expressions of the RMPREs, RPTS and Rao-type test statistics for testing the variance under
a normal population with an unknown mean. It was empirically shown that the proposed
RPTS and Rao-type test statistics are robust, unlike classical tests based on the MLE, under
normal populations. Indeed, the robustness of the tests is controlled by a tuning parameter
τ, and so larger values of τ produce more robust estimators (although less efficient). Finally,
some classical numerical examples illustrate the theoretical properties and applicability of
the proposed methods.
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MRPE Minimum Rényi Pseudodistance Estimator
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Appendix A

Appendix A.1. Proof of Theorem 2

We denote

hn(θ) =
1
n

n

∑
i=1

fθ(Xi)
τ

Cτ(θ)
.

Differentiating both sides of the equality, we have

∂hn(θ)

∂θ
=

τ

Cτ(θ)

1
n

n

∑
i=1

fθ(Xi)
τ(uθ(Xi)− cτ(θ)).

Now we establish that(
∂2hn(θ)

∂θ∂θT

)
θ=θ0

P→
n→∞

− τ

Cτ(θ)
Sτ(θ0).

We have

∂2hn(θ)

∂θ∂θT =
1

Cτ(θ)
2

{
1
n

n

∑
i=1

[(
τ2 fθ(Xi)

τuθ(Xi)uθ(Xi)
T + τ fθ(Xi)

τ ∂uθ(Xi)

∂θT

)
Cτ(θ)

−τCτ(θ)cτ(θ)τ fθ(Xi)
τuθ(Xi)

T
]}

− 1

Cτ(θ)
2

{
1
n

n

∑
i=1

[(
τ

∂cτ(θ)

∂θT fθ(Xi)
τ + τ2 fθ(Xi)

τcτ(θ)uθ(Xi)
T
)

Cτ(θ)

−τCτ(θ)cτ(θ)τcτ(θ)
T fθ(Xi)

τ
]}

=
1

Cτ(θ)

{
1
n

n

∑
i=1

[
τ2 fθ(Xi)

τuθ(Xi)uθ(Xi)
T + τ fθ(Xi)

τ ∂uθ(Xi)

∂θT

− τ2cτ(θ)
T fθ(Xi)

τuθ(Xi)
T − τ

∂cτ(θ)

∂θT fθ(Xi)
τ

−τ2cτ(θ) fθ(Xi)
τuθ(Xi)

T − τ2cτ(θ)cτ(θ)
T fθ(Xi)

τ
]}

.

As n→ ∞, we have (
∂2hn(θ)

∂θ∂θT

)
θ=θ0

P→
n→∞

T(θ0)

with T(θ0) being the matrix given by

T(θ0) =
1

Cτ(θ)

{
τ2
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx + τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT dx

−τ2cτ(θ)
∫

fθ(x)τ+1uθ(x)Tdx− τ
∂cτ(θ)

∂θT

∫
fθ(x)τ+1dx

+τ2cτ(θ)
∫

fθ(x)τ+1uθ(x)Tdx− τ2cτ(θ)cτ(θ)
T
∫

fθ(x)τ+1dx
}

.
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From the above, after some algebra, we obtain

T(θ0) =
1

Cτ(θ)

{
τ2
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx + τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT dx

−τ
∂cτ(θ)

∂θT

∫
fθ(x)τ+1dx− τ2cτ(θ)

Tcτ(θ)
∫

fθ(x)τ+1dx
}

.

On the other hand, it not difficult to establish that

∂cτ(θ)

∂θT = (τ + 1)

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx∫

fθ(x)τ+1dx
+

∫
fθ(x)τ+1 ∂uθ(x)

∂θT dx∫
fθ(x)τ+1dx

−(τ + 1)

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx

(
∫

fθ(x)τ+1dx)2 .

Therefore we have

−τ
∂cτ(θ)

∂θT

∫
fθ(x)τ+1dx = −τ(τ + 1)

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx− τ

∫
fθ(x)τ+1 ∂uθ(x)

∂θT

+τ(τ + 1)

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx∫

fθ(x)τ+1dx
.

Finally,

T(θ0) =
1

Cτ(θ)

{
τ2
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx + τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT dx

−τ(τ + 1)
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx− τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT

+τ(τ + 1)

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx∫

fθ(x)τ+1dx
− τ2cτ(θ)cτ(θ)

T
∫

fθ(x)τ+1dx

}

=
1

Cτ(θ)

{
−τ

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx + τ

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx∫

fθ(x)τ+1dx

}
= − τ

Cτ(θ)
S(θ0).

On the other hand,

√
n

∂hn(θ)

∂θ
=

τ

Cτ(θ)

1√
n

n

∑
i=1

fθ(Xi)
τ(uθ(Xi)− cτ(θ))

L→
n→∞

N
(

0p,
(

τ

Cτ(θ)

)2
Kτ(θ0)

)
,

as

E

[(
τ

Cτ(θ)
fθ(X)τ(uθ(X)− cτ(θ))

)
θ=θ0

]
= 0p

and

Cov

[(
τ

Cτ(θ)
fθ(X)τ(uθ(X)− cτ(θ))

)
θ=θ0

]
=

(
τ

Cτ(θ0)

)2
Kτ(θ0)

Then, the RMRPE estimator of θ, θ̃τ , must satisfy{
∂

∂θ hn(θ)|θ=θ̃τ
+ G(θ̃τ)λn = 0p,

g(θ̃τ) = 0r,
(A1)
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where λn is a vector of Lagrangian multipliers. Now we consider θn = θ0 + mn−1/2, with
||m|| < k, for 0 < k < ∞. We have,

∂

∂θ
hn(θ)|θ=θn

=
∂

∂θ
hn(θ)|θ=θ0

+
∂

∂θT
∂

∂θ
hn(θ)|θ=θ0

(θn − θ0) + o(||θn − θ0||2)

and

n1/2 ∂

∂θ
hn(θ)

∣∣∣∣
θ=θn

= n1/2 ∂

∂θ
hn(θ)|θ=θ0

− ∂

∂θT
∂

∂θ
hn(θ)|θ=θ0

n1/2(θn − θ0) + o(n1/2||θn − θ0||2). (A2)

However,

o(n1/2||θn − θ0||2) = o(n1/2||m||2/n) = o(n−1/2||m||2) = o(Op(1)) = op(1).

Since
lim

n→∞

∂

∂θT
∂

∂θ
hn(θ)|θ=θ0 = − τ

Cτ(θ)
Sτ(θ0)

we obtain

n1/2 ∂

∂θ
hn(θ)

∣∣∣∣
θ=θn

= n1/2 ∂

∂θ
hn(θ)|θ=θ0

+
τ

Cτ(θ)
Sτ(θ0)n1/2(θn − θ0) + op(1). (A3)

Now, we know that

n1/2g(θn) = G(θ0)
Tn1/2(θn − θ0) + op(1). (A4)

Further, the RMRPE θ̃τ must satisfy the conditions in (A1), and in view of (A3) and
(A4) we have

n1/2 ∂

∂θ
hn(θ)|θ=θ0

+
τ

Cτ(θ)
Sτ(θ0)n1/2(θ̃τ − θ0) + G(θ0)n1/2λn + op(1) = 0p. (A5)

From (A4) it follows that

G(θ0)
Tn1/2(θ̃τ − θ0) + op(1) = 0r. (A6)

Now we can express equations (A5) and (A6) in matrix form as(
τ

Cτ(θ0)
Sτ(θ0) G(θ0)

G(θ0)
T 0r×r

)(
n1/2(θ̃τ − θ0)

n1/2λn

)
=

(
−n1/2 ∂

∂θ hn(θ)|θ=θ0
0r

)
+ op(1).

Therefore(
n1/2(θ̃τ − θ0)

n1/2λn

)
=

(
τ

Cτ(θ0)
Sτ(θ0) G(θ0)

G(θ0)
T 0r×r

)−1(
−n1/2 ∂

∂θ hn(θ)|θ=θ0
0r

)
+ op(1).

However,(
τ

Cτ(θ0)
Sτ(θ0) G(θ0)

G(θ0)
T 0

)−1

=

( (
τ

Cτ(θ0)

)−1
P∗τ(θ0) Qτ(θ0)

Qτ(θ0)
T Rτ(θ0)

)
,

where P∗τ(θ0) and Qτ(θ0) are defined in (18) and (19), respectively. The matrix Rτ(θ0)
is the quantity needed to make the right hand side of the above equation equal to the
indicated inverse. Then,

n1/2(θ̃τ − θ0) = −
(

τ

Cτ(θ)

)−1
P∗τ(θ0)n1/2 ∂

∂θ
hn(θ)|θ=θ0

+ op(1), (A7)
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and we know

n1/2 ∂

∂θ
hn(θ)|θ=θ0

L−→
n−→∞

N
(

0,
(

τ

Cτ(θ0)

)2
Kτ(θ0)

)
. (A8)

Now by (A7) and (A8), we have the desired result.

Appendix A.2. Proof of Theorem 3

Consider the expression Rγ( fθ, fθ̃τ
). A Taylor expansion for an arbitrary θ ∈ Θ,

around θ̃τ leads to the relation

Rγ( fθ, fθ̃τ
) = Rγ( fθ̃τ

, fθ̃τ
) +

(
∂Rγ( fθ, fθ̃τ

)

∂θ

)
θ=θ̃τ

(
θ− θ̃τ

)

+
1
2

(
θ− θ̃τ

)(∂2Rγ( fθ, fθ̃τ
)

∂θ∂θT

)
θ=θ̃τ

(
θ− θ̃τ

)T
+ o
(∥∥∥θ− θ̃τ

∥∥∥2
)

.

It is clear that Rγ( fθ̃τ
, fθ̃τ

) = 0 and

∂Rγ( fθ, fθ̃τ
)

∂θ
=

∂L1
γ(θ)

∂θ
−

∂L2
γ(θ)

∂θ
,

being

L1
γ(θ) =

1
γ + 1

log
(∫

fθ(x)γ+1dx
)

and

L2
γ(θ) =

1
γ

log
(∫

fθ(x)γ fθ̃τ
(x)dx

)
.

Then,

∂L1
γ(θ)

∂θ
=

∫
fθ(x)γ+1uθ(x)dx∫

fθ(x)γ+1dx
and

∂L2
γ(θ)

∂θ
=

∫
fθ(x)γuθ(x) fθ̃τ

(x)dx∫
fθ(x)γ fθ̃τ

(x)dx
.

Therefore, (
∂Rγ( fθ, fθ̃τ

)

∂θ

)
θ=θ̃τ

= 0.

Regarding the second derivatives, we have

∂2L1
γ(θ)

∂θ∂θT = (γ + 1)

∫
fθ(x)γ+1uθ(x)uθ(x)Tdx∫

fθ(x)γ+1dx
+

∫
fθ(x)γ+1 ∂uθ(x)

∂θT∫
fθ(x)γ+1dx

−(γ + 1)

∫
fθ(x)γ+1uθ(x)dx

∫
fθ(x)γ+1uθ(x)Tdx

(
∫

fθ(x)γ+1dx)2

and

∂2L2
γ(θ)

∂θ∂θT = γ

∫
fθ(x)γuθ(x)uθ(x)T fθ̃τ

(x)dx∫
fθ(x)γ fθ̃τ

(x)dx
+

∫
fθ(x)γ ∂uθ(x)

∂θT fθ̃τ
(x)dx∫

fθ(x)γ fθ̃τ
(x)dx

−γ

∫
fθ(x)γ fθ̃τ

(x)uθ(x)dx
∫

fθ(x)γ fθ̃τ
(x)uθ(x)Tdx(∫

fθ(x)γ fθ̃τ
(x)dx

)2 .

and so (
∂2Rγ( fθ, fθ̃τ

)

∂θ∂θT

)
θ=θ̃τ

=
Sγ(θ̃τ)

κγ(θ̃τ)
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Therefore,

Tγ(θ̂τ , θ̃τ) = 2nRγ( fθ̂, fθ̃τ
) = n1/2(θ̂τ − θ̃τ)

T Sγ(θ̃τ)

κγ(θ̃τ)
n1/2(θ̂τ − θ̃τ) + n× o

(∥∥∥θ̂τ − θ̃τ)
∥∥∥2
)

.

Under θ0 ∈ Θ0,
Sγ(θ̃τ)

κγ(θ̃τ)

P−→
n−→∞

Sγ(θ0)

κτ(θ0)
.

Based on θ̂τ and using by (A4) and (A5), we have that

n1/2 ∂
∂θ hn(θ)|θ=θ0

= − τ

Cτ(θ0)
n1/2Sτ(θ0)(θ̂τ − θ0) + op(1),

and using (A7), we obtain

n1/2(θ̃τ − θ0) = P∗τ(θ0)n1/2Sτ(θ0)(θ̂τ − θ0) + op(1)

= n1/2(θ̂τ − θ0)−Qτ(θ0)G(θ0)
Tn1/2(θ̂τ − θ0) + op(1).

Therefore,

n1/2(θ̂τ − θ̃τ) = Qτ(θ0)G(θ0)
Tn1/2(θ̂τ − θ0) + op(1). (A9)

On the other hand, we know that

n1/2(θ̂τ − θ0)
L−→

n−→∞
N (0, Sτ(θ0)

−1Kτ(θ0)Sτ(θ0)
−1).

From equations (19) and (25), we can establish that

Bτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
G(θ0)

TSτ(θ0)
−1

= Qτ(θ0)G(θ0)
−1Sτ(θ0)

−1.

Therefore, it follows that

n1/2(θ̂τ − θ̃τ)
L−→

n−→∞
N (0, Bτ(θ0)Kτ(θ0)Bτ(θ0)

T).

Now, observe from the definition that Bτ(θ0) = Bτ(θ0)
T .

Then, the asymptotic distribution of the random variables

Tγ(θ̂τ , θ̃τ) = 2nRγ( fθ̂τ
, fθ̃τ

)

and

n1/2(θ̂τ − θ̃τ)
T Sγ(θ0)

κγ(θ0)
n1/2(θ̂τ − θ̃τ)

are the same, as we have established that

n× o
(∥∥∥θ̂τ − θ̃τ

∥∥∥2
)
= op(1).

Next, we apply Corollary 2.1 in Dik and Gunst [30], which states: “Let X be a q-variate
normal random variable with mean vector 0 and variance-covariance matrix Σ. Let M be
a real symmetric matrix of order q. Let k = rank(ΣMΣ), k ≥ 1 and let λ1, . . . , λk, be the
nonzero eigenvalues of MΣ. Then, the distribution of the quadratic form XT MX coincides

with the distribution of the random variable
k
∑

i=1
λiZ2

i , where Z1, . . . , Zk are independent,

each having a standard normal variable”. In our case, the asymptotic distribution of

Tγ(θ̂τ , θ̃τ) coincides with the distribution of the random variable
k
∑

i=1
λ

τ,γ
i (θ0)Z2

i where

λ
τ,γ
1 (θ0), . . . , λ

τ,γ
k (θ0), are the nonzero eigenvalues of Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0) and
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k = min{r, rank(Bτ(θ0)Kτ(θ0)Bτ(θ0)Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0))}. (A10)

We now establish that k = r. The matrix,

Nτ(θ0) = Bτ(θ0)Kτ(θ0)Bτ(θ0)

is given by

Nτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
G(θ0)

TSτ(θ0)
−1

Kτ(θ0)Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
G(θ0)

TSτ(θ0)
−1.

Corollary 14.11.3 in Harville [31] (p. 259) establishes the following: “For any m× n
matrix A and any m×m symmetric positive definite matrix W , rank(ATW A) = rank(A)”.
Based on this Corollary we have that rank(Nτ(θ0)) coincides with rank(Nτ(θ0)Sγ(θ0)Nτ(θ0)).

On the other hand, we know the following additional properties:

(a) rank(AB) = rank(A) if B is full rank (Corollary b.3.3 in Harville [31] (p. 83)).

(b) rank(AB) = rank(BA) if dimension of A coincides with dimension of BT .

Matrix Kτ(θ0) should be “full rank”; in fact, if Kτ(θ0) were not full rank, the variance–
covariance matrix of θ̂β and θ̃β would not be full rank (there were redundant components
in θ and this is not true).

Therefore, we have

rank(Nτ(θ0)) = (a)rank
(

Sτ(θ0)
− 1

2 G(θ0)
[

G(θ0)
TSτ(θ0)

−1G(θ0)
]−1

G(θ0)
TSτ(θ0)

−1Kτ(θ0)Sτ(θ0)
−1G(θ0)[

G(θ0)
−1Sτ(θ0)

−1G(θ0)
]−1

G(θ0)
TSτ(θ0)

− 1
2

)
= (b)rank

(
G(θ0)

TSτ(θ0)
−1Kτ(θ0)Sτ(θ0)

−1G(θ0)
[

G(θ0)
TSτ(θ0)

−1G(θ0)
]−1
)

= (a)ran
(

G(θ0)
TSτ(θ0)

−1Kτ(θ0)Sτ(θ0)
−1G(θ0)

)
= Corollary14.11.3rank

(
Sτ(θ0)

−1G(θ0)
)

= (a)rank(G(θ0)) = r.

Appendix A.3. Rényi’s Pseudodistance between Normal Populations

Here, we compute the expression of the RP between densities belonging to the normal
model with parameters (µ1, σ1) and (µ2, σ2), respectively. The RP between N (µ1, σ1) and
N (µ2, σ2) is given by

Rγ(N (µ1, σ1),N (µ2, σ2)) =
1

γ + 1
log

∫
N (µ1, σ1)

γ+1dx

+
1

γ(γ + 1)
log

∫
N (µ2, σ2)

γ+1dx− 1
γ

log
∫
N (µ1, σ1)

γN (µ2, σ2)dx

=
1

γ + 1
log L1 +

1
γ(γ + 1)

log L2 −
1
γ

log L3.

We first compute ∫
N (µ, σ)βdx

for the seek of simplicity in later calculations.
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∫
N (µ, σ)βdx =

∫ ( 1
σ
√

2π
e−

1
2 (

x−µ
σ )

2
)β

dx

=
1

σβ−1
(√

2π
)β−1

1√
β

∫ 1
σ√

β

√
2π

e
− 1

2

 x−µ
σ√

β

2

dx

=
1

σβ−1
(√

2π
)β−1

1√
β

.

Therefore,

L1 =
1

σ
γ
1

(√
2π
)γ

1√
γ + 1

and L2 =
1

σ
γ
2

(√
2π
)γ

1√
γ + 1

.

In relation with L3 we have,

L3 =
∫
N (µ1, σ1)

γN (µ2, σ2)dx

=
∫ 1

σ
γ
1

(√
2π
)γ e

− 1
2

 x−µ1
σ1√

γ

2

1
σ2
√

2π
e−

1
2

(
x−µ2

σ2

)2

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
×

×
∫

exp

−1
2

x2

 1(
σ1√

γ

)2 +
1
σ2

2

− 2x

 µ1(
σ1√

γ

)2 +
µ2

σ2
2

+
µ2

1(
σ1√

γ

)2 +
µ2

2
σ2

2


dx

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

−1
2

 µ2
1(

σ1√
γ

)2 +
µ2

2
σ2

2


×

×
∫

exp

−1
2

x2

 1(
σ1√

γ

)2 +
1
σ2

2

− 2x

 µ1(
σ1√

γ

)2 +
µ2

σ2
2



dx

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

−1
2

 µ2
1(

σ1√
γ

)2 +
µ2

2
σ2

2


 exp

{
1
2

A2

B2

}
B
√

2π ×

×
∫ 1√

2πB
exp

{
−1

2

(
x− A

B

)2
}

dx

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

−1
2

 µ2
1(

σ1√
γ

)2 +
µ2

2
σ2

2


 exp

{
1
2

A2

B2

}
B
√

2π.

Now it is necessary to obtain A and B. However, for this, we have,
1

B2 = 1(
σ1√

γ

)2 +
1

σ2
2

A
B2 =

(
µ1(
σ1√

γ

)2 +
µ2
σ2

2

)
.
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Then,

A

 1(
σ1√

γ

)2 +
1
σ2

2

 =
µ1(
σ1√

γ

)2 +
µ2

σ2
2

and

A =

µ1(
σ1√

γ

)2 +
µ2
σ2

2

1(
σ1√

γ

)2 +
1

σ2
2

=

σ2
2 µ1+µ2

(
σ1√

γ

)2

σ2
2

(
σ1√

γ

)2

σ2
2+
(

σ1√
γ

)2

σ2
2

(
σ1√

γ

)2

=
σ2

2 µ1 + µ2
σ2

1
γ

σ2
2 +

σ2
1

γ

=
γσ2

2 µ1 + µ2σ2
1

γσ2
2 + σ2

1
.

We have,
1

B2 =
1(

σ1√
γ

)2 +
1
σ2

2
=

γ

σ2
1
+

1
σ2

2
=

σ2
2 γ + σ2

1
σ2

1 σ2
2

Therefore,
B =

σ1σ2√
σ2

2 γ + σ2
1

.

On the other hand,

A2

B2 =

(
γσ2

2 µ1 + µ2σ2
1

γσ2
2 + σ2

1

)2
σ2

2 γ + σ2
1

σ2
1 σ2

2
=

(
γσ2

2 µ1 + µ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

and

L3 =
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

−1
2

 µ2
1(

σ1√
γ

)2 +
µ2

2
σ2

2


 exp

{
1
2

A2

B2

}
B
√

2π

=
1

σ
γ
1

(√
2π
)γ

1
σ2

exp

−1
2

 µ2
1(

σ1√
γ

)2 +
µ2

2
σ2

2


 exp

{
1
2

(
γσ2

2 µ1 + µ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

}
σ1σ2√

σ2
2 γ + σ2

1

=
σ1σ2√

σ2
2 γ + σ2

1

1

σ
γ
1

(√
2π
)γ

1
σ2

exp

{
1
2

[(
γσ2

2 µ1 + µ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2
−

γµ2
1σ2

2 + σ2
1 µ2

2
σ2

2 σ2
1

]}
.

However,(
γσ2

2 µ1 + µ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2
−

γµ2
1σ2

2 + σ2
1 µ2

2
σ2

2 σ2
1

=

(
γσ2

2 µ1 + µ2σ2
1
)2 −

(
γµ2

1σ2
2 + σ2

1 µ2
2
)(

γσ2
2 + σ2

1
)(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

=
γ2σ4

2 µ2
1 + µ2

2σ4
1 + 2γσ2

2 µ1µ2σ2
1(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

−
γ2µ2

1σ4
2 + γµ2

1σ2
2 σ2

1 + µ2
2γσ2

2 σ2
1 + µ2

2σ4
1(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

=
2γσ2

2 µ1µ2σ2
1 − γµ2

1σ2
2 σ2

1 − µ2
2γσ2

2 σ2
1(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

=
σ2

2 σ2
1 γ
(
2µ1µ2 − µ2

1 − µ2
2
)(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

= −γ(µ1 − µ2)
2(

γσ2
2 + σ2

1
)
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Therefore,

L3 =
1

σ
γ−1
1

√
σ2

2 γ + σ2
1

1(√
2π
)γ exp

{
−1

2
γ(µ1 − µ2)

2(
γσ2

2 + σ2
1
) }.

Then,

Rγ(N (µ1, σ1),N (µ2, σ2)) =
1

γ + 1
ln L1 +

1
γ(γ + 1)

ln L2 −
1
γ

ln L3

=
1

γ + 1
ln

1

σ
γ
1

(√
2π
)γ

1√
γ + 1

+
1

γ(γ + 1)
ln

1

σ
γ
2

(√
2π
)γ

1√
γ + 1

− 1
γ

ln
1

σ
γ−1
1

√
σ2

2 γ + σ2
1

1(√
2π
)γ +

1
2

γ(µ1 − µ2)
2

γ
(
γσ2

2 + σ2
1
)

=
1

γ(γ + 1)

(
ln

σ
γ−1
1

σ
γ
2
√

γ + 1

√
σ2

1 + γσ2
2 + γ ln

1
σ1
√

γ + 1

√
σ2

1 + γσ2
2

)

+
1
2

γ(µ1 − µ2)
2

γ
(
γσ2

2 + σ2
1
)

=
1

γ(γ + 1)
ln

1
σ1σ

γ
2


√

σ2
1 + γσ2

2√
γ + 1

γ+1

+
1
2
(µ1 − µ2)

2(
γσ2

2 + σ2
1
)

For γ→ 0 we have,

lim
γ→0

Rγ(N (µ1, σ1),N (µ2, σ2)) =
σ2

2 − σ2
1

2σ2
1

+ ln
σ1

σ2
+

1
2
(µ1 − µ2)

2

σ2
1

. (A11)

Appendix A.4. Computation of the Nonzero Eigenvalues of Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0)

We know that the matrix ξ(θ) can be expressed as

ξ(θ) = cτ(θ)κ(θ)

with
κ(θ) =

∫
fθ(x)τ+1dx =

1

στ
(√

2π
)τ√

1 + τ
.

Then,

ξ(θ) =
1

στ
(√

2π
)τ√

1 + τ

(
0,− τ

(τ + 1)
1
σ

)T
.

Therefore,

cτ(θ) =
ξ(θ)

κ(θ)
=

(
0,− τ

(τ + 1)
1
σ

)
.

On the other hand

∂ log fµ,σ(Xi)

∂µ
=

Xi − µ

σ2 and
∂ log fµ,σ(Xi)

∂σ
= − 1

σ
+

1
σ3 (Xi − µ)2

and

uθ(Xi) =

(
Xi − µ

σ2 ,− 1
σ
+

1
σ3 (Xi − µ)2

)
.
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Then,
Ψτ(X; θ) =

(
Ψ1

τ(X; θ), Ψ2
τ(X; θ)

)
is given by

Ψτ(X; θ) =

X− µ

σ2
1(

σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2

,

((
X− µ

σ

)2
− 1

1 + τ

)
1
σ

1(
σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2


and

Kτ(θ) = E
[
Ψτ(X; θ)Ψτ(X; θ)T

]
.

Now we obtain the elements of that matrix,

K11
τ (θ) = E

(X− µ

σ2

)2 1(
σ
√

2π
)2τ

e−
2τ
2

(
X−µ

σ

)2


=

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

1
σ2

K12
τ (θ) = K21

τ (θ) = E

(X− µ

σ2

)((
X− µ

σ

)2
− 1

1 + τ

)
1
σ

1(
σ
√

2π
)2τ

e−
2τ
2

(
X−µ

σ

)2


= 0

and

K22
τ (θ) = E

((X− µ

σ

)2
− 1

1 + τ

)2
1
σ2

1(
σ
√

2π
)2τ

e−
2τ
2

(
X−µ

σ

)2


=

1
σ2

3τ2 + 2 + 4τ(
σ
√

2π
)2τ

(1 + 2τ)5/2(1 + τ)2

and

Kτ(θ) =

 1

(σ
√

2π)
2τ
(1+2τ)3/2

1
σ2 0

0 1
σ2

3τ2+2+4τ

(σ
√

2π)
2τ
(1+2τ)5/2(1+τ)2


=

1
σ2

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

(
1 0
0 3τ2+2+4τ

(1+τ)2(1+2τ)

)
.

Now we obtain the matrix Sτ(θ). We have

ξ(θ) = cτ(θ)κ(θ)

with
κ(θ) =

∫
fθ(x)τ+1dx =

1

στ
(√

2π
)τ√

1 + τ
.
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Then,

ξ(θ) =
1

στ
(√

2π
)τ√

1 + τ

(
0,− τ

(τ + 1)
1
σ

)T

and

1
κ(θ)

ξ(θ)ξ(θ)T =
1

στ+2
(√

2π
)τ√

1 + τ

(
0 0
0 τ2

(τ+1)2

)
.

On the other hand

Jτ(θ) = E


 1

σ4 (X− µ)2 1
σ2

(
1
σ −

1
σ3 (X− µ)2

)
(X− µ)

1
σ2

(
1
σ −

1
σ3 (X− µ)2

)
(X− µ)

(
1
σ −

1
σ3 (X− µ)2

)2

 1(
σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2



J11
τ (θ) = E

 1
σ4 (µ− X)2 1(

σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2

 =
1

στ+2
1

(τ + 1)3/2
1(√
2π
)τ

J12
τ (θ) = J21

τ (θ) = 0

J22
τ (θ) = E

( 1
σ
− 1

σ3 (µ− X)2
)2 1(

σ
√

2π
)τ e−

τ
2

(
X−µ

σ

)2

 =
1

στ+2
1(√
2π
)τ

1√
1 + τ

2 + τ2

(1 + τ)2

Therefore

Jτ(θ) =
1

στ+2
1(√
2π
)τ

1√
1 + τ

( 1
1+τ 0
0 2+τ2

(1+τ)2

)

Sτ(θ) = Jτ(θ)−
1

κ(θ)
ξ(θ)ξ(θ)T

=
1

στ+2
1(√
2π
)τ

1√
1 + τ

(( 1
1+τ 0
0 2+τ2

(1+τ)2

)
−
(

0 0
0 τ2

(τ+1)2

))

=
1

στ+2
1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)

Now we have,

• The matrix
[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
(G(θ) = (0, 1)T)

G(θ0)
TSτ(θ0)

−1G(θ0) =
(

0 1
) 1

στ+2
1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)
−1(

0
1

)

=
1
2

σ2στ(τ + 1)
5
2
(√

2
√

π
)τ

• The matrix Qτ(θ0) = S−1
τ (θ0)G(θ0)

[
GT(θ0)S−1

τ (θ0)G(θ0)
]−1
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Qτ(θ0) =

 1
στ+2

1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)
−1(

0
1

)(
1
2

σ2στ(τ + 1)
5
2
(√

2
√

π
)τ
)−1

=

(
0
1

)

• The matrix Bτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1G(θ0)
TSτ(θ0)

−1 =

Qτ(θ0)G(θ0)
TSτ(θ0)

−1

Bτ(θ0) = Qτ(θ0)GT(θ0)S−1
τ (θ0) =

(
0
1

)(
0 1

) 1
στ+2

1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)
−1

=

(
0 0

0 1
2 σ2στ(τ + 1)

5
2
(√

2
√

π
)τ

)

• The matrix Mγ,τ(θ0) =
Sγ(θ0)
κγ(θ0)

Bτ(θ0)Kτ(θ0)Bτ(θ0)

Mγ,τ(θ0) =
σγ
(√

2π
)γ√

1 + γ

σγ+2
1(√
2π
)γ

1√
1 + γ

( 1
1+γ 0
0 2

(γ+1)2

)

×
(

0 0

0 1
2 σ2στ(τ + 1)

5
2
(√

2
√

π
)τ

)

× 1
σ2

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

(
1 0
0 3τ2+2+4τ

(1+τ)2(1+2τ)

)

×
(

0 0

0 1
2 σ2στ(τ + 1)

5
2
(√

2
√

π
)τ

)

=

 0 0

0 1
2

(τ+1)3

(γ+1)2(2τ+1)
5
2

(
3τ2 + 4τ + 2

) .
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