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Abstract

In this paper we study some geometrical questions about the polytope of bi-capacities. For
this, we introduce the concept of pointed order polytope, a natural generalization of order
polytopes. Basically, a pointed order polytope is a polytope that takes advantage of the order
relation of a partially ordered set and such that there is a relevant element in the structure.
We study which are the set of vertices of pointed order polytopes and sort out a simple way
to determine whether two vertices are adjacent. We also study the general form of its faces.
Next, we show that the set of bi-capacities is a special case of pointed order polytope. Then,
we apply the results obtained for general pointed order polytopes for bi-capacities, allowing to
characterize vertices and adjacency, and obtaining a bound for the diameter of this important
polytope arising in Multicriteria Decision Making.
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1 Introduction

Capacities [7], also called fuzzy measures [26] or non-additive measures [11], have proved themselves
to be a very important tool in the field of Decision Making. The reason for this success is that
capacities provide a wide flexibility that allows to model very different situations. For example, they
can model Ellsberg and Allais paradoxes in Decision Under Uncertainty and Risk (see e.g. [14]).
In Multicriteria Decision Making (MCDM), capacities can model interactions among criteria [12],
as well as situations of veto and favor [13]. This has led to a huge number of works dealing with
capacities, both from a theoretical and practical point of view [17, 23, 20, 4, 2], being a popular
theory in Decision Making.

Basically, for each subset of criteria A in MCDM, a capacity µ assigns a value µ(A) representing
the degree of satisfaction of an object being completely satisfactory for criteria in A and completely
unsatisfactory outside A. This means that capacities assume that there is a polar scale (good/bad)
modeling the problem. However, in many practical situations, decision makers do not behave the
same for good valuations and bad valuations with respect to a criteria (see e.g. [24]). Thus, in these
situations it is necessary to consider a bi-polar scale, in which there is a neutral value separating
good and bad scores.
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To adapt capacities to a bipolar context, Grabisch and Labreuche have recently defined the
concept of bi-capacity [16, 15]. In the definition of bi-capacities, it is taken into account that for
an object some criteria might be completely satisfactory, some completely unsatisfactory and some
have a neutral score. Hence, they are a suitable option for dealing with these situations and several
papers based on this concept have appeared since then [22, 18, 27, 19, 1].

From a geometrical point of view, it can be seen that for a given set of criteria, the set of bi-
capacities is a convex polytope. However, to our knowledge, there are no results about the vertices of
this polytope, neither results to determine whether two vertices are adjacent. Similarly, the general
form of its faces is unknown. This is the problem we tackle in this paper. In this sense, it should
be noted that although the set of vertices, adjacency and similar problems have a very simple and
intuitive formulation, the practical and mathematical aspects of these problems usually lead to very
complex problems. Indeed, solving some of them for particular families of polytopes is relevant and
it is hot topic in Combinatorics [3, 5].

Appart the mathematical interest, this problem arises in the practical use of bi-capacities. For
example, let us suppose that we address the problem of identifying a bi-capacity from a sample data.
Proceeding as in [8] for capacities, it is possible to develop a procedure based on genetic algorithms
and such that the cross-over operation is the convex combination. In this case, the search region
reduces at each iteration and then the initial population should be the set of vertices. Similarly, an
appealing mutation operation is the convex combination with a randomly chosen vertex.

To deal with the geometrical structure of the polytope of bicapacities, in this paper we introduce
the concept of pointed order polytope. Roughly speaking, a pointed order polytope is a polytope
coming from a partially ordered set (brief poset) P such that there is an element in the poset that
plays a special role. As we will see in the paper, this situation can be applied to bi-capacities and the
special element is (∅, ∅). Hence, bi-capacities can be seen as a special case of pointed order polytope.

Pointed order polytopes are a natural generalization of order polytopes, a well-known object in
Combinatorics [25]. However, we will see below that the existence of a relevant element in the poset
makes the structure of the corresponding pointed order polytope much more difficult to handle. For
example, we will see below that there are 49 vertices in the polytope of bi-capacities for a set of two
criteria, a number far away the 4 vertices arising in the set of capacities for the same referential set.
In the same line, the characterization of vertices is more tricky than the one for order polytopes.

The rest of the paper goes as follows. First, we review the basic concepts about bi-capacities
and order polytopes in next section. Then, we introduce pointed order polytopes and study some of
their properties. Specifically, we characterize the vertices of a pointed order polytope, as well as the
adjacency and the general form of k-dimensional faces. Next, in Section 4 we apply these results to
the set of bi-capacities for a fixed referential set. Besides, we obtain a bound for the diameter of this
polytope. We finish with the conclusions and open problems.

2 Basic concepts

Consider X = {1, ..., n} a set of criteria. Subsets of X are denoted by A,B, ... and so on. The set of
subsets of X is denoted P(X).

Definition 1. [7, 26, 11] A capacity is a set function µ : P(X)→ [0, 1] satisfying

• Monotonicity: µ(A) ≤ µ(B) if A ⊆ B.

• Boundary conditions: µ(X) = 1, µ(∅) = 0.
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The set of capacities on a fixed referential set X is denoted by FM(X). If we identify µ with
the vector (µ(A))(A)∈P(X), it follows that FM(X) is a convex polytope.

In order to extend capacities to the framework of bipolar scales, Grabisch and Labreuche have
introduced the concept of bi-capacity. Let us define

Q(X) := {(A,B) : A ∩B = ∅, A,B ⊆ X},

where A denotes the set of criteria that are completely satisfactory and B the set of criteria being
completely unsatisfactory.

Definition 2. [16] A bi-capacity is a function ν : Q(X)→ [−1, 1] satisfying

• Monotonicity: ν(A,B) ≤ ν(C,D) if A ⊆ C,B ⊇ D.

• Boundary conditions: ν(X, ∅) = 1, ν(∅, X) = −1, ν(∅, ∅) = 0.

Let us denote by BCAP(X) the set of all bi-capacities on X. From Definition 2, if we identify ν
with the vector (ν((A,B))(A,B)∈Q(X), it follows that BCAP(X) is a convex polytope. Although it is
included in R|Q(X)|, as the values for (X, ∅), (∅, X) and (∅, ∅) are fixed, this polytope can be projected
into R|Q(X)|−3 removing these coordinates.

Proposition 1. [16] Let n = |X| > 1. The dimension of BCAP(X) is 3n − 3.

Proof. It suffices to compute |Q(X)|. For this, remark that Q(X) can be identified to the set of
functions f : X → {−1, 0, 1}. Hence, |Q(X)| = 3n.

Let us now introduce the basic facts about order polytopes. This will help understand and
compare many results about pointed order polytopes that we will state below. Let (P,�) (or P
for short) be a finite partially ordered set (brief poset) of p elements, i.e. a set P endowed with a
partial relation � that is reflexive, antisymmetric and transitive. Elements of P are denoted x, y, ...
Subsets of P are denoted by capital letters A,B, ... or A1, A2, ... Posets can be represented as graphs
via Hasse diagrams (see e.g. Figure 1 left). We will write xl y to mean that x ≺ y and there is no
z ∈ P\{x, y} such that x ≺ z ≺ y. In the Hasse diagram, this translates into there is a line joining
x and y. For a poset, an upset or filter F is a subset of P such that x ∈ F, x � y implies y ∈ F.
Dually, a downset or ideal I of P is a subset such that x ∈ I, y � x implies y ∈ I. When no pair of
elements can be compared, the poset is called an antichain. The width of P, denoted w(P ), is the
size of the largest subset of P forming an antichain.

Given two posets, (P,�P ), (Q,�Q), their disjoint union, denoted P
⊎
Q, is a poset over the

referential P ∪ Q (disjoint union) and whose partial order �P
⊎

Q is defined as follows: x �P
⊎

Q y
whenever x, y ∈ P and x �P y or x, y ∈ Q and x �Q y. Their direct sum, denoted P ⊕ Q, is a
poset over the referential P ∪Q (disjoint union) and whose partial order �P⊕Q is defined as follows:
if x, y ∈ P then x �P⊕Q y if and only if x �P y; if x, y ∈ Q then x �P⊕Q y if and only if x �Q y;
and if x ∈ P, y ∈ Q then x �P⊕Q y.

Definition 3. [25] Let P be a poset. We define the order polytope associated to P, denoted O(P ),
as the set of set of points f ∈ Rp ordered by the elements of P satisfying

• 0 ≤ f(x) ≤ 1,∀x ∈ P.

• f(x) ≤ f(y) if x � y.
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There are many polytopes appearing in the Theory of Capacities that are order polytopes. For
example, it has been shown in [9] that FM(X) is the order polytope O(P(X)\{X, ∅}), where A � B
if and only if A ⊆ B. Similarly, the set of normalized monotone games with restricted cooperation is
an order polytope, no matter the set of feasible coalitions [21].

Order polytopes have the advantage that the combinatorial structure of the polytope can be
studied in terms of the subjacent poset, and this is usually a simpler problem. For example, it is
easy to characterize the vertices of an order polytope in terms of P .

Theorem 1. [25] The vertices of O(P ) are the characteristic functions of upsets of P .

Similarly, it is possible to find an easy condition to determine if two vertices are adjacent.

Theorem 2. Given two vertices of O(P ) whose corresponding upsets are F1 and F2, they are adjacent
if and only if F1 ⊆ F2 and F2\F1 is a connected subposet of P.

In order to determine faces of the order polytope, it is useful to consider the poset

P̂ := ⊥⊕ P ⊕>,

where we add a maximum > and a minimum ⊥. Hence, O(P ) can be defined in terms of P̂ as

• f(>) = 1, f(⊥) = 0.

• f(x) ≤ f(y) if xl y, x, y ∈ P̂ .

Now, for determining a face of a polytope we need to turn some inequalities of the definition
into equalities. Hence, we obtain a partition of P̂ into several blocks A>, A⊥, A1, ..., Ar, where
f(x) = f(y) whenever x, y are in the same block and A>, A⊥, represent the blocks containing > and
⊥, respectively. Therefore, a face can be given in terms of a partition of P̂ . Note however that it is
not true that any partition determines a face and it is necessary to impose additional conditions.

A partition P = {A>, A⊥, A1, ..., Ar} of P is connected if all Ai are connected suposets of P̂ .
Let us define the relation �P on {A>, A⊥, A1, ..., Ar} by

Ai �P Aj ⇔ ∃x ∈ Ai, y ∈ Aj, x � y.

A partition P is compatible if �P antisymmetric. Finally, a partition P is closed if for any
Ai, Aj, i 6= j, there exists f ∈ O(P ) constant on each block such that f(Ai) 6= f(Aj). Note that
compatibility and connectivity are defined in terms of the poset, while the notion of closedness
depends on the (order) polytope. Now, the following holds.

Theorem 3. [25] A partition {A>, A⊥, A1, . . . , Ar} of P̂ is closed and determines a r-dimensional
face of O(P ) if and only if it is compatible and connected.

For a polytope P , we define its skeleton as the graph whose vertices are the vertices of P and
two vertices are joined by an edge if they are adjacent vertices in P . Given two vertices of P , we
define the distance between them as the number of edges of the minimal path connecting them in
the skeleton of P . The diameter of P is the maximal distance between two vertices. The diameter
of a polytope gives information about its geometric complexity.

Theorem 4. [9] Let P be a finite poset and O(P ) its associated order polytope. Then:
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i) The diameter of O(P ) is at most w(P ).

ii) If P has r connected components P1, . . . , Pr, i.e. P = P1

⊎
...
⊎
Pr, and the diameter of O(Pi)

is di, then the diameter of O(P ) is
∑r

i=1 di.

iii) If P has a maximum or a minimum element, then the diameter of O(P ) is at most 2. In
addition, if there are two incomparable elements in O(P ), then the diameter is exactly 2.

3 Pointed order polytopes

3.1 Definition and vertices

We are now in position to define pointed order polytopes.

Definition 4. Let P be a poset and take a ∈ P . We define the pointed order polytope associated
to P and a as the set of points f ∈ Rp ordered by the elements of P satisfying

• −1 ≤ f(x) ≤ 1,∀x ∈ P.

• f(x) ≤ f(y), if x � y.

• f(a) = 0.

We will denote the pointed order polytope on P and a as O(P, a). Note that it is a polytope of
dimension |P | − 1, because the value of f(a) is fixed.

Example 1. Consider the poset 1≡ (P,�) where P := {x, y, z, a} and whose Hasse diagram is given
in Figure 1 left. Then, the pointed order polytope O(P, a) is defined by the equations

0 ≤ f(y) ≤ 1, −1 ≤ f(x) ≤ f(y), f(a) = 0, −1 ≤ f(z) ≤ 0.

As f(a) is fixed, we can draw this polytope in R3. A graph is given in Figure 1 right.

x

y

a

z

Figure 1: The poset 1 and its corresponding pointed order polytope O(P, a).

Remark 1. As in the case for order polytopes, the concept of pointed order polytope can be established
equivalently if we consider the poset

P̂ := ⊥⊕ P ⊕>,

where we add a maximum > and a minimum ⊥. Hence, O(P, a) can be written in terms of P̂ as
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• f(>) = 1, f(⊥) = −1, f(a) = 0.

• f(x) ≤ f(y) if xl y, x, y ∈ P̂ .

Remark 2. Bounds -1 and 1 are arbitrary and need not be symmetric. We have chosen these
values because they are the typical values when bipolar scales are considered and these are the values
appearing in bi-capacities. Similarly, the values 1,0 for order polytopes are arbitrary. Hence, we can
define an order polytope equivalently fixing the lower and upper bounds on v1 and v2, respectively.
We will denote this polytope by O[v1,v2](P ).

Remark 3. Let (P, a) be a pointed order polytope such that there are posets P1 and P2 satisfying

P = P1 ⊕ a⊕ P2.

Then, O(P, a) is isometric to O(P1) × O(P2). This isometry φ : O(P1) × O(P2) −→ O(P, a) is
given by φ(x,y) = (x − 1, 0,y). When P1 (resp. P2) is the empty set, a is the minimum (resp.
maximum) of P and O(P, a) is just the order polytope O(P2) (resp. O[−1,0](P1)). Thus considered,
order polytopes are a special case of pointed order polytopes.

As pointed order polytopes are polytopes, they can be defined in terms of their vertices. Let us
then deal with the problem of characterizing the vertices of O(P, a) in terms of P .

Proposition 2. Let P be a poset and a ∈ P. Consider f ∈ O(P, a). If f is a vertex of O(P, a), then

f(x) ∈ {−1, 0, 1},∀x ∈ P.

Proof. Let f be a vertex of O(P, a) and assume there exists x ∈ P such that f(x) 6∈ {−1, 0, 1}.
Suppose that f(x) > 0 (the case f(x) < 0 is completely symmetric) and let us define

A+ := {y ∈ P : f(y) ∈ (0, 1)}.

For A+ we define

ε := min{f(y), 1− f(y) : y ∈ A+} > 0.

We build g1, g2 as follows:

g1(y) :=

{
f(y) + ε if y ∈ A+

f(y) otherwise
, g2(y) :=

{
f(y)− ε if y ∈ A+

f(y) otherwise
.

Consequently, f = 1
2
g1 + 1

2
g2. It just suffices to show that g1, g2 ∈ O(P, a). We prove it for g1, as

the case for g2 is symmetric. First, note that g1(y) ∈ [−1, 1],∀y ∈ P by definition of ε. Now, take
y, z ∈ P, y � z. We have the following cases:

• If f(z) = 1, then g1(z) = 1, and hence g1(y) ≤ g1(z).

• If f(z) ≤ 0, then f(y) ≤ 0 by monotonicity and g1(y) = f(y) ≤ f(z) = g1(z).

• If f(z) ∈ (0, 1), then g1(y) ≤ f(y) + ε ≤ f(z) + ε = g1(z).

Hence, the result holds.
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Note however that, contrary to the case of order polytopes, it could be the case that f ∈ O(P, a),
and f(x) ∈ {−1, 0, 1} but f is not a vertex of O(P, a).

Example 2. (Continued Example 1) In this case, note that point (f(x) = 0, f(y) = 1, f(z) =
0, f(a) = 0) is not a vertex of the polytope, as

(0, 1, 0, 0) =
1

2
(1, 1, 0, 0) +

1

2
(−1, 1, 0, 0),

and both (1, 1, 0, 0) and (−1, 1, 0, 0) are in O(P, a).

Let us then study which are the conditions for f ∈ O(P, a) to be a vertex. From Proposition 2,
we have to look for conditions on partitions of P consisting on three subsets attaining values 1, 0, -1
such that they lead to a vertex. Consider a partition {A1, A0, A−1} of P and define fA1,A0,A−1 by

fA1,A0,A−1(x) :=


−1 if x ∈ A−1
0 if x ∈ A0

1 if x ∈ A1

Remark that A1 (resp. A−1) could be empty. However, a ∈ A0.

Definition 5. Let P be a poset and a ∈ P. We say that a partition {A−1, A0, A1} is a vertex
partition of P if it satisfies the following conditions

1. A1 ⊆ P\{x : x � a} and A1 is an upset of P .

2. A−1 ⊆ P\{x : a � x} and A−1 is a downset of P .

3. A0 is a connected subset of P .

Note that in a vertex partition, a ∈ A0.

Proposition 3. Let O(P, a) be a pointed order polytope and consider fA1,A0,A−1 where {A1, A0, A−1}
is a vertex partition. Then, fA1,A0,A−1 is a vertex of O(P, a).

Proof. Suppose fA1,A0,A−1 is not a vertex of O(P, a). Then, there exist g1, g2 ∈ O(P, a), g1 6= g2, and
α ∈ (0, 1) such that

fA1,A0,A−1 = αg1 + (1− α)g2.

We will show that fA1,A0,A−1(x) = g1(x) = g2(x). For x ∈ A1, we have fA1,A0,A−1(x) = 1 and hence
g1(x) = g2(x) = 1. Similarly, for x ∈ A−1, we have g1(x) = g2(x) = −1.

Let us then consider x ∈ A0, x 6= a. Assume x � a or a � x. We will denote the set of elements
of A0 in these conditions as A1

0. W.l.g. let us study the case a � x. Therefore,

g1(x) ≥ g1(a) = 0
g2(x) ≥ g2(a) = 0

}
⇒ g1(x) = 0 = g2(x),

as fA1,A0,A−1(x) = 0. Now, suppose x 6∈ A1
0 but there exists y ∈ A1

0 such that x � y or y � x. W.l.g.
let us study the case y � x. As before,

g1(x) ≥ g1(y) = 0
g2(x) ≥ g2(y) = 0

}
⇒ g1(x) = 0 = g2(x),
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as fA1,A0,A−1(x) = 0. As A0 is connected, for x ∈ A0 there is a chain

x− yr − yr−1 − ...− y1 − a.
Then, we can repeat the previous process for y1, ..., yr, x so that

g1(y1) = 0 = g2(y1), ..., g1(yr−1) = 0 = g2(yr−1), g1(yr) = 0 = g2(yr), g1(x) = g2(x) = 0,

and we conclude that fA1,A0,A−1 is a vertex of O(P, a).

Proposition 4. Let O(P, a) be a pointed order polytope and consider f a vertex. Then, f can be
written as fA1,A0,A−1 with {A1, A0, A−1} a vertex partition.

Proof. If f is a vertex, we know from Prop. 2 that f can be written as fA1,A0,A−1 , where Ai := {x :
f(x) = i}, i = −1, 0, 1. Hence, it just suffices to show that these Ai are in the conditions of Def. 5.

• A1 is an upset by monotonicity. Besides, if x � a, monotonicity implies f(x) ≤ f(a) = 0. Thus,

A1 ⊆ P\{x : x � a}.

• Similarly, A−1 is a downset and A−1 ⊆ P\{x : a � x}.

• Let us show that A0 is connected. Suppose that A0 has at least two connected components. As
a ∈ A0, let us denote by C1 a connected component of A0 such that a 6∈ C1. Hence, if x ∈ C1,
this element cannot be compared to any other element of A0\C1. For a fixed ε ∈ (0, 1), define

g1(y) :=

{
f(y) if y 6∈ C1

ε if y ∈ C1
, g2(y) :=

{
f(y) if y 6∈ C1

−ε if y ∈ C1

Then, f = 1
2
g1 + 1

2
g2. Let us finally show that g1, g2 ∈ O(P, a), i.e. monotonicity. W.l.g. we

prove it for g1. Consider x, y ∈ P such that x � y. We have the following cases:

– If x, y 6∈ C1, then g1(x) = f(x) ≤ f(y) = g1(y).

– Assume x, y ∈ C1. Then, g1(x) = ε = g1(y).

– If x 6∈ C1, y ∈ C1, then x ∈ A−1 because x � y and x 6∈ A0 (otherwise x ∈ C1 because
y ∈ C1 and x � y). Hence, g1(x) = f(x) = −1 ≤ ε = g1(y).

– If x ∈ C1, y 6∈ C1, this implies that y ∈ A1. Hence, g1(x) = ε ≤ 1 = f(y) = g1(y).

Hence, the result holds.

Example 3. (Continued Example 1) In this case, we can apply the previous proposition to obtain
all the vertices of the polytope. It can be seen that we have eight vertices that are given in next table.

Vertex A1 A0 A−1
(1, 1,−1) x, y a z
(1, 1, 0) x, y a, z ∅
(−1, 1, 0) y a, z x
(0, 0, 0) ∅ x, y, z, a ∅
(−1, 1,−1) y a x, z
(0, 0,−1) ∅ x, y, a z
(−1, 0,−1) ∅ y, a x, z
(−1, 0, 0) ∅ z, y, a x

8



Corollary 1. Let (P, a) be a pointed order polytope such that there are posets P1 and P2 such that
P = P1 ⊕ a⊕ P2. Then, the vertices of O(P, a) can be identified to pairs (I, F ) where I is a downset
of P1 and F is an upset of P2.

Remark 4. Assume P is not connected, i.e. P = P1

⊎
P2

⊎
...
⊎
Pr, where Pi are connected posets.

According to the previous results, if say a ∈ P1, for any vertex fA1,A0,A−1 of O(P, a), elements outside
P1 cannot be in A0. Hence, they attain values −1, 1 and we conclude that Pi = (A−1∩Pi)∪ (A1∩Pi),
i = 2, ..., r. In other words, O(P, a) behaves like an order polytope in Pi, i 6= 1 and

O(P, a) = O(P1, a)×O[−1,1](P2)× · · ·O[−1,1](Pr).

Remark 5. The characterization of vertices arising from Definition 5 might be seen as surprising if
we compare it with the corresponding condition for order polytopes established in Theorem 1, where
there is no A0 and no connectivity is imposed on the sets. For understanding the underlying reasons
of this condition, we have to turn to P̂ . Focusing on this poset, we see that a vertex of O(P ) is
just a partition {A0, A1} of P̂ . In this case, A1 (resp. A0) is connected as subposet of P̂ because
x � >,∀x ∈ P (resp. ⊥ � x,∀x ∈ P ). More insight about this fact is shown when studying the facial
structure of O(P, a) in next subsection.

3.2 Faces of the pointed order polytope

Let us now study the faces of O(P, a).

Proposition 5. Let O(P, a) be a pointed order polytope. Then, the faces of O(P, a) are also pointed
order polytopes O(P ′, a).

Proof. Let us first prove the result for the facets, faces of dimension |P | − 2. To obtain the facets,
we have to turn an inequality f(x) ≤ f(y), xl y into an equality, where x, y ∈ P̂ . Given a facet F ,
let us define the poset (P̂ ′,�′) where

P̂ ′ := (P̂\{x, y}) ∪ {z},
and �′ is given as: 

v �′ w ⇔
{

v � w, or
v � y, x � w

∀v, w ∈ P\{x, y}

z �′ w ⇔ x � w
v �′ z ⇔ v � y

Let us check that �′ is an order relation:

• Reflexivity holds trivially.

• Suppose v �′ w and w �′ v, v 6= z, w 6= z.

If v � w and w � v, we conclude v = w by antisymmetry in � .

Another possibility is v � w and w � y, x � v. But in this case, we obtain x � v � w � y, a
contradiction with xl y. Similarly, if v � y, x � w, and w � v, we conclude x � w � v � y.

Finally, if v � y, x � w and w � y, x � v, we obtain x � w � y, again a contradiction.

Let v 6= z and assume z �′ v and v �′ z. This implies x � v and v � y, so that x � v � y, a
contradiction.
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• Suppose u �′ v �′ w and u 6= z, v 6= z, w 6= z. Then, the possibilities are:
u � v � w ⇒ u � w ⇒ u �′ w

u � y, x � v, v � w ⇒ u � y, x � w ⇒ u �′ w
u � v, v � y, x � w ⇒ u � y, x � w ⇒ u �′ w

The possibility u � y, x � v, v � y, x � w leads to x � v � y, a contradiction.

Let us now study the case when z appears. The possibilities are:
z �′ v �′ w ⇒ x � v � w ⇒ x � w ⇒ z �′ w
v �′ w �′ z ⇒ v � w � y ⇒ v � y ⇒ v �′ z

v �′ z �′ w ⇒
{

v � y
x � w

⇒ v �′ w

The possibilities z �′ v �′ w and v �′ w �′ z where v �′ w means v � y, x � w are not
possible because they lead to x � v � y.

Next, remark that P̂ ′ has a top element and a bottom element. This is obvious if x, y 6∈ {>,⊥}.
If y = >, this implies that v �′ z,∀v ∈ P̂ ′. Hence, z is the maximum in P̂ ′ and we can rename z as
>. Similarly, if x = ⊥ it follows that z is the minimum in P̂ ′ and we can rename z as ⊥.

Note that we can identify points ofO(P ′, a) with the points of the facet F via f(z) := f(x) = f(y),
so that the map

(f(⊥), ..., f(x), f(y), ..., f(>))↔ (f(⊥), ..., f(z), ..., f(>))

is well-defined. Remark that if either x = a or y = a, we can identify z to a and fix f(z) = 0.
Hence, facets are pointed order polytopes. But now, applying that a k-dimensional face is a facet

of a (k + 1)-dimensional face, we can reiterate the process to conclude that any face of O(P, a) is a
pointed order polytope O(P ′, a) where a remains the same.

Let us now study the faces. We start with the problem of obtaining the facets of this polytope.
For this, we transform an inequality of the system defining the pointed order polytope in an equality.
We have then four possibilities:

• x ∈ P\{a} is maximal and we fix the value f(x) = 1.

• x ∈ P\{a} is minimal and we fix the value f(x) = −1.

• x ∈ P\{a} satisfying xl a or xm a and we fix the value f(x) = 0.

• x, y ∈ P\{a} satisfying xl y and we fix the condition f(x) = f(y).

Thus, the following holds.

Proposition 6. Let P be a poset and let us denote by M the number of maximal elements in P , m
the number of minimal elements and r is the number of relations xl y in P . The number of facets
of O(P, a) is given by:

• M +m+ r, when a is neither a maximal or a minimal element.
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• M +m+ r − 1, when a is a maximal or a minimal element, but not both.

• M + m + r − 2, when a is both a maximal and a minimal element (i.e. a is an isolated point
in the Hasse diagram of P ).

We now turn to the problem of characterizing faces of O(P, a) different from vertices and facets.
Following the same process as for order polytopes, we turn several inequalities into equalities. Hence,
we obtain a partition of P̂ into several blocks A>, A⊥, Aa, A1, ..., Ar, where f(x) = f(y) whenever
x, y are in the same block and A>, A⊥, Aa represent the blocks containing >,⊥ and a, respectively.
Therefore, a face can be given in terms of a partition of P̂ and the problem relies in obtaining the
conditions for a partition to determine a face.

Lemma 1. Given a poset P and a ∈ P, we have

O(P, a) = O[−1,1](P ) ∩ {xa = 0}.

Proof. ⊆) Let us consider f ∈ O(P, a). Hence, f(a) = 0 because a ∈ A0. If x � y, we have
f(x) ≤ f(y) by monotonicity. Finally, −1 ≤ f(x) ≤ 1, so that f ∈ O[−1,1](P ).
⊇) Consider f ∈ O[−1,1](P ) ∩ {xa = 0}. Hence, f satisfies monotonicity, f(a) = 0 and f(x) ∈

[−1, 1]. Therefore, f ∈ O(P, a).

Now, for O[−1,1](P ), Theorem 3 turns into:

Theorem 5. A partition {A>, A⊥, A1, . . . , Ar} of P̂ is closed and determines a r-dimensional face
of O[−1,1](P ) if and only if it is compatible and connected.

We will say that a partition is closed (for the pointed order polytope) if for every two blocks
Ai, Aj, there exists g ∈ O(P, a) constant on each block such that g(Ai) 6= g(Aj). The following holds.

Theorem 6. A partition {A⊥, A>, Aa, A1, ..., Ar} of P̂ is closed and determines a r-dimensional face
of O(P, a) if and only if it is compatible and connected.

Proof. While it is possible to derive a proof similar to that of Theorem 3, we show here a proof in
which we apply Theorem 5 to simplify the proof.
⇐) Let us assume that P := {A⊥, A>, Aa, A1, ..., Ar} is a connected and compatible partition

of P̂ . If we allow the value on Aa to oscillate between -1 and 1 instead of keeping it fixed to
0, we can apply Theorem 5 to conclude that P is a closed partition for O[−1,1](P ) determining a
(r + 1)-dimensional face. Let us denote this face by G and consider

F := G ∩ {xa = 0}.

Note that F is not empty. To see this, consider

g1(x) =

{
1 if x ∈ Ai ,Ai �P Aa

0 otherwise
g2(x) =

{
−1 if x ∈ Ai ,Ai �P Aa

0 otherwise

Then, g1, g2 ∈ G so that 1
2
g1 + 1

2
g2 ∈ G. Besides, g1(x) = 1, g2(x) = −1, for x ∈ Aa, so that

[1
2
g1 + 1

2
g2](a) = 0, and hence, G ∩ {xa = 0} 6= ∅.

As G is a face ofO[−1,1](P ), there exists an hyperplaneH := {~at~x = b} such thatH∩O[−1,1](P ) = G
and O[−1,1](P ) ⊆ H≤ := {~at~x ≤ b}.

Consider then H′ := H ∩ {xa = 0} and let us define H′≤ := H≤ ∩ {xa = 0}. Then,
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O(P, a) = O[−1,1](P ) ∩ {xa = 0} ⊆ H≤ ∩ {xa = 0} = H′≤.
Similarly, as F = G ∩ {xa = 0}, we obtain

F = G ∩ {xa = 0} = H ∩O[−1,1](P ) ∩ {xa = 0} = H′ ∩ O(P, a).

As dim(H′) = dim(H) − 1, we conclude that H′ is an hyperplane in R|P |−1 and hence F is a
face of O(P, a). Moreover, since the elements of F are elements of G, we conclude that elements of
F are constant on each block. Besides, f(x) = 1 if x ∈ A>, f(x) = −1 if x ∈ A⊥ and f(x) = 0 if
x ∈ Aa. Hence, as these values are fixed and are the only values that are fixed, we conclude that F
is a r-dimensional face.

Now let us see that P is a closed partition in O(P, a). Consider two different subsets Ai, Aj ∈ P
both of them different from Aa. Let us represent the values of a point f ∈ G on (Ai, Aj, Aa) by a
triple (f(Ai), f(Aj), f(Aa)). Since P is the closed partition associated to the face G of O[−1,1](P ),
there is an extreme point g1 ∈ G taking different values at Ai and Aj. Let us suppose w.l.g. that the
corresponding triple is (1,−1, xa). If xa = 1 (the case xa = −1 is symmetric), as G ∩ {xa = 0} 6= ∅,
there exists another vertex g2 whose corresponding triple is (y1, y2,−1). This way f = 1

2
(g1 + g2)

takes values (1+y1
2
, −1+y2

2
, 0), and f ∈ F . If 1+y1

2
6= −1+y2

2
, we are done. Otherwise, g1 and g2 take

values (1,−1, 1) and (−1, 1,−1), respectively. Therefore, Ai and Aj form an antichain, and the same
happens for Aj and Aa. Hence, there exists g3 with values (−1,−1,−1). Now, we take f = 1

2
(g1 + g3)

whose corresponding triple is (0,−1, 0). Thus, f ∈ F and it separates Ai and Aj.
To differentiate between a block Ai and block Aa, we repeat the same procedure taking w.l.g. a

vertex g1 ∈ G with values in (Ai, Aa) given by (−1, 1). Now, since Aa 6= A> we have a vector g2 ∈ G
with values (y1,−1). If y1 = −1 the vector f = 1

2
(g1 + g2) = (−1, 0) differenciates Ai and Aa. If

y1 = 1 then Ai and Aa form an antichain, so there is a g3 = (−1,−1) giving f = 1
2
(g1 + g3) = (−1, 0)

that differenciates Ai and Aa. Thus P is closed in O(P, a).
⇒) Consider a partition P = {A⊥, A>, Aa, A1, ..., Ar} of P̂ closed in O(P, a) and determining a

r-dimensional face F of O(P, a). Since O(P, a) = O[−1,1](P ) ∩ {xa = 0}, F can be written as

F = G ∩ {xa = 0},
where G is a (r + 1)-dimensional face of O[−1,1](P ). As G is a face, it is associated to a partition
P′ = {A′>, A′⊥, A′a, A′1, ..., A′r} of P . First, let us check that P′ = P :

• If x, y ∈ A′i, then f(x) = f(y),∀f ∈ G. Hence, f(x) = f(y),∀f ∈ F . So Ai ⊆ A′i.

• If x, y ∈ Ai, then f(x) = f(y),∀f ∈ F = G ∩ {xa = 0}. Suppose there exist x, y ∈ Ai and a
vertex g ∈ G such that g(x) 6= g(y). Then, x ∈ A′i, y ∈ A′j and g(x) = 1, g(y) = −1. Suppose
w.l.g. that g(a) = 1 and consider

g′(z) =

{
0 if g(z ) = 1
−1 otherwise

Thus, g′ ∈ G and g′(a) = 0. Hence, g′ ∈ F and g′(x) 6= g′(y), a contradiction. So A′i ⊆ Ai.

Let us now show that P is closed for O[−1,1](P ). Consider Ai, Aj ∈ P. As the partition is closed
for O(P, a), there exist g ∈ O(P, a) constant on each block such that g(Ai) 6= g(Aj). Since O(P, a) =
O[−1,1](P ) ∩ {xa = 0}, then g ∈ O[−1,1](P ) and it is constant on each block. Therefore, P is closed
for O[−1,1](P ). Since G is a face and P is closed, we conclude by Theorem 5 that P is connected and
compatible for O[−1,1](P ), with in turn implies that it is connected and compatible for O(P, a).
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Remark 6. When characterizing the vertices of O(P, a) we had obtained the condition of Aa being
a connected subposet of P . The previous result gives an insight of the reason for this condition, as it
imposes connectivity for each element of the partition.

In particular, we have the following nice result for 2-dimensional faces.

Proposition 7. The 2-dimensional faces of O(P, a) are triangles or quadrilaterals.

Proof. Since any face of O(P, a) is again a pointed order polytope by Proposition 5, it suffices
to analyze the 2-dimensional pointed order polytopes. These polytopes come from pointed order
polytopes O(P, a) where |P | = 3. In Figure 2, we can see all the non-isomorphic posets with three
elements. Depending on the choice made for a we get different pointed order polytopes O(P, a). Let
us study the different cases:

•
3

•2

•
1

•
3

•
2

•
1

•
3

•
1

•
2

•
3

•
1

•
2

•
3

•
1
•
2

Figure 2: Non-isomorphic posets with 3 elements.

i) In the first poset we can set a = 1 and then the corresponding pointed order polytope is a
triangle with vertices (0, 0, 0), (0, 0, 1) and (0, 1, 1). If we set a = 2 we get a square with vertices
(−1, 0, 0), (−1, 0, 1), (0, 0, 0), (0, 0, 1). The case a = 3 is equivalent to case a = 1 by duality.

ii) In the second poset we can set a = 1 obtaining a square with vertices (0, 0, 0), (0, 0, 1), (0, 1, 0)
and (0, 1, 1). If we choose a = 2, we obtain the quadrilateral (−1, 0,−1), (−1, 0, 1), (0, 0, 0) and
(0, 0, 1). The case a = 3 is equivalent to case a = 2 by symmetry.

iii) This poset is the dual of the previous one, so we get the same conclusions.

iv) In the fourth poset, if we set a = 1, we get a quadrilateral with vertices (0,−1, 0), (0,−1, 1), (0, 1, 0)
and (0, 1, 1). In the case a = 2, we obtain a triangle with vertices (−1, 0,−1), (−1, 0, 1) and
(1, 0, 1). The case a = 3 is equivalent to case a = 1 by duality.

v) In the last poset, if we set a = 1, we obtain a square with vertices (0,−1,−1), (0,−1, 1), (0, 1,−1)
and (0, 1, 1). The rest of cases a = 2 and a = 3 follow by symmetry.

Therefore, the result holds.

3.3 Adjacency

Let us now deal with the problem of determining whether two vertices are adjacent.

Theorem 7. Let fA1
>,A

1
a,A

1
⊥

and fA2
>,A

2
a,A

2
⊥

be two vertices of O(P, a). Then, these vertices are adjacent
if and only if one of these subsets is common, there is a containing relation between the two other
subsets and the difference is a connected subposet, i.e. A1

x = A2
x, A

1
y ⊆ A2

y, (and hence, A1
z ⊇ A2

z)
and A2

y \ A1
y = A1

z \ A2
z is connected, where x, y, z are different elements of {>,⊥, a}.
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Proof. From Theorem 6, we know that an edge in O(P, a) is given by a face partition of P̂ in
four connected subsets, say P := {A>, A⊥, Aa, A1}. From Proposition 5, we know that given a face,
subfaces appear combining different blocks. As blocks for >,⊥ and a are needed in any face partition,
the only possibility comes from joining A1 to other subset. Hence, we have three possible vertices
whose corresponding partitions P′ are:

{A> ∪ A1, Aa, A⊥}, {A>, Aa, A⊥ ∪ A1}, {A>, Aa ∪ A1, A⊥}.

To determine which ones are vertices, we apply the conditions of Definition 5. Besides, by
Theorem 6, we need to check that the new face partition P′ leads to an order relation �P′ between
the subsets in the partition. More concretely, we have to see that �P′ is antisymmetric. Let us then
study the different cases.

• Case 1: Aa �P A1. This implies that block A1 ∪A⊥ is no longer possible as this would mean:{
A⊥ �P Aa ⇒ A⊥ ∪ A1 �P′ Aa

Aa �P A1 ⇒ A⊥ ∪ A1 �P′ Aa

Let us finally check that

{A> ∪ A1, Aa, A⊥, }, {A>, Aa ∪ A1, A⊥}

are vertices of O(P, a). The first one satisfies all the conditions of Definition 5 as A> ∪ A1 is
an upset. Indeed, for x ∈ A> ∪ A1 and y ∈ P̂ , x � y, let us show that y ∈ A> ∪ A1. If
x ∈ A> ⇒ y ∈ A>. If x ∈ A1, as Aa �P A1, then y /∈ A⊥∪Aa. For the second one, remark that
Aa and A1 are connected by hypothesis. Moreover, since Aa �P A1, there exist x ∈ Aa, y ∈ A1

such that x � y. Therefore, Aa ∪ A1 is a connected subposet.

• Case 2: A1 �P Aa. Following the same steps as in the previous case, we conclude that
the block A1 ∪ A> is no longer possible and we obtain an edge whose vertices are given by
{A>, Aa, A⊥ ∪ A1} and {A>, Aa ∪ A1, A⊥}.

• Case 3: Finally, assume that Aa and A1 are not related. Hence, for x ∈ Aa, y ∈ A1, we
conclude that these elements are not related in P . Therefore, Aa ∪ A1 is not a connected
subposet of P and the vertices of the edge are

{A> ∪ A1, Aa, A⊥}, {A>, Aa, A⊥ ∪ A1}.

Proving that A> ∪A1 is an upset and A⊥ ∪A1 a downset is done in the same way as in Case 1.

Thus, the vertices in an edge share one of the subsets in the partition. Note also that in each case,
the difference between subsets is always A1, that is a connected subposet of P by hypothesis.

The condition of the previous result can be turned into the following one:

Corollary 2. Let fA1
>,A

1
a,A

1
⊥

and fA2
>,A

2
a,A

2
⊥

be two vertices of O(P, a). Then, these vertices are adjacent
if and only if one of these subsets is common and there is another pair of subsets with connected
symmetric difference, i.e. A1

x = A2
x and A1

y∆A
2
y := (A1

y\A2
y)∪ (A2

y\A1
y) is a connected subposet of P ,

where x, y are different elements of {>,⊥, a}.
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Proof. Note that A1
y∆A

2
y is connected if and only if A1

y ⊆ A2
y or A1

y ⊇ A2
y and the difference A2

y \A1
y

or A1
y \A2

y is a connected subposet. If A1
x = A2

x and A1
y ⊆ A2

y (resp. A1
y ⊇ A2

y), then we automatically
get A1

z ⊇ A2
z (resp. A1

z ⊆ A2
z). Moreover, if the difference A2

y \A1
y (resp. A1

y \A2
y) is connected, then

A2
z \ A1

z (resp. A1
z \ A2

z) is also connected because it is the same subposet.

Example 4. (Continued Example 1) Let us consider v1 = (1, 1,−1). Hence, A1 = {x, y}, A0 =
{a}, A−1 = {z} and applying Theorem 7, we obtain that the vertices adjacent to v1 are

Vertex A1 A0 A−1
(1, 1, 0) x, y a, z ∅

(−1, 1,−1) y a x, z
(0, 0,−1) ∅ x, y, a z

Corollary 3. Determining if two vertices of O(P, a) are adjacent can be solved in quadratic time.

Proof. Given two vertices fA1
1,A

1
0,A

1
−1
, fA2

1,A
2
0,A

2
−1
, in order to be adjacent we need A1

1 = A2
1 or A1

0 = A2
0

or A1
−1 = A2

−1 and this can be checked in quadratic time in |P | (where we consider as unit of time
the comparison of elements of P ). Next step is to check if A1

0 ⊂ A2
0 (or A2

0 ⊂ A1
0) and this can be

done again in quadratic time. We finally need to check if A2
0\A1

0 is a connected subposet and this
can be done in quadratic time, for example using Prim algorithm.

Related to the problem of adjacency, we have the problem of determining the diameter of pointed
order polytopes. Similar to the results of Theorem 4, we can state the following.

Theorem 8. Let P be a finite poset, a ∈ P and O(P, a) its associated pointed order polytope. Then:

i) If P = P1]P2 and a ∈ P1, then the diameter of O(P, a) is the sum of the diameter of O(P1, a)
and the diameter of O(P2).

ii) If P has a maximum and a minimum different from a, the diameter of O(P, a) is at most 4.

iii) If P = P1⊕ a⊕P2 and the diameter of O(Pi) is di for i ∈ {1, 2}, then the diameter of O(P, a)
is d1 + d2 and therefore this diameter is at most w(P1) + w(P2).

Proof.

i) By Remark 4 we know that O(P, a) = O(P1, a) × O[−1,1](P2). Since the adjacency graph of the
product of polytopes is the cartesian product of its adjacency graphs and the diameter of the cartesian
product of graphs is the sum of their diameters (see [6]), the result holds.

ii) Consider the vertex partition {A1, A0, A−1} associated to some vertex. Since P has maximum and
minimum, the upset A1 and the downset A−1 are connected subposets. Thus, we get the sequence
of adjacent partitions:

{A1, A0, A−1} − {∅, A0 ∪ A1, A−1} − {∅, P, ∅}.

This way the distance between any vertex and the vertex given by A1 = ∅, A−1 = ∅, A0 = P is at
most 2, so we can find a chain of lenght at most 4 passing through zero between any 2 vertices.

iii) By Remark 3 we know that O(P, a) is isometric to O(P1) × O(P2). Hence, the diameter is the
sum of diameters. Finally, the upper bound arises by Theorem 4.
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4 The pointed order polytope of bi-capacities

As stated in Section 2, BCAP(X) can be seen as a convex polytope on R3n−3. Consider the poset
(Q∗(X),�), where

Q∗(X) := Q(X)\{(X, ∅), (∅, X)}, (A,B) � (C,D)⇔ A ⊆ C,B ⊇ D.

Example 5. If X = {1, 2}, the Hasse diagram of Q∗(X) is given in Figure 3.

(∅, 2) (∅, 1)

(1, 2) (∅, ∅) (2, 1)

(1, ∅) (2, ∅)

Figure 3: Hasse diagram of Q∗(X) when |X| = 2.

Now, from the definition of bi-capacities, the following holds:

Corollary 4. The polytope BCAP(X) is the pointed order polytope O(Q∗(X), (∅, ∅)).

We aim to study the properties of this polytope at the light of the results of the previous section.
First, we can find all vertices of this polytope applying Propositions 3 and 4. Consequently, for a
bi-capacity ν to be a vertex, it is necessary that ν(A) ∈ {−1, 0, 1},∀A ∈ Q∗(X). Then, we rename ν
as νA1,A0,A−1 , where A1 (resp. A0, A−1) is the set of elements (A,B) ∈ Q∗(X) such that ν(A,B) = 1
(resp. ν(A,B) = 0, ν(A,B) = −1). Now, the following can be established.

Corollary 5. Consider a bi-capacity νA1,A0,A−1 . Let us denote by

Q∗1(X) := {(A,B) ∈ Q∗(X) : A 6= ∅}, Q∗−1(X) := {(A,B) ∈ Q∗(X) : B 6= ∅}.

Then, νA1,A0,A−1 is a vertex if and only if

• A1 is an upset of Q∗1(X).

• A−1 is a downset of Q∗−1(X).

• A0 is a connected subposet.

Example 6. (Continued Example 5). Let us obtain all vertices of bi-capacities when |X| = 2. We
classify the vertices in terms of the different possibilities of A1. Note that

A1 ⊆ Q∗(X)\{(∅, 2), (∅, 1), (∅, ∅)} = {(1, ∅), (1, 2), (2, ∅), (2, 1)},

whose Hasse diagram is given in Figure 4.
As A1 is an upset, we have the following cases for A1:
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(1, 2)

(1, ∅)

(2, 1)

(2, ∅)

Figure 4: Hasse diagram of Q∗(X)\{(∅, 2), (∅, 1), (∅, ∅)}.

A1 = ∅ A1 = {(1, ∅)} A1 = {(2, ∅)}
A1 = {(1, ∅), (1, 2)} A1 = {(2, ∅), (2, 1), } A1 = {(1, ∅), (2, ∅)}
A1 = {(1, ∅), (2, ∅), (1, 2)} A1 = {(1, ∅), (2, ∅), (2, 1)} A1 = {(1, ∅), (2, ∅), (1, 2), (2, 1)}

Let us study two of them for the sake of clarity.

• A1 = ∅. Hence, A0 ∪ A−1 = Q∗(X), and its Hasse diagram is given in Figure 3. Now, by
monotonicity, (1, ∅), (2, ∅) are in A0; and (∅, ∅) ∈ A0 by construction. Hence, the poset of
possibilities for A−1 is given in Figure 5.

(∅, 2)

(1, 2)

(∅, 1)

(2, 1)

Figure 5: Hasse diagram of Q∗(X)\{(1, ∅), (2, ∅), (∅, ∅)}.

The nine possible downsets for this poset are:

A−1 = ∅ A−1 = {(∅, 2)} A−1 = {(∅, 1)}
A−1 = {(∅, 1), ∅, 2)} A−1 = {(1, 2), (∅, 2)} A−1 = {(2, 1), (∅, 1)}
A−1 = {(1, 2), (∅, 2), (∅, 1)} A−1 = {(2, 1), (∅, 1), (∅, 2)} A−1 = {(1, 2), (∅, 2), (∅, 1), (2, 1)}

• A1 = {(1, ∅)}. The Hasse diagram of poset A0 ∪ A−1 = Q∗(X)\A1 is given in Figure 6 left.

(∅, 2) (∅, 1)

(1, 2) (∅, ∅) (2, 1)

(2, ∅)

(∅, 2), (1, 2)

(∅, 1)

(2, 1)

Figure 6: The case for A1 = {(1, ∅)}.
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For this poset, note that (∅, ∅), (2, ∅) ∈ A0. Besides, (∅, 2), (1, 2) are both in A0 or in A−1
because A0 should be connected. Hence, the poset of possibilities for A−1 is given in Figure 6
right. The six possible downsets for this poset are:

A−1 = ∅ A−1 = {(1, 2), (∅, 2)} A−1 = {(∅, 1)}
A−1 = {(1, 2), (∅, 2), (∅, 1)} A−1 = {(2, 1), (∅, 1)} A−1 = {(1, 2), (∅, 2), (∅, 1), (2, 1)}

Proceeding this way for all possibilities, it can be seen that we have 49 vertices. Compare this
value with the 4 vertices of the polytope of capacities over a referential of two points.

Indeed, the number of vertices for bi-capacities grows much faster than the corresponding number
for capacities, and the latter already grows very fast. Table 1 shows the number of vertices for
referentials of cardinality 1, 2 and 3.

|X| 1 2 3
# vertices of FM(X) 1 4 18

# vertices of BCAP(X) 4 49 56.843

Table 1: Comparison of vertices of FM(X) and BCAP(X) for small referentials X.

We can also deduce the number of facets applying Proposition 6.

Proposition 8. Let n = |X| > 1. The number of facets of BCAP(X) is 2n3n−1.

Proof. Since (∅, ∅) is not a maximal element nor a minimal of Q∗(X), the number of facets is given
by (see Proposition 2) M+m+r. This number is equal to the number of relations in the poset Q(X)
keeping the maximum (X, ∅) and the minimum (∅, X). If we denote |A| = i, |B| = j, let us compute
the number of elements covering (A,B). If we focus on B we can remove j elements, so we find j
elements of the form (A,B \ {k}) covering (A,B). Now, if we focus on A we can add n − (i + j)
elements to get an element (A∪ {k}, B) covering (A,B). This way we obtain n− (i+ j) + j = n− i
elements covering (A,B). Finally, we add all the covering relations:

n∑
i=0

n−i∑
j=0

(n− i)
(
n

i

)(
n− i
j

)
=

n∑
i=0

(n− i)
(
n

i

) n−i∑
j=0

(
n− i
j

)
=

=
n∑

i=0

(n− i)2n−i
(
n

i

)
= n

n∑
i=0

2n−i
(
n

i

)
−

n∑
i=0

i2n−i
(
n

i

)
.

Note that n
∑n

i=0 2n−i(n
i

)
= n3n. On the other hand:

n∑
i=0

i2n−i
(
n

i

)
=

n∑
i=1

2n−ii

(
n

i

)
= n

n∑
i=1

2n−i
(
n− 1

i− 1

)
= n

n−1∑
i=0

2n−1−i
(
n− 1

i

)
= n3n−1.

Hence, n3n − n3n−1 = 2n3n−1.

Next, given two vertices of BCAP(X), adjacency can be checked via Theorem 7, as next example
shows.
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Example 7. (Continued Example 6) Consider the vertex fA1,A0,A−1 where

A1 = {(1, ∅), (1, 2)}, A0 = {(2, ∅), (2, 1), (∅, ∅), (∅, 1)}, A−1 = {(∅, 2)}.

Hence, for fA′1,A′0,A′−1
given as

A′1 = {(1, ∅), (1, 2), (2, ∅)}, A0 = {(2, 1), (∅, ∅), (∅, 1)}, A−1 = {(∅, 2)},

we conclude applying Theorem 7 that these vertices are adjacent because A−1 = A′−1, A′1\A1 =
A0\A′0 = {(2, ∅)}, that is a connected subposet. Moreover, Theorem 7 allows to obtain the set of
vertices fA′1,A′0,A′−1

adjacent to fA1,A0,A−1 . This set is given by

• Case 1: A1 = A′1. In this case, we need to find the possible A′0 such that A′0 ⊂ A0 and A0\A′0
connected or viceversa. There are three possibilities:

A′0 = {(2, ∅), (2, 1), (∅, ∅)} A0\A′0 = {(∅, 1)}
A′0 = {(2, ∅), (2, 1), (∅, ∅), (∅, 1), (∅, 2)} A′0\A0 = {(∅, 2)}
A′0 = {(2, ∅), (∅, ∅)} A0\A′0 = {(2, 1), (∅, 1)}

• Case 2: A0 = A′0. In this case, we need to find the possible A′1 such that A′1 ⊂ A1 and A1\A′1
connected or viceversa. There is only one possibility:

A′1 = {(1, ∅)}, A1\A′1 = {(1, 2)}.

• Case 3: A−1 = A′−1. In this case, we need to find the possible A′1 such that A′1 ⊂ A1 and A1\A′1
connected or viceversa. There are three possibilities:

A′1 = ∅ A1\A′1 = {(1, ∅), (1, 2)}
A′1 = {(1, ∅), (1, 2), (2, ∅)} A′1\A1 = {(2, ∅)}
A′1 = {(1, ∅), (2, ∅), (1, 2), (2, 1)} A′1\A1 = {(2, 1), (2, ∅)}

In the last part of the section, we study the diameter of BCAP(X). First, note that we are not
in the conditions of any case of Theorem 8, so that we have to study this case separately. In order
to make the proof more readable, we divide it into several lemmas.

Lemma 2. 1 Let fA1,A0,A−1 be a vertex of BCAP(X) and consider a connected component C of A1

(resp. A−1). Then, C is an upset and there exists i ∈ X such that (X\i, ∅) ∈ C (resp. (∅, X\i) ∈ C).

Proof. Given C a connected component of A1, let us first show that C is a filter. Consider x ∈ C
and y � x. As A1 is an upset, y ∈ A1 and it is possible to find a chain x = z0 − z1 − ... − zr = y
included in A1. Hence, y ∈ C. Now, for (A,B) ∈ C, we conclude that (X\i, ∅) ∈ C for X\i ⊇ A.

Corollary 6. Let fA1,A0,A−1 be a vertex of BCAP(X). Consider a connected component C of A1

(resp. A−1). The maximal (resp. minimal) elements of C are of type (X\i, ∅) (resp. (∅, X\i)).

1It is possible to derive general versions of this result applying for general pointed order polytopes. The same
happens for Corollary 6, Lemma 3 and Corollary 7 below.
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Besides, as the different connected components are disjoint sets, so are the corresponding maximal
elements. Note however that they do not necessarily form a partition of {(X\i, ∅) : i ∈ X}, as it
could be the case that some of these elements could lay in A0.

Remark that for a connected component C of A1 whose corresponding maximal elements are
{(X\i, ∅) : i ∈ I ⊆ X}, it follows that

C =

(⋃
i∈I

↓(X\i, ∅)

)
∩ A1,

where ↓ (X\i, ∅) denotes the set of elements (A,B) s.t. (X\i, ∅) � (A,B). Consequently, we can
identify C with its maximal elements.

Lemma 3. Let fA1,A0,A−1 be a vertex BCAP(X) and consider a connected component C of A1 (resp.
A−1) whose corresponding maximal (resp. minimal) elements are

{(X\i, ∅) : i ∈ I ⊆ X} (resp. {(∅, X\i) : i ∈ I ⊆ X}).

Then, for any (A,B) ∈ C,

A ⊇
⋂
i∈I

(X\i) (resp. B ⊇
⋂
i∈I

(X\i)).

Proof. Take (A,B) ∈ C and consider i 6∈ A. Then, A ⊆ X\i and hence (A,B) � (X\i, ∅). Hence,
(X\i, ∅) ∈ C, ∀i 6∈ A. Moreover,

A =
⋂
i 6∈A

(X\i).

Consequently, A ⊇
⋂

i∈I(X\i).

Corollary 7. Let fA1,A0,A−1 be a vertex of BCAP(X) and consider a connected component C of A1

(resp. A−1) whose corresponding maximal (resp. minimal) elements are

{(X\i, ∅) : i ∈ I ⊆ X} (resp. {(∅, X\i) : i ∈ I ⊆ X}).

Then, the minimal (resp. maximal) elements of C are of type (A,B), with

A ⊇
⋂
i∈I

(X\i) (resp. B ⊇
⋂
i∈I

(X\i)).

Let us define:

P ∗1 = {(A, ∅) : A ⊆ X,A 6= ∅, X}, P ∗0 = {(A,B) : A 6= X, ∅, B 6= X, ∅}, P ∗−1 = {(∅, B) : B ⊆ X,B 6= ∅, X}.

Hence, Q∗(X) = P ∗1 ∪ P ∗0 ∪ P ∗−1 ∪ {(∅, ∅)} and P ∗1 , P
∗
0 , P

∗
−1 are pairwise disjoint.

Lemma 4. Assume n ≥ 4 and let fA1,A0,A−1 be a vertex of BCAP(X). Suppose that A1 (resp. A−1)
has at least three connected components. Then, A0 ∩ P ∗1 (resp. A0 ∩ P ∗−1) is connected.
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Proof. As A1 has at least three connected components, we conclude by Corollary 6 that none of these
connected components has n− 1 maximal elements. Hence, applying Corollary 7, we conclude that
{(i, ∅) : i ∈ X} ⊆ A0. Moreover, if n ≥ 4, there is at most one connected component with n − 2
maximal elements and thus, there is at most one subset type (i0j0, ∅) ∈ A1 by Lemma 3.

Let us see that it is possible to connect in A0 ∩ P ∗1 any pair (i, ∅), (j, ∅). If {i, j} 6= {i0, j0}, then
(ij, ∅) ∈ A0 and we are done. Let us then consider the (possible) case (i0, ∅), (j0, ∅). As n ≥ 4, there
exists k ∈ X\{i0, j0} and hence we have the path

(i0, ∅)− (i0k, ∅)− (k, ∅)− (j0k, ∅)− (j0, ∅).

Consider now (A, ∅), (B, ∅) ∈ A0. Then, (A′, ∅), (B′, ∅) ∈ A0, for any A′ ⊂ A,B′ ⊂ B, as otherwise
(A′, ∅) ∈ A1 and thus (A, ∅) ∈ A1 because A1 is an upset. Take i0 ∈ A, j0 ∈ B. Then, we can build
the path in A0 ∩ P ∗1 given by

(A, ∅)− (i0, ∅)− (j0, ∅)− (B, ∅)

and the result follows.

Lemma 5. Assume n ≥ 4 and let fA1,A0,A−1 be a vertex of BCAP(X). Suppose that A1 (resp. A−1)
has at least three connected components. Then, A0\(P ∗−1 ∪ {(∅, ∅)}) (resp. A0\(P ∗1 ∪ {(∅, ∅)})) is
connected.

Proof. Applying Lemma 4, it suffices to show that any (A,B) ∈ A0 such that A 6= ∅, B 6= ∅ can
be connected to some (C, ∅) ∈ A0 without leaving A0\(P ∗−1 ∪ {(∅, ∅)}). For this, note that as A0 is
connected, (A,B) can be connected to (∅, ∅). Consider a path

(A,B) =: (A1, B1)− (A2, B2)− ...− (Ar−1, Br−1)− (Ar, Br) := (∅, ∅)

such that (Ai, Bi)l (Ai+1, Bi+1) or (Ai, Bi)m (Ai+1, Bi+1) for i = 1, ..., r−1. This means that at each
step we are adding or removing an element of X from either Ai or Bi. Note that in these conditions,
(Ar−1, Br−1) adopts the form (i, ∅) or (∅, i). Hence, at a certain step, the path crosses from P ∗0 ∩ A0

to P ∗1 ∩ A0 or P ∗−1 ∩ A0. Let us consider the first (Ai, Bi) where this happens.

• If (Ai, Bi) ∈ P ∗1 ∩ A0, then we can take (Ai, Bi) as (C, ∅) and we are done.

• If (Ai, Bi) ∈ P ∗−1 ∩ A0, this means that (Ai−1, Bi−1) can be written as (j, B′) for some j ∈ X.
Now, as (j, B′) � (j, ∅) ∈ A0, it follows that (j, C) ∈ A0, ∀C ⊆ B′, and we can build the chain

(A,B) =: (A1, B1)− (A2, B2)− ...− (Ai−1, Bi−1)− ...− (j, ∅).

Hence, the result holds.

Lemma 6. Assume n ≥ 4 and let fA1,A0,A−1 be a vertex of BCAP(X) and suppose A−1 (resp. A1)
has at least three connected components. Then,

(A1 ∪ A0) ∩ {(A,B) : B 6= ∅} = (A1 ∪ A0)\(P ∗1 ∪ {(∅, ∅)})

(resp. (A−1 ∪ A0) ∩ {(A,B) : A 6= ∅} = (A−1 ∪ A0)\(P ∗−1 ∪ {(∅, ∅)})) is connected.
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Proof. Consider (A,B), (C,D) ∈ (A0∪A1)\(P ∗1∪{(∅, ∅)}). Then, B 6= ∅, D 6= ∅. Note that as (A,B) ∈
A0∪A1, so are all elements (A,B′) such thatB′ ⊆ B.Hence, there is a chain in (A0∪A1)\(P ∗1∪{(∅, ∅)})
connecting (A,B) and (A, i) with i ∈ B. Next, (∅, i) ∈ A0 ∪A1 by Lemma 5. Hence, so is any (A′, i)
with A′ ⊆ X\i. Then, there is a chain in (A0∪A1)\(P ∗1 ∪{(∅, ∅)}) connecting (A, i) and (∅, i). Finally,
proceeding the same way for (C,D) and (∅, j), j ∈ D, and applying that (∅, i) can be connected to
(∅, j) without leaving A0\(P ∗1 ∪{(∅, ∅)}) by Lemma 4, we have a sequence in (A0∪A1)\(P ∗1 ∪{(∅, ∅)})
given by

(A,B)− (A, i)− (∅, i)− (∅, j)− (C, j)− (C,D).

Hence, the result holds.

Lemma 7. Assume n ≥ 3 and let fA1,A0,A−1 be a vertex of the polytope of bi-capacities. Then, A1∪P ∗1
(resp. A−1 ∪ P ∗−1) is connected.

Proof. As P ∗1 is connected when n ≥ 3, it suffices to show that any (A,B) ∈ A1\P ∗1 can be connected
to some (C, ∅). But this holds because as (A,B) ∈ A1, so are all elements (A,B′) such that B′ ⊆ B
and hence, there is a chain in A1 ∪ P ∗1 connecting (A,B) and (A, ∅)

Lemma 8. Assume n ≥ 3 and let fA1,A0,A−1 be a vertex of the set of bi-capacities. Then,

A1 ∪ [(P ∗1 ∪ P ∗0 ) ∩ A0] = P ∗1 ∪ [(A1 ∪ A0) ∩ P ∗0 ]

(resp. A−1 ∪
[
(P ∗−1 ∪ P ∗0 ) ∩ A0

]
= P ∗−1 ∪ [(A−1 ∪ A0) ∩ P ∗0 ]) is connected.

Proof. As before, it suffices to prove that any (A,B) ∈ [(A1 ∪ A0) ∩ P ∗0 ] can be connected to some
(C, ∅). As (A,B) ∈ A1 ∪ A0, so are all elements (A,B′) such that B′ ⊆ B because A0 ∪ A1 is an
upset (as A−1 is a downset). Hence, there is a chain in A1 ∪ A0 connecting (A,B) and (A, ∅).

We state now the main result about the diameter of the polytope of bi-capacities.

Theorem 9. Let us consider the polytope of bi-capacities over a referential set X such that |X| ≥ 4.
Then, the diameter of this polytope is bounded by 8.

Proof. Let fA1,A0,A−1 be a vertex of the set of bi-capacities. Our strategy is to show that it is possible
to connect this vertex to f∅,Q∗(X),∅ in at most four steps. We have to consider several cases.

• Case 1: A1 has one or two connected components.

If A1 is connected, then fA1,A0,A−1 and f∅,A1∪A0,A−1 are adjacent vertices. To see this, it suffices
to show that f∅,A1∪A0,A−1 is a vertex, i.e. A1 ∪ A0 is a connected subposet of Q∗(X). But this
holds because the maximal elements of A1 are of type (X\i, ∅) that are related to (∅, ∅).
Similarly, if A1 has two connected components C1, C2, applying the same argument we have
the sequence of adjacent vertices given by

fA1,A0,A−1 − fC2,C1∪A0,A−1 − f∅,A1∪A0,A−1 .

– Case 1.1: A−1 has one or two connected components.

Applying the same argument, we conclude that in at most two steps, it is possible to
connect f∅,A1∪A0,A−1 and f∅,Q∗(X),∅.
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– Case 1.2: A−1 has more than two connected components.

In this case, we can apply Lemma 6 and conclude that f∅,A0∪A1,A−1 and f∅,P ∗1 ∪{(∅,∅)},P ∗0 ∪P ∗−1

are adjacent. And finally, f∅,P ∗1 ∪{(∅,∅)},P ∗0 ∪P ∗−1
and f∅,Q∗(X),∅ are adjacent.

• Case 2: A1 has more than two connected components.

– Case 2.1: A−1 has one or two connected components.

This case is symmetrical to Case 1.2.

– Case 2.2: A−1 has more than two connected components.

Consider fA1,A0,A−1 . By Lemma 5, we know that (P ∗0 ∪ P ∗1 ) ∩ A0 is connected, so that
fA1,A0,A−1 and f 1

1 := fA1∪[(P ∗1 ∪P ∗0 )∩A0],(A0∩P ∗−1)∪{(∅,∅)},A−1
are adjacent.

Now, by Lemma 4, we obtain that A0 ∩ P ∗−1 is connected. Hence, f 1
1 is adjacent to

f 2
1 := fA1∪[(P ∗1 ∪P ∗0 )∩A0],{(∅,∅)},A−1∪P ∗−1

.

Finally, Lemmas 7 and 8 show that we can get f∅,Q∗(X),∅ from f 2
1 in two steps.

Hence, for any pair of vertices, it is possible to connect them passing through f∅,Q∗(X),∅ in at most
eight steps, so that the diameter of the set of bicapacities on X for n ≥ 4 is bounded by eight.

It rests to study the cases for n = 2 and n = 3.

Lemma 9. The diameter of BCAP(X) when |X| = 2 is 4.

Proof. Consider two vertices fA1
1,A

1
0,A

1
−1

and fA2
1,A

2
0,A

2
−1
. Then, it can be seen that A1

14A2
1 has at most

two connected components, and the same happens for A1
−14A2

−1. Hence, it is possible to find a path
between fA1

1,A
1
0,A

1
−1

and fA2
1,A

2
0,A

2
−1

of length bounded by four. Indeed, this bound is achieved for

A1
1 = {(1, ∅)}, A1

−1 = {(∅, 1)}, A1
0 = {(2, ∅), (2, 1), (1, 2), (∅, ∅), (∅, 2)},

A2
1 = {(2, ∅)}, A2

−1 = {(∅, 2)}, A2
0 = {(1, ∅), (2, 1), (1, 2), (∅, ∅), (∅, 1)}.

Proposition 9. The diameter of BCAP(X) when |X| = 3 is bounded by 8.

Proof. Consider two vertices fA1
1,A

1
0,A

1
−1

and fA2
1,A

2
0,A

2
−1
. The idea of the proof consits in finding a

bound for the number of steps necessary to pass from A1
1 to A2

1 and from A1
−1 to A2

−1. Note that as a
consequence of Corollary 6, the number of connected components of A1

1, A
2
1, A

1
−1 and A2

−1 is bounded
by 3. We have to consider several cases.

• Case 1:A1
1, A

2
1, A

1
−1 and A2

−1 have all of them less than 3 connected components. In
this case, we can proceed as in Case 1.1 of Theorem 9 and conclude that the distance between
fA1

1,A
1
0,A

1
−1

and fA2
1,A

2
0,A

2
−1

is bounded by 8.

• Case 2: Some of A1
1, A

2
1, A

1
−1 and A2

−1 have 3 connected components. Suppose w.l.g.
that A1

1 has three connected components. Then, A1
1 adopts the form

A1
1 = {(12, ∅), (13, ∅), (23, ∅)} ∪ AUX,

where AUX ⊆ {(12, 3), (13, 2), (23, 1)}. Let us now consider A2
1. We have the following subcases:
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– Case 2.1: A2
1 = ∅ or A2

1 has one connected component. In this case, we can proceed
as in Case 1.1 of Theorem 9 and conclude that it is possible to pass from A1

1 to A2
1 in at

most four steps.

– Case 2.2: A2
1 has two connected components. Then, up to a permutation, A2

1 has
the two following forms:

A2
1 = {(12, ∅), (13, ∅)} ∪ AUX ′,

where AUX ′ ⊆ {(12, 3), (13, 2)}. In this case, comparing the corresponding connected
components generated by (ij, ∅), we conclude that it is possible to pass from A1

1 to A2
1 in

at most three steps. The other possibility is

A2
1 = {(1, ∅), (12, ∅), (13, ∅), (23, ∅)} ∪ AUX ′′,

where AUX ′′ ⊆ {(12, 3), (13, 2), (1, 23), (1, 2), (1, 3), (23, 1)}. Then, the symmetric differ-
ence between the connected components generated by (12, ∅) and (13, ∅) in A1

1 and the
connected component generated by (1, ∅) in A2

1 has at most three connected components.
Thus, it is possible to pass from one to another in at most three steps. Finally, comparing
the connected component generated by (23, ∅), we conclude that it is possible to pass from
A1

1 to A2
1 in at most four steps.

– Case 2.3: A2
1 has three connected components. In this case, A2

1 has the same form
as A1

1. Hence, it suffices to compare the corresponding connected components to conclude
that it is possible to pass from A1

1 to A2
1 in at most three steps.

This finishes the proof.

5 Conclusions and open problems

In this paper we have studied the set of bi-capacities seen as a polytope. Bi-capacities arise when
dealing with Decision Making with bipolar scales. They also appear in Game Theory when there is
a coalition of players, a coalition of players against it and some other neutral players. To tackle this
problem, we have defined the concept of pointed order polytope. This concept is based on a poset P
and a special element a in the poset. In the case of bi-capacities, the poset is Q∗(X) and the special
element is (∅, ∅). What makes pointed order polytopes an appealing object is that they rely on the
subjacent poset and thus, they can be studied via this poset, a problem usually easier to handle.

We have derived the set of vertices of a general pointed order polytope, and the general form of
its faces. Besides, we have solved the problem of whether two vertices of the pointed order polytope
are adjacent in a simple way. From these general results, we have derived some results about the
polytope of bi-capacities. In particular, we have obtained a bound for the diameter.

We feel that pointed order polytopes can be an interesting tool for studying in a systematic way
polytopes appearing in Decision Making when using a bipolar scale. Of course, there are many
aspects of pointed order polytopes that remain open problems and need more research. One of these
problems is deriving the volume of O(P, a). In the case of order polytopes, this volume is given in
terms of linear extensions of P, and this characterization also provides a triangulation of the order
polytope. However, the result does not longer hold for pointed order polytopes. This problem,
together with the problem of deriving a triangulation of pointed order polytopes, are problems that
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we intend to study in the future. These problems seem specially interesting when we restrict to
bi-capacities or subfamilies of bi-capacities being pointed order polytopes.

We have considered in this paper an application to the set of bi-capacities. However, there are
other situations in MCDM and Game Theory in which pointed order polytopes could be useful:

• An interesting case appearing specially in the field of Game Theory arises when some coalitions
fail to form. This can be also extended for bipolar scales. This situation can be modelled again
via pointed order polytopes, where the subjacent poset is no longer Q∗(X) but a proper subset
FC(X) of Q∗(X). Depending on the structure of FC(X), many properties could be derived.

• In the field of Game Theory, it is unusual to consider fixed values for ν(X, ∅) and ν(∅, X).
This situation can be studied in a similar way to that of pointed order polytopes in which the
condition −1 ≤ f(x) ≤ 1 is no longer valid. We thus obtain a non-bounded polytope. We
feel that the properties of this polytope could be deeply related to those of the corresponding
pointed order polytope (see [21] for the comparison in the case of order polytopes).

Next, there are other problems that seem interesting but not evident. Among them, we would
like to focus the attention on the number of vertices and, especially, if this value is in some way
related to the Dedekind numbers [10] that lead to the number of vertices of the capacities.
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