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In this paper we study some geometrical properties of the polytope of 3-tolerant fuzzy
measures. To achieve this task, we profit that this polytope is an order polytope and

hence we can extract many properties from the subjacent poset. The main result in the

paper is a straightforward procedure for obtaining a random 3-tolerant fuzzy measure.
We also compute the volume and obtain some other properties of this polytope. These

results can be also applied by duality to the polytope of 3-intolerant measures and they

can also be easily extended to other subfamilies of fuzzy measures.
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1. Introduction

Fuzzy measures28 (also known as capacities8 or non-additive measures13) and Cho-

quet integral8 have revealed themselves as a very important tool for dealing with

situations appearing in Multicriteria Decision Making and other fields.17 This is due

to the fact that they are very flexible and thus able to model situations appearing

in real problems. For example, in Multicriteria Decision Making, fuzzy measures

can deal with the existence of interactions among criteria, or situations of veto and

favor.15,16

On the other hand, this ability has its counterpart in the computational com-

plexity. In this sense, 2n − 2 coefficients are needed to define a fuzzy measure over

a referential of n elements, while only n − 1 suffice to define a probability. Hence,

the complexity grows exponentially and this reduces the practical applicability of

fuzzy measures when the referential set is large. In order to reduce this complexity,

several attemps have been made for different contexts, defining subfamilies of fuzzy
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measures with a reduced complexity. Examples of these subfamilies are k-additive

measures,16 λ-measures,28 k-symmetric measures25 or k-interactive measures,4 to

cite a few. From a geometrical point of view, the set of fuzzy measures and the

set of all fuzzy measures inside many of these subfamilies can be seen as (convex)

polytopes.9,10

In this paper we deal with the set of k-tolerant (and k-intolerant measures)

defined in.21 This subfamily models situations in which the decision maker is more

or less tolerant to bad scores. Hence, k-tolerant measures mean that the decision

maker shall be satisfied (and hence the corresponding Choquet integral shall attend

a high score) with an alternative that is good for at least k criteria. Similarly, k-

intolerant measures imply that she shall not be satisfied if an alternative is not good

for at least n− k + 1 criteria. It can be seen that k-tolerant measures for different

values of k determine a partition of the set of fuzzy measures. Moreover, the set

of fuzzy measures being at most k-tolerant measures over a finite referential set is

a convex polytope. Specially appealing is the case for k = 3, that allows to model

many situations arising in practice while keeping a reduced complexity.

In this paper, we study some of the properties of the polytope of 3-tolerant

measures. In particular, we develop a procedure to generate randomly points in this

polytope. Besides, we obtain the number of vertices, compute its hypervolume and

derive some other properties regarding the combinatorial structure of this polytope.

Interesting from a mathematical point of view, these properties are also inter-

esting from a practical point in view, more concretely in the practical identification

of a 3-tolerant measure from sample data (see3,5, 9 for papers dealing with other

cases in the field of fuzzy measures).

It should be noted that generating points in a random way in a polytope is a

complex problem that has not been completely solved in a satisfactory way. There

are several methods to deal with it, as using Markov chains,18 the sweep-plane

method,19 the grid method,14 and so on. The method that we will apply for 3-

tolerant measures is the method of triangulation.14 Basically, it consists in dividing

the polytope in simplices, i.e. extensions of triangles in dimensions higher than 2

(triangulate), and apply that generating points in a simplex is very easy. Hence, the

method divides the polytope in simplices, choose one of them with a probability

proportional to its volume and then generate a point in the selected simplex. On

the other hand, it is not easy in general to triangulate a polytope, and it is difficult

to compute the volumes of the corresponding simplices. However, we will see in the

paper that these problems can be solved for the polytope of 3-tolerant measures in

a satisfactory way.

To achieve these tasks, we apply that this polytope belongs to a special class

of polytopes known as order polytopes.27 These polytopes have the advantage that

they are defined in terms of a partially ordered set (poset) and thus, it is possible

to study different properties from this poset, a problem usually simpler to solve.

Order polytopes have been applied in several papers dealing with subfamilies of

fuzzy measures, see for example2 where order polytopes and their properties are
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applied to derive two alternative ways to generate random k-interactive measures.

Finally, note that determining the combinatorial structure of a family of poly-

topes is a difficult an interesting problem and many papers have been devoted just

treating special cases.1,23,29 And the same happens for the class of order polytopes.

While there are general results for, say, triangulate this kind of polytopes, the prac-

tical use of these results is limited, as they are based on generating a linear extension

of the poset in a random fashion, a problem that is known to be ]P-complete.7 In this

paper we give a simple and easy-to-apply algorithm to generate 3-tolerant measures

that can be applied to any cardinality with a reduced (polynomial) complexity.

The rest of the paper goes as follows. In next section, we introduce the basic

facts, results and notation. In Section 3 we give a simple way to generate randomly

a 3-tolerant measure. Section 4 studies other properties of this polytope. In Section

5 we extend these results for other subfamilies of fuzzy measures. We finish with

the conclusions and open problems.

2. Basic concepts

In this section we introduce the basic concepts that will be needed throughout the

paper.

2.1. k-tolerant measures

Let us consider a finite referential set X = {x1, ..., xn} of n elements (criteria,

players, ...). Subsets of X are denoted by capital letters A,B and so on. We will

denote by P(X) the set of subsets of X and by

Pk(X) := {A ⊆ X : |A| ≤ k}, Pk
∗ (X) := Pk(X)\{∅}.

Definition 1.28 A fuzzy measure is a map µ : P(X)→ [0, 1] satisfying

• µ(∅) = 0, µ(X) = 1 (boundary conditions).

• µ(A) ≤ µ(B) when A ⊆ B (monotonicity).

We will denote by FM(X) the set of all fuzzy measures over X. To define a

fuzzy measure, it is necessary to give 2n − 2 coefficients. In order to cope with the

problem of complexity while keeping a rich structure, several subfamilies of fuzzy

measures have been proposed. One of these subfamilies is the family of k-tolerant

measures (resp. k-intolerant measures).

Definition 2.21 A fuzzy measure µ is k-tolerant if µ(A) = 1 when |A| ≥ k and

there exists A such that |A| = k − 1 and µ(A) < 1.

Let us denote by T OLk(X) the set of fuzzy measures on X being k′-tolerant,

with k′ ≤ k. As µ(A) = 1 if |A| > k for µ ∈ T OLk(X), it follows that the number

of coefficients needed to define µ reduces to
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4 P. Garćıa-Segador and P. Miranda

d :=

k∑
i=1

(
n

i

)
.

In other words, the sets that are needed to define a k-tolerant measure are those

in Pk−1
∗ (X). Moreover, remark that the convex combination of two measures in

T OLk(X) is still in T OLk(X), so that if we identify µ ∈ T OLk(X) with the point

(µ(A))|A|<k ∈ Rd, then T OLk(X) is a convex polytope.

2.2. Posets

For a general reference about this subsection, see.12 A finite partially ordered

set (brief poset) is a pair (P,�) (or P if � is known) where P is a finite set and

� is a relation on P that is reflexive, antisymmetric and transitive. We will denote

the elements of P as x, y, ... Posets can be represented through Hasse diagrams (see

Figure 1 left).

If given x, y ∈ P, either x � y or y � x, we say that � is a total order and P is

said to be a chain. The chain of n elements is denoted n. If none of the elements

of P are related, we say that P is an antichain and we denote the antichain of n

elements by n.

The elements x ∈ P satisfying that y 6� x, ∀y 6= x, are called minimal elements

of P . The set of minimal elements of P will be denoted by MIN (P ).

Given a poset, a filter or upset F is a subset of P such that for x, y ∈ P, if

x ∈ F and x � y this implies y ∈ F. Similarly, an ideal or downset I of P is a

subset such that x ∈ I and y � x implies y ∈ I. The set of all filters (resp. ideals)

of poset P is denoted by F(P ) (resp. I(P )). Note that for I ∈ I(P ), it follows that

P \ I ∈ F(P ). Hence,

|I(P )| = |F(P )|. (1)

It is well-known that (I(P ),⊆) is a lattice. An example of the Hasse diagram of

(I(P ),⊆) is given in Figure 1 right.

Given two disjoint posets, (P,�P ) and (Q,�Q), we define the disjoint union,

P
⊎
Q as the poset (P ∪ Q,�P

⊎
Q), where x �P

⊎
Q y if x, y ∈ P and x �P y or

x, y ∈ Q and x �Q y. And example of this operation is given in Figure 2.

Definition 3. Given a poset (P,�), a linear extension of this poset is a total

order (P,≤) such that if x � y, then x ≤ y.

A linear extension is a total order on P extending �. We will denote by L(P )

the set of all linear extensions of poset P and e(P ) := |L(P )|.
When dealing with disjoint union of posets, the following result holds for the

number of linear extensions:

Lemma 1. Given two posets P,Q, it follows that
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Fig. 1. Hasse diagram of (P2
∗ (X),⊆) for a referential of three elements (left) and the corresponding

ideal lattice (I(P2
∗ (X)),⊆) (right).
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Fig. 2. Disjoint union of posets.

e(P
⊎
Q) =

(
|P |+ |Q|
|P |

)
e(P )e(Q).

2.3. Order polytopes

Let us now deal with the notion of order polytope.

Definition 4.27 Let (P,�) be a poset with p elements. We define the order poly-

tope associated to P as the set of points f ∈ Rp ordered by the elements of P

satisfying

• 0 ≤ f(x) ≤ 1,∀x ∈ P.
• f(x) ≤ f(y) if x � y.
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There are many polytopes appearing in the Theory of Fuzzy Measures that are

order polytopes. For example, it has been shown in11 that FM(X) is the order

polytope O(P(X)\{X, ∅}), where A � B if and only if A ⊆ B. Similarly, the set of

normalized monotone games with restricted cooperation is an order polytope, no

matter the set of feasible coalitions.24 And the set of fuzzy measures being at most

k-symmetric, too.11

Now, consider a fuzzy measure µ ∈ T OLk(X). Then, as it suffices to define µ

on subsets in Pk−1
∗ (X) (see Fig. 1 left), it follows that µ is characterized as a set

function satisfying

• 0 ≤ µ(A) ≤ 1, ∀A ∈ Pk
∗ (X).

• µ(A) ≤ µ(B) if A ⊆ B,A,B ∈ Pk
∗ (X).

Therefore,

T OLk(X) = O(Pk−1
∗ (X)).

We will study T OL3(X) and other related polytopes at the light of this result.

Order polytopes have the advantage that the combinatorial structure of the poly-

tope can be studied in terms of the subjacent polytope, usually a simpler problem.

For example, vertices of an order polytope are characterized as follows.

Theorem 1.27 The vertices of the order polytope O(P ) are the characteristic func-

tions of filters of P .

For determining a face of a polytope, it is convenient to add to P a top and

bottom elements >,⊥. Let us denote by P̂ this extended poset. Hence, an order

polytope can be written as the set of points satisfying

• f(>) = 1, f(⊥) = 0.

• If x � y, then f(x) ≤ f(y), ∀x, y ∈ P̂ .

Next, to determine a face of a polytope we need to turn some inequalities defin-

ing the polytope into equalities. For order polytopes, this means to consider some

f(x) = f(y). Hence, a face is characterized by a partition B := {A>, A⊥, A1, ..., Ar}
of P̂ such that if f belongs to the face, then f(x) = f(y) whenever x, y are in the

same block. A>, A⊥ represent the blocks containing > and ⊥ and f on A> (resp.

A⊥) is fixed to f(A>) = 1 (resp. f(A⊥) = 0). However, it should be noted that

it is not true that any partition determines a face and it is necessary to impose

additional conditions.27

A partition P = {A>, A⊥, A1, ..., Ar} of P is connected if all Ai are connected

suposets of P̂ .

Let us define the relation �P on {A>, A⊥, A1, ..., Ar} by

Ai �P Aj ⇔ ∃x ∈ Ai, y ∈ Aj , x � y.
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A partition P is compatible if �P is reflexive, antisymmetric and transitive

(i.e. a partial order). Finally, a partition P is closed if for any Ai, Aj , i 6= j, there

exists f ∈ O(P ) constant on each block such that f(Ai) 6= f(Aj).

Theorem 2.27 A partition {A>, A⊥, A1, . . . , Ar} of P̂ is closed and determines a

r-dimensional face of O(P ) if and only if it is compatible and connected.

Moreover, it can be proved that faces of order polytopes are affinely isomorphic

to order polytopes (see27). Indeed, the following holds.

Theorem 3. Let P be a finite poset and F be a face of O(P ) with associated

face partition B(F) = {B>, B⊥, B1, · · · , Br}. Then (B(F),�B(F)) is a poset and

F ∼= O
(
(B(F) \ {B>, B⊥},�B(F))

)
.

Similarly, it is possible to find an appealing condition to determine if two vertices

are adjacent in an order polytope.

Theorem 4.11 Given two vertices of O(P ) whose corresponding filters are F1 and

F2, they are adjacent if and only if F1 ⊆ F2 and F2\F1 is a connected subposet of

P.

A final result on faces will be applied in the paper.

Lemma 2. Poset (P,�) is a chain if and only if O(P ) is a simplex. Similarly,

(P,�) is an antichain if and only if O(P ) is a hypercube.

Let us finally treat the problem of triangulating an order polytope. For O(P ) it

is possible to build a triangulation based on the following result (see,22 pag. 304):

Theorem 5. Let (P,�) be a poset of p elements.

• If � is a total order on P , then the corresponding order polytope is a simplex

of volume 1
p! .

• For any partial ordering � on P, the simplices of the order polytope of

(P,≤), where ≤ is a linear extension of �, cover O(P ) and have disjoint

interiors. Consequently, vol(O(P )) = 1
p!e(P ).

These results are also outlined in.27 Consequently, in order to generate randomly

a point in an order polytope, it suffices to generate randomly a linear extension of

(P,�) and then generate a point in the corresponding simplex. Note however that

the problem of generating a random linear extension of a general poset is a ] P-

complete problem.6

3. Random generation on T OL3(X)

As stated in Theorem 5, triangulating an order polytope is deeply related to the

problem of generating random linear extensions of the subjacent poset. Now, given a

linear extension (x1, ..., xp) remark that x1 ∈MIN (P ); next, x2 ∈MIN (P\{x1})
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and in general, xk ∈ MIN (P\{x1, ..., xk−1}). As a consequence, {x1, ..., xk} ∈
I(P ),∀k = 1, ..., n. Therefore, a linear extension can be identified to paths from the

empty ideal ∅ to the whole ideal P in the Hasse diagram of I(P ). This is the idea

for the algorithm proposed in20 for generating a random linear extension. Hence,

starting with the empty ideal, and assuming that I = {x1, ..., xi−1} is the ideal of

elements that have been already selected, the algorithm picks as next element in

the linear extension a minimal element of P\I.
However, in order to get a random linear extension, this new element has to be

selected in a way that all linear extensions are equally probable. To compute these

probabilities we note that

e(P ) =
∑

x∈MIN (P )

e(P \ {x}). (2)

For xi ∈MIN (P \I) and denoting P (xi|I) the probability of selecting xi when

I is the ideal of elements already selected, this leads to

P (xi|I) =
e(P\(I ∪ xi))

e(P\I)
. (3)

Hence, the probabilities P (xi|I) can be stated in terms of the number of linear

extensions. In,20 a recursive way of obtaining e(F ),∀F ∈ F(P ) is given. Remark

that the whole procedure relies on the fact that the lattice of ideals is known. And

for this, it is necessary to compute all ideals in I(P ). However, |I(P )| usually grows

very fast with the cardinality of P . Therefore, this procedure is unfeasible in general

for big posets.

Related to T OL3(X), in next result we compute |I(P )| for P = P2
∗ (X), showing

that this number grows exponentially with n = |X|.

Proposition 1. The number of ideals of T OL3(X) for |X| = n is given by

|I(P )| =
n∑

i=0

2(n−i
2 )
(
n

i

)
.

Proof. Applying Eq. (1), it suffices to compute the number of filters of P2
∗ (X).

Let F be a filter and assume that there are exactly k singletons in F, k =

0, 1, ..., n. Hence, all pairs containing any of these singletons are in F . There are(
n−k
2

)
pairs that do not contain any of them and hence, for fixed singletons, there

are 2(n−k
2 ) possible filters containing exactly these k singletons, depending on if any

of the
(
n−k
2

)
pairs is in the filter or not. Hence, varying the set of k singletons, the

number of filters in this conditions is given by

2(n−k
2 )
(
n

k

)
.

Summing up all these quantities for k = 0, 1, ...n, the result holds.



February 25, 2022 12:48 WSPC/INSTRUCTION FILE 33-IJUFKBS

On the polytope of 3-tolerant fuzzy measures 9

Table 1 provides the number of ideals of P2
∗ (X) for the first values of |X|.

|X| |F(P2
∗ (X))|

1 2

2 5

3 18

4 113

5 1 450

6 40 069

7 2 350 594

8 286 192 504

9 71 213 783 696

10 35 883 905 263 770

Table 1. Number of filters of P2
∗ (X) for several values of |X|.

Hence, we need an alternative way to generate linear extensions in P2
∗ (X). For

this, the cornerstone result is the following:

Lemma 3. Let P be a finite poset, I ∈ I(P ), and x, y ∈MIN (P \ I). Then,

P (x|I) · P (y|(I ∪ {x})) = P (y|I) · P (x|(I ∪ {y})). (4)

Proof. It follows almost trivially applying Eq. (3):

P (x|I) · P (y|I ∪ {x}) =
e (P \ (I ∪ {x}))

e(P \ I)
· e (P \ (I ∪ {x, y}))

e(P \ (I ∪ {x}) =
e (P \ (I ∪ {x, y}))

e(P \ I)
=

=
e (P \ (I ∪ {y}))

e(P \ I)
· e (P \ (I ∪ {x, y}))

e(P \ I ∪ {y}) = P (y|I) · P (x|I ∪ {y}).

Therefore, the result holds.

As a consequence, given I ∈ I(P ) and {x1, ..., xr} =: MIN (P \ I), we can

compute the values P (xi|I), i = 1, ..., r if we know the probabilities P (x1|(I∪{xj}))
and P (xj |(I ∪ {x1})), j 6= 1 by solving the linear system

P (x1|I) · P (xi|(I ∪ {x1})) = P (xi|I) · P (x1|(I ∪ {xi})) (5)
r∑

i=1

P (xi|I) = 1 (6)

Moreover, as P (x|(P \ {x})) = 1 if x ∈ MAX (P ), we can solve the previous

systems in a recursive way.
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Although the previous result seems to solve the problem, remark that it is nec-

essary to solve a system for each I ∈ I(P ) and by Proposition 1, we know that

|I(P )| grows exponentially for P2
∗ (X).

The other main idea of our procedure comes from the fact that, although there

are many ideals in P2
∗ (X), many of them are isomorphic, and hence, the number of

situations that need to be considered for P2
∗ (X) is very reduced. For convenience,

we will treat the case considering filters instead of ideals.

Lemma 4. Let F be a filter of P2
∗ (X) and consider two singletons {x}, {y} in F.

Then,

F \ {x} ∼= F \ {y},

where ∼= denotes that the posets are isomorphic. Similarly, for two pairs

{x, y}, {z, t} ∈ MIN (F ),

F \ {x, y} ∼= F \ {z, t}.

Proof. We will make the proof for singletons. The proof for pairs is similar. Let

φ : F \ {x} → F \ {y} be a bijective map such that it interchanges x and y, i.e. for

A ∈ F \ {x}, it is defined by

φ(A) =

{
A, ify 6∈ A

(A \ {y}) ∪ {x}, otherwise

Then, φ is well-defined and bijective. As A ⊆ B ⇔ φ(A) ⊆ φ(B), then φ is an

isomorphism and we conclude that F \ {x} ∼= F \ {y}.

Corollary 1. Let F be a filter of P2
∗ (X), and consider two singletons {x} and {y}

in F. Then,

P ({x}|(P \ F )) = P ({y}|(P \ F )).

Similarly, for two pairs {x, y}, {z, t} ∈ MIN (F ), it holds

P ({x, y}|(P \ F )) = P ({z, t}|(P \ F )).

Proof. It suffices to remark that by Lemma 4, F \ {x} ∼= F \ {y} and F \ {x, y} ∼=
F \ {z, t}, so it follows

e(F\{x}) = e(F\{y}), e(F\{x, y}) = e(F\{z, t}).

Now, the result holds applying Eq. (3).
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Next, let us determine the form of the filters leading to different systems.

Lemma 5. Let F1 and F2 be two filters of P2
∗ (X). Then F1

∼= F2 ⇔ F1 and F2

have the same number of singletons and pairs.

Proof. Let us denote

F1 = {x1, . . . , xs, A1, . . . , Al, B1, . . . , Bp},

where x1, . . . , xs are the singletons in F1, A1, . . . , Al are the pairs in F1 such

that Ai ∩ {x1, . . . , xs} 6= ∅, and B1, . . . , Bp are the pairs in F1 such that

Bi ∩ {x1, . . . , xs} = ∅.
Thus defined, denoting ↑ xi := {{xi}, {xi, xj} : j 6= i}, it follows that filter F1

can be written as F1 = G1 ]H1, where

G1 :=↑x1∪ ↑x2 ∪ · · · ∪ ↑xs = {x1, . . . , xs, A1, . . . , Al}

and H1 := {B1, . . . , Bp}. Similarly, F2 = G2 ]H2.

Now, F1
∼= F2 ⇔ G1

∼= G2 and H1
∼= H2. And as H1 and H2 are antichains, it

follows that H1
∼= H2 ⇔ |H1| = |H2|.

Let us now show that G1
∼= G2 if and only if they have the same number of

singletons.

⇒) If G1
∼= G2, then they have exactly the same number of minimal elements,

and minimal elements for G1 and G2 are exactly the singletons.

⇐) Let us denote by {x1, . . . , xs} and {y1, . . . , ys} the singletons in G1 and G2,

respectively. Hence, we can build a bijective map in X applying {x1, . . . , xs} into

{y1, . . . , ys}. For example, consider f : X → X defined as

f(z) :=


yi if z = xi
xi if z = yi
z otherwise

Hence, for A ∈ G1, it follows that f(A) ∈ G2 and f is a bijection. Besides, f keeps

the containing condition. Thus, f is an isomorphism and G1
∼= G2.

As G1
∼= G2 implies that the number of pairs is the same for both posets, the

result holds.

As all filters having the same number of singletons and the same number of pairs

are isomorphic, from now on we will denote by F (t1, t2) a (general) filter having t1
singletons and t2 pairs. Next proposition computes the number of linear systems to

be solved.

Proposition 2. The number of non-isomorphic filters of P2
∗ (X) when |X| = n is

(
n+ 1

3

)
+ n+ 1.
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Proof. It suffices to study the number of different filters F (t1, t2). Obviously, 0 ≤
t1 ≤ n. Now, for fixed t1, if we consider all the possible

(
n
2

)
pairs and take away

the
(
n−t1

2

)
pairs without any of the t1 singletons, we get that the number of pairs

covering at least one of the t1 singletons is
(
n
2

)
−
(
n−t1

2

)
. Consequently,

0 ≤ t1 ≤ n,
(
n

2

)
−
(
n− t1

2

)
≤ t2 ≤

(
n

2

)
.

Now, since all combinations (t1, t2) satisfying these bounds are valid, the number

of possible F (t1, t2) is given by

n∑
t1=0

[(
n

2

)
−
((

n

2

)
−
(
n− t1

2

))
+ 1

]
=

n∑
t1=0

(
n− t1

2

)
+ n+ 1

=

n∑
h=2

(
h

2

)
+ n+ 1

=

(
n+ 1

3

)
+ n+ 1.

Hence, the result holds.

Table 2 provides the first values for the number of non-isomporphic filters. Com-

pare its cubic growth with the exponential growth of the number of filters given in

Table 1.

|X| 2 3 4 5 6 7 8 9 10

Filters 4 8 15 26 42 64 93 130 176

Table 2. Number of non-isomorphic filters of P2
∗ (X) for several values of |X|.

Finally, let us show that the solution of any system for each possibility (t1, t2)

can be written explicitly in terms of t1 and t2.

Theorem 6. Let F (t1, t2) be a filter of P2
∗ (X), and let us denote I(t1, t2) :=

P2
∗ (X) \ F (t1, t2) its associated ideal. Let {x} be a singleton of F (t1, t2) and {y, z}

a pair of MIN (F (t1, t2)). Then:

P ({x}|I(t1, t2)) =
t1 +

(
n
2

)
−
(
n−t1

2

)
t1(t1 + t2)

, P ({y, z}|I(t1, t2)) =
1

t1 + t2
.

Proof. As we know by last results, F (t1, t2) has t1 interchangeable singletons,

all of them minimals. A pair is minimal for F (t1, t2) if and only if it does not

contain any singleton of F (t1, t2). Hence, there are T := t2 +
(
n−t1

2

)
−
(
n
2

)
minimal
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interchangeable pairs. Denote α := P ({x}|I(t1, t2)) and β := P ({y, z}|I(t1, t2))

where {y, z} ∈ MINF (t1, t2). Hence,

t1α+ Tβ = 1.

As F (t1, t2) ∼= F (t1, t2 − T ) ] T , it follows by Eq. (2) that

β = P ({y, z}|I(t1, t2)) =
e(F (t1, t2) \ {{y, z}})

e(F (t1, t2))
=
e(F (t1, T − t2) ] T − 1)

e(F (t1, T − t2) ] T )
.

Now, applying Lemma 1, we obtain

β =

(|F (t1,T−t2)|+T−1
T−1

)
e(F (t1, T − t2))(T − 1)!(|F (t1,T−t2)|+T

T

)
e(F (t1, T − t2))T !

=
1

|F (t1, T − t2)|+ T
.

Since T + |F (t1, t2 − T )| = t1 + t2, we conclude

β =
1

t1 + t2
.

Finally, from t1α+ Tβ = 1 we obtain the value of α,

α =
1− βT
t1

=
1− 1

t1+t2

(
t2 +

(
n−t1

2

)
−
(
n
2

))
t1

=
t1 +

(
n
2

)
−
(
n−t1

2

)
t1(t1 + t2)

.

Therefore, the result holds.

Theorem 6 provides us with a general way to generate a random linear extension

of P2
∗ (X). This is Algorithm 1.

And applying Theorem 5, generating linear extensions of P2
∗ (X) allows us to

generate a random measure in T OL3(X). This is Algorithm 2.

Proposition 3. Let |X| = n, then the computational complexity of Algorithm 1

and Algorithm 2 is O(n4).

Proof. Let us start computing the complexity of each part of Algorithm 1. The

number of minimals in P2
∗ (X) \ I will be in the worst case

(
n
2

)
(taking all the

pairs) and therefore the complexity of this part is quadratic at most. Calculating

the probabilities and selecting an element at random has complexity O(1). Now we

must repeat this procedure for each element in the path, i.e. a quadratic number of

times. Therefore, the complexity of Algorithm 1 will be O(n2 · n2) = O(n4).



February 25, 2022 12:48 WSPC/INSTRUCTION FILE 33-IJUFKBS
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Algorithm 1 RANDOM GENERATION OF LINEAR EXTENSIONS OF P2
∗ (X)

INIZIALIZATION

I = ∅, index = 1, nsing = n, npair =
(
n
2

)
.

while I 6= P do

COMPUTING MINIMALS

Compute MIN (P\I).

Assign k ≡ number of singletons in MIN (P\I) = nsing.

Assign q ≡ number of pairs in MIN (P\I) = npair +
(
n−k
2

)
−
(
n
2

)
.

COMPUTING PROBABILITIES

A pair is chosen with probability

P (pair) = q × 1

npair + nsing
.

A singleton is chosen with probability P (sing) = 1− P (pair).

SELECTING ELEMENT

If a singleton is selected, select randomly a singleton {x} inMIN (P\I).

e(index) = {x}, I = I ∪ {x}, nsing = nsing − 1.

If a pair is selected, select randomly a pair {x, y} in MIN (P\I).

e(index) = {x, y}, I = I ∪ {x, y}, npair = npair − 1.

Actualize index = index+ 1.

end

return e.

Algorithm 2 starts using Algorithm 1. Next, a quadratic number of random

numbers is generated, so this will be done in O(n2). Therefore, the final complexity

of Algorithm 2 is also O(n4).

Finally, as all linear extensions have the same probability of being selected, for

a linear extension (x(1), ..., x(p)) ∈ L(P ), it follows that

P ((x(1), ..., x(p)) =
1

e(P )
.

This allows us to compute the number of linear extensions of P2
∗ (X).

Theorem 7. The number of linear extensions of P2
∗ (X) is given by:

e
(
P2
∗ (X)

)
=

(
n

2

)
!

n∏
i=1

(
i(i+

(
n
2

)
)

i+
(
n
2

)
−
(
n−i
2

)) .
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Algorithm 2 RANDOM GENERATION OF 3-TOLERANT MEASURES

GENERATING A LINEAR EXTENSION

Apply Algorithm 1 to generate a linear extension (x(1), ..., x((n
2)+n)) of

P2
∗ (X).

GENERATING VALUES

Generate
(
n
2

)
+ n =

(
n+1
2

)
random values in [0, 1].

Order the generated values in increasing order

v(1) ≤ v(2) ≤ ... ≤ v(

(
n+ 1

2

)
).

GENERATING A 3-TOLERANT MEASURE

i=1

while i ≤
(
n+1
2

)
do

Assign µ(x(i)) = v(i), i = i+ 1.

end

return µ.

Proof. It suffices to compute the probability of the linear extension starting with

singletons (in any order) and then following by pairs (in any order) and apply the

probabilities obtained in Theorem 6.

Corollary 2. Let X be a referential set of n elements. Then, the
((

n
2

)
+ n

)
-volume

of T OL3(X) is

V ol(T OL3(X)) =
n∏

i=1

(
i

i+
(
n
2

)
−
(
n−i
2

)) .
Proof. It suffices to apply Theorem 5. Hence, the volume is given by e(P )

[(n
2)+n]!

and

thus,

V ol(T OL3(X)) =

(
n
2

)
!
∏n

i=1

(
i(i+(n

2))
i+(n

2)−(n−i
2 )

)
[(

n
2

)
+ n

]
!

=

∏n
i=1

(
i(i+(n

2))
i+(n

2)−(n−i
2 )

)
[(

n
2

)
+ n

]
× ...×

[(
n
2

)
+ 1
]

=

n∏
i=1

(
i

i+
(
n
2

)
−
(
n−i
2

)) .
This finishes the proof.
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The first values of e(P2
∗ (X)) and V ol(T OL3(X)) are given in Table 3.

n e(P2
∗ (X)) V ol(T OL3(X)

2 2 2
3! = 0.333

3 48 48
6! = 0.066

4 34 560 34 560
10! = 0.00952

5 1 383 782 400 1 383 782 400
15! = 0.00106

Table 3. First values of e(P2
∗ (X)) and V ol(T OL3(X)).

As the volume reduces very quickly, these values show us that generating points

randomly in the
((

n
2

)
+ n

)
-hypercube until a point in T OL3(X) is obtained is not

an efficient way to generate random points.

4. Some properties of polytope T OL3(X).

In this section we study some other properties of the polytope T OL3(X). First, let

us start computing the number of vertices of this polytope.

Corollary 3. The number of vertices of T OL3(X) when |X| = n is

n∑
i=0

2(n−i
2 )
(
n

i

)
.

Proof. Note that Theorem 1 establishes that the number of filters (and ideals)

is indeed the number of vertices of the corresponding order polytope. Hence, the

result follows from Proposition 1.

Therefore, Table 1 provides the number of vertices of T OL3(X) for the first

values of |X|.
Next, k-dimensional faces are given in terms of a closed partition

{B>, B⊥, B1, ..., Bk} of P̂ being connected and compatible. Hence, faces of

T OL3(X) can be found applying Theorem 2. In particular, the following holds.

Proposition 4. Let us consider a finite referential X and consider T OL3(X).

Then, the number of facets is
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3n2 − n
2

.

Proof. In this case, we have just to put together two elements of P̂ in the same

block in a way such that connectivity and compatibility are kept. There are three

cases:

• A block containing a singleton i and a pair {i, j}. There are n(n − 1)

possibilities.

• A singleton is included in B⊥. There are n possibilities.

• A pair is included in B>. There are
(
n
2

)
possibilities.

Summing up these quantities

(
n

2

)
+ n+ n(n− 1) = n

3n− 1

2
=

3n2 − n
2

,

and the result holds.

Let us now deal with the k-dimensional faces. It can be proved as a consequence

of Theorem 3 that the only possible 2-dimensional faces in an order polytope are

squares and triangles. Next, the only possible 3-dimensional faces are triangular

pyramids, triangular prisms, square pyramids and cubes. And for higher dimensions

faces are just combinations of triangles and squares (2-dimensional cubes). Let us

then study the form of hypercubes and simplices of T OL3(X).

Proposition 5. Let us consider F1, ..., F2r a family of filters of P2
∗ (X). Then, this

family is the set of vertices of a r-dimensional cubical face of T OL3(X) if and only if

P2
∗ (X) can be partitioned as {C>, C⊥, C1, ..., Cr} where Ci are connected i = 1, ..., r,

C> is a filter, C⊥ is an ideal and for {x} ∈ Ci, then {x, y} 6∈ Cj , j ∈ {1, ..., r}\i
and such that each Fi can be written as

Fi = C> ∪ Ci1 ∪ ... ∪ Cik .

Proof. ⇒) We already know that if F1, ..., F2r determines a cubical face, then the

corresponding partition B = {B>, B⊥, B1, ..., Br} satisfies that {B1, ..., Br} is an

antichain (Lemma 2).

As B determines a face, it follows that Bi is connected, i = 1, ..., r. Moreover,

Fi is constant on each block. Hence, each Fi can be written as

Fi = B> ∪Bi1 ∪ ... ∪Bik .

As there are just 2r possible combinations and we are considering 2r filters, it

follows that all combinations lead to a vertex. In particular, B> ∪ Bi is a filter.

Hence, if {x} ∈ Bi, it follows that {x, y} ∈ B⊥ ∪Bi.
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Finally, as B> = Fi for some i, then B> is a filter. And as B>∪B1∪ ...∪Br = Fj

for some j, then B⊥ is an ideal.

⇐) Remark that by the conditions on Ci, i = 1, ..., r, if {x} ∈ Ci, then {x, y} ∈
Ci∪C> ({x, y} 6∈ C⊥ because it is an ideal). Thus, it follows that C1∪C>, ..., Cr∪C>
are filters. Hence,

Fi = C> ∪ Ci1 ∪ ... ∪ Cik

is a filter for any possible combination because it is a union of filters. The partition

that these filters determine on P2
∗ (X) is {C>, C⊥, C1, ..., Cr}. Let us show that this

partition is connected and compatible. Connectivity holds by hypothesis.

For compatibility, note that neither Ci � Cj nor Cj � Ci for i, j = 1, ..., r by

hypothesis.

If C⊥ � Ci, this would imply that there exist x, y ∈ X such that {x} ∈
Ci, {x, y} ∈ C⊥ contradicting C⊥ is an ideal.

Similarly, it can be seen that it is not possible C> � Ci.

Then, {C1, ..., Cr} is an antichain and the result holds by Lemma 2.

Next, let us study faces that are simplices. The following holds:

Proposition 6. Consider P2
∗ (X) and consider B := {B>, B⊥, B1, ..., Br} a parti-

tion of P2
∗ (X). Then, B determines a r-simplex face with vertices F0, ..., Fr if and

only if Fi := B1 ∪ ...∪Bi ∪B>, Bi is connected, i = 1, ..., r, and for all i < j, there

exists {x} ∈ Bj , {x, y} ∈ Bi.

Proof. ⇒) As B determines a face, it is a connected partition, so that Bi is con-

nected, i = 1, ..., r.

Consider F0, ..., Fr the vertices of the simplex. Then, Fi and Fj are adjacent,

for all i, j and hence, either Fi ⊂ Fj or Fj ⊂ Fi. Consequently, these filters can be

ranged as a chain F0 ⊂ F1 ⊂ ... ⊂ Fr.

On the other hand, Fi is constant (0 or 1) in each Bj . Hence, Bj ⊆ Fi or

Bj ∩ Fi = ∅, ∀i, j.
Besides, as Fi ⊂ Fi+1, there exists Fj such that Bi ⊆ Fj and j minimal. Then,

Bi ∩ Fj−1 = ∅, Bi ⊆ Fj\Fj−1 := Cj . Consider x ∈ Cj \ Bi. It follows that {x} 6∈
Fi, i < j. Moreover, {x} ∈ Bl, for some l ∈ {>,⊥, 1, ..., r}. If l 6= i, this implies

that Bi ∪ Bl ⊆ Fj ⊂ Fj+1... and (Bi ∪ Bl) ∩ Fj−1 = ∅. These two facts contradict

that B is closed.

We then conclude that Bi = Cj and hence, we can assume w.l.g. Ci = Bi, i =

1, ..., r. Finally, we also conclude that

Fi = B1 ∪ ... ∪Bi ∪B>, i = 0, ..., r.

As B determines a simplex, it follows that {B1, ..., Br} is a chain by Lemma 2.

Hence, either Bi � Bi+1 or Bi � Bi+1. Suppose Bi � Bi+1. This implies
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∃x, y ∈ X, {x} ∈ Bi = Ci = Fi \ Fi−1, {x, y} ∈ Bi+1 = Ci+1 = Fi+1 \ Fi.

But then, {x} ∈ Fi, {x, y} 6∈ Fi, contradicting that Fi is a filter.

We conclude that Bi � Bi+1 and this implies that ∃x, y ∈ X, {x} ∈
Bi+1, {x, y} ∈ Bi. As B is compatible, Bi � Bj if i < j and this implies that

∃x, y ∈ X, {x} ∈ Bj , {x, y} ∈ Bi.

⇐) Consider the filters F0, ..., Fr as defined in the theorem. Let us then show

that they are the vertices of a face. As Bi is connected, it suffices to show the

compatibility of B. Suppose B⊥ � Bi. Then, ∃x, y ∈ X, {x} ∈ Bi, {x, y} ∈ B⊥. But

then, {x} ∈ Fi \ Fi−1, {x, y} 6∈ Fi, contradicting that Fi is a filter.

Similarly, we can show that B> 6� Bi. As Bi � Bj , i < j by construction, it

follows that B is a connected and compatible partition that is a chain, so that the

corresponding r-face is a simplex by Lemma 2 and its vertices are F0, ..., Fr.

Given a polytope, its adjacency graph is defined as the graph with vertices

the vertices of the polytope and where two vertices are joined by an edge if they are

adjacent vertices in the polytope. Remember that the distance d(µ1, µ2) between

two vertices µ1, µ2 of a polytope is the number of edges of the shortest path be-

tween them in the adjacency graph. The diameter of the polytope is the maximum

distance between two vertices. Let us study the diameter for T OL3(X).

Proposition 7. The diameter of T OL3(X) is bounded by 6.

Proof. We will see that any vertex of T OL3(X) is at distance less or equal than

3 from the vertex whose filter is P2
∗ (X). Let us consider a vertex and let us denote

by F its corresponding filter. If F 6= P2
∗ (X), then there exists a singleton {i0} 6∈ F.

Consider the filter

F1 := F ∪ {{i0}, {i0, j} : j 6= i0}.

Hence, F1\F is connected, so that the corresponding vertices are adjacent. Let

us now consider

F2 := F1 \ ({{j} : {j} ∈ F1} ∪ {{i0, i} : i ∈ X}) ,

i.e. we remove all singletons and all pairs containing i0. Hence, F1\F2 is connected.

Consequently, the corresponding vertices are adjacent.

Finally, P2
∗ (X)\F2 is connected: consider A ∈ P2

∗ (X)\F2 and let us show that

it can be connected to i0. If A = {i, j}, then

{i, j} − {i} − {i, i0} − {i0}.
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A similar path can be obtained for A = {i}. Hence, d(F,P2
∗ (X)) ≤ 3 and the

result holds.

Proposition 8. The diameter of T OL3(X) is 6 if |X| ≥ 6.

Proof. By the previous proposition, it suffices to find two vertices at distance

6. Let us denote by A2 the set of pairs of P2
∗ (X). Consider the vertices whose

corresponding filters are

F1 = A2\{{1, 2}, {3, 4}, {5, 6}}, F2 = A2\{{1, 3}, {2, 5}, {4, 6}}.

Consider F1. Then, the set of filters adjacent to F1 are (up to isomorphism):

• A2\{{1, 2}, {3, 4}, {5, 6}, {i, j}}, i.e. another pair is removed from F1.

• A2\{{3, 4}, {5, 6}}, i.e. a pair is added to F1.

• {i} ∪ A2\{{1, 2}, {3, 4}, {5, 6}} with i 6= 1, 2, 3, 4, 5, 6.

• {1} ∪ A2\{{3, 4}, {5, 6}}.
• {1} ∪ {2} ∪ A2\{{3, 4}, {5, 6}}.

Now, the set of adjacent filters to one of these possibilities is:

• Two pairs are removed.

• One pair is removed and one is added.

• Two pairs are added.

• A singleton is added together with all pairs where this singleton appears

and another pair is added/removed.

• Two singletons are added together with all pairs where these singletons

appear.

• Two pairs, say {1, 2}, {3, 4} are added and {1} and/or {2} and {3} and/or

{4} are added.

• First, a singleton is added together with all pairs where this singleton ap-

pears and next this singleton and some pairs containing it are removed.

• First, a couple of singletons say {1}, {2} are added together with {1, 2}
and next {1} and/or {2} are removed together with some pairs containing

it/them.

On the other hand, the same can be done for F2. As the pairs outside A2 are

different for F1 and F2, it can be checked that none filter at two steps from F1 is

adjacent to a filter two steps from F2. Hence, d(F1, F2) ≥ 6. Indeed the distance is

6, for example considering the path

A2 \ {{1, 2}, {3, 4}, {5, 6}} − A2 \ {{3, 4}, {5, 6}} − A2 \ {{5, 6}} − A2

−A2 \ {{1, 3}} − A2 \ {{1, 3}, {2, 5}} − A2 \ {{1, 3}, {2, 5}, {4, 6}}.
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For |X| = 3, 4, 5, it can be seen that the diameter of T OL3(X) is 3, 4, 4,

respectively.

To finish this section, we show that this polytope is combinatorial.

Definition 5.26 A polytope is combinatorial if it satisfies the following conditions:

• All vertices are {0, 1}-valued.

• If two vertices x, y are not adjacent, then there are two other vertices u, v

such that x+ y = u+ v.

Proposition 9. The polytope T OL3(X) is combinatorial.

Proof. As T OL3(X) is an order polytope, we know that vertices are {0, 1}-valued.

Let us then study the second condition. Consider two filters F1, F2 such that the

corresponding vertices are not adjacent. Assume w.l.g. that F2 6⊂ F1. We have two

different cases:

• If F1 6⊂ F2, then consider F1 ∪ F2, F1 ∩ F2 ∈ F(P2
∗ (X)). Hence, F1, F2 6=

F1 ∩ F2, F1 ∪ F2 and

IF1(A) + IF2(A) = IF1∪F2(A) + IF1∩F2(A),∀A ∈ P2
∗ (X).

• Assume that F1 ⊂ F2 and F2 \F1 is not connected. Let us denote by C one

of the connected components of F2 \ F1. We consider F2 \ C and F1 ∪ C.
Then,

IF1(A) + IF2(A) = IF1∪C(A) + IF2\C(A),∀A ∈ P2
∗ (X).

It suffices to show that F2 \ C and F1 ∪ C are filters.

Take {x} ∈ F2 \C and suppose {x, y} 6∈ F2 \C. As {x} ∈ F2, then {x, y} ∈
F2. Hence {x, y} ∈ C, so that {x, y} 6∈ F1. Hence, {x} 6∈ F1 and thus

{x} ∈ C because C is a connected component of F2 \ F1, a contradiction.

Similarly, take {x} ∈ F1∪C. If {x, y} ∈ F1, then {x, y} ∈ F1∪C and we are

done. Otherwise, {x, y} 6∈ F1, and thus {x} 6∈ F1. Hence, {x} ∈ C ⊆ F2\F1.

But then, {x, y} ∈ F2 \ F1 and hence {x, y} ∈ C because C is a connected

component of F2 \ F1.

Hence, the result holds.

A graph is Hamilton connected if every pair of distinct nodes is joined by a

Hamilton path. For combinatorial polytopes, the following can be shown:

Theorem 8.26 Let G be the graph of a combinatorial polytope. Then, G is either a

hypercube or else is Hamilton connected.
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As T OL3(X) is not an hypercube except for |X| = 2, we conclude that it is

Hamilton connected. A Hamiltonian path between P2
∗ (X) and ∅ for the graph of

T OL3(X) when |X| = 3 can be seen in Figure 3.

∅

12 13 23

12, 13 12, 23 13, 23

1, 12, 13 2, 12, 23 3, 13, 23 12, 13, 23

P2
∗ (X) \ {2, 3} P2

∗ (X) \ {1, 3} P2
∗ (X) \ {1, 2}

P2
∗ (X) \ {3} P2

∗ (X) \ {2} P2
∗ (X) \ {1}

P2
∗ (X)

Fig. 3. Hamiltonian path between P2
∗ (X) and ∅ in the adjacency graph of T OL3(X).

5. Related subfamilies

The results developed in the previous sections can be straightforwardly extended to

some other families of fuzzy measures. In this section we consider three other cases.

5.1. 3-intolerant measures

Similarly to the case of k-tolerant measures, we can consider the case in which an

object is rejectable if it is not satisfactory for at least n−k+1 criteria. To translate

this into the language of fuzzy measures, the family of k-intolerant measures arises.

Definition 6.21 A fuzzy measure µ is k-intolerant if µ(A) = 0 when |A| ≤ n− k
and there exists A such that |A| = n− k + 1 and µ(A) > 0.
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Let us denote by INT OLk(X) the set of fuzzy measures on X being k′-

intolerant, with k′ ≤ k. Remark that for µ ∈ INT OLk(X), we just need to define

the values of µ(A), |A| > n− k+ 1. Hence, the same as for T OLk(X), the polytope

INT OLk(X) can be seen as an order polytope whose corresponding poset is given

by

Pk
∗ (X) := {A ⊆ X : |A| ≥ n− k + 1, A 6= X}.

It can be seen that the dual measure of a k-tolerant measure is a k-

intolerant measure.21 Hence, we can apply the results for generating a measure

in INT OL3(X) just applying the algorithm developed in Section 3 to generate a

random measure in T OL3(X) and then consider the corresponding dual measure.

Moreover, the posets Pk
∗ (X) and Pk

∗ (X) are dually isomorphic via the map

Φ : Pk
∗ (X) → Pk

∗ (X)

A 7→ X \A
.

Hence, the combinatorial structure of T OLk(X) and INT OLk(X) is the same

and both polytopes have the same number of vertices, edges, diameter, ... Indeed, all

the results for T OL3(X) can be translated to INT OL3(X) just changing the term

filter (elements attaining value 1) for P2
∗ (X) by the term ideal (elements attaining

value 0) in P2
∗ (X).

5.2. 3-interactive measures

Let us now treat the case of 3-interactive fuzzy measures. In many subfamilies of

fuzzy measures, what is aimed is a reduction in the number of coefficients needed

to define a measure because the goal is to reduce the number of coefficients that

the decision maker should assign. However, if these values are not determined by

an expert and they have to be obtained with the help of a sample, we have to

take into account in the optimization problem that these values should satisfy the

monotonicity constraints. In many subfamilies, the number of constraints dealing

with monotonicity (that grows exponentially, indeed n2n−1) does not reduce4 even

if there is a reduction in the number of coefficients.

The subfamily of k-interactive measures is specifically designed to deal with this

problem. Indeed, for k-interactive measures, both the number of coefficients and

the number of constraints needed for defining a fuzzy measure are reduced. This

subfamily allows interactions for big cardinalities of the referential set, but these

interactions are determined by the values of the fuzzy measure for small subsets.

Besides, the corresponding Choquet integral of a k-interactive fuzzy measure has a

nice and simple form. For more details about k-interactive fuzzy measures, see.4

Definition 7.4 A fuzzy measure µ is k-interactive for k < n if for some chosen

C ∈ [0, 1], it follows
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µ(A) = C +
|A| − k − 1

n− k − 1
(1− C), ∀A, |A| > k.

Hence, for a k-interactive measure, the value for µ(A) is fixed for cardinalities

greater than k. In particular, k-tolerant measures arise for C = 1. We will denote by

INT k
C(X) the set of fuzzy measures being at most k-interactive with fixed constant

C. Thus, for fixed C, in order to determine a k-interactive measure, we only need

to know the values of µ(A), 1 ≤ |A| ≤ k and these values satisfy monotonicity and

lay in [0, C]. Consequently, the set INT k
C(X) is the uniform scaling of T OLk(X)

by C for cardinality A s.t. |A| ≤ k, and we can translate all the results derived in

the previous sections for T OL3(X) for the case INT 3
C(X).

For example, in order to generate a 3-interactive fuzzy measure in INT 3
C(X) in

a random way, it suffices to generate a 3-tolerant measure µ following the algorithm

developed in Section 3 and take the 3-interactive measure given by

ν(A) = Cµ(A),∀A, |A| ≤ k, ν(A) = C +
|A| − k − 1

n− k − 1
(1− C), ∀A, |A| > k.

See also2 for an alternative way to generate k-interactive measures based on

order polytopes.

5.3. 2-truncated measures

In many practical applications of fuzzy measures, some subsets B do not arise and

thus, it makes no sense to consider the value µ(B). This is especially important in

Game Theory, where X denotes the set of players and some coalitions may fail to

form. It can be shown that in this case, the corresponding set of measures defined

on a subset S of P(X) define an order polytope, no matter the structure of S.24

Definition 8. We say that a fuzzy measure is k-truncated with respect to cardi-

nalities r1, ..., rk if the only subsets where µ is defined are those with cardinalities

r1, ..., rk.

We denote the set of truncated fuzzy measures w.r.t. cardinalities r1, ..., rk by

T FMk
{r1,...,rk}(X). This subsection is devoted to the case of 2-truncated fuzzy

measures over sets of cardinalities r1 and r2, namely T FM2
{r1,r2}(X). Especially we

will study the case r1 = 1. Let us denote by P2
r1,r2(X) the Boolean poset restricted

to the sets of size r1 and r2. It is obvious that T FM2
{r1,r2}(X) is an order polytope

whose associated poset is P2
r1,r2(X). Here we are going to treat the problem of

sampling uniformly capacities of T FM2
{1,r2}(X) by sampling linear extensions of

P2
1,r2(X).

For this, we can adapt the proofs of Section 3, so that the following holds for

T FM2
{1,r2}(X) and P2

1,r2(X).
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Lemma 6. Let F be a filter of P2
1,r2(X). If x, y are two singletons in F, then

F \{x} ∼= F \{y}. Similarly, if A1, A2 ∈MIN (F ), |A1| = r2 = |A2|, then F \{A1} ∼=
F \ {A2}.

Lemma 7. Let F1 and F2 be two filters of P2
1,r2(X). Then, F1

∼= F2 ⇔ F1 and F2

have the same number of singletons and r2-subsets.

Let us denote by F (t1, t2) a general filter having t1 singletons and t2 r2-subsets.

Corollary 4. The number of non-isomorphic filters of P2
1,r2(X) is

(
n+1
r2+1

)
+ n+ 1.

Theorem 9. Let F (t1, t2) be a filter of P2
1,r2(X) and let us denote by I(t1, t2) :=

P2
1,r2(X)\F (t1, t2) its associated ideal. Let x be a singleton of MIN (F (t1, t2)) and

A a r2-subset of MIN (F (t1, t2)). Then:

P (x|I(t1, t2)) =
t1 +

(
n
r2

)
−
(
n−t1
r2

)
t1(t1 + t2)

, P (A|I(t1, t2)) =
1

t1 + t2
.

With the last probabilities we can sample linear extensions of P2
1,r2(X) and

therefore we can sample fuzzy measures in T FMn
{1,r2}(X). Finally, we can use the

last result to get the number of linear extensions of P2
1,r2(X).

Theorem 10. The number of linear extensions of P2
1,r2(X) and the volume of

T FM2
1,r2(X) are given by:

e
(
P2
1,r2(X)

)
=

(
n

r2

)
!

n∏
i=1

i
(
i+
(
n
r2

))
i+
(
n
r2

)
−
(
n−i
r2

) .
V ol(T FM2

1,r2(X)) =

n∏
i=1

i

i+
(
n
r2

)
−
(
n−i
r2

) .
The first values of e(P2

1,r2(X)) are given in Table 4.

We finally remark that this can be applied to T FM2
n−r2−1,n−1(X) by duality

the same way as for T OL3(X) and INT OL3(X).

6. Conclusions

In this paper we have studied the polytope of 3-tolerant measures. We have derived

a procedure that allows a fast way to generate fuzzy measures inside this subfamily.

Next, we have obtained several properties of the combinatorial structure of this

polytope, e.g. the diameter. We have also characterized cubical faces and faces being

a simplex. Finally, we have seen that these results can be also extended to other

subfamilies of fuzzy measures, as 3-intolerant measures, 3-interactive measures or

2-truncated measures.
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n \ r2 2 3 4 5

2 2

3 48 6

4 34 560 720 24

5 1 383 782 400 746 496 000 17 280 120

Table 4. First values of e(Bn
2 (1, r2)).

Next step should be to extend the results for T OLk(X), k > 2. However, this

does not seem to be an easy problem and more research is needed. In particular,

there is not an obvious way to extend Theorem 6. Similar problems arise for the

combinatorial properties developed in Section 4. Related to this problem, another

approach based on Markov chains has been recently presented in.2
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