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Abstract

Two of the most important invariants associated with a poset P are the number of linear
extensions, e(P ), and the number of order ideals, i(P ). Many important techniques to generate
random linear extensions assume that e(P ) ≥ i(P ) and consequently choose to deal with ideals
instead of linear extensions. However, this condition does not hold for every poset. In this paper
we characterize when this condition holds for chain-irreducible posets, providing a complete list
of posets where this fails. The proof is divided in three parts: for non-connected posets, for
connected posets whose width exceeds 2 and for connected posets with width 2. We also give
some applications of this result.
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1 Introduction

Consider a finite partially ordered set (brief poset) (P,�). There are several invariants that can be
associated with P such as height, width and so on. Perhaps the two most important invariants in
terms of mathematical properties and practical applications are the number of linear extensions and
the number of (order) ideals.

Counting linear extensions of a general poset is a #P -complete problem [2], and the same is true
for generating random linear extensions. For this reason, finding formulas for solving these problems
for a particular family of posets is an interesting and relevant problem [12, 11, 3, 21, 9]. The same
can be said for the number of ideals of a poset [23, 13, 4]. For example, if we consider the Boolean
poset over a referential of n elements, it can be proved that the number of ideals coincides with the
n-th Dedekind number, and no simple formula is known to derive this number [14].

The difficulty of these problems is due to the fact that both the number of linear extensions and
the number of ideals usually grow very fast when the cardinality of the poset increases. However, it
seems that “in general”, the number of linear extensions grows faster [15]. The relationship between
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the number of ideals and the number of linear extensions of a poset has been studied by using
computational techniques (see [15]).

In this paper we characterize what “in general” means. More concretely, we determine which
posets satisfy the property that the number of linear extensions exceeds the number of ideals.

Note that given a poset, if we add to this poset a chain, then the number of linear extensions
remains the same while the number of ideals grows. Hence, any poset can be “turned” into a poset
with more ideals than linear extensions. As this case is trivial, we have focused on the case of posets
that cannot be written as sums of other posets and chains.

On the other hand, it seems that the width of the poset should have an influence on the answer
to the question. Indeed, “in general”, if the width is large, there are more linear extensions than
ideals.

The main motivation of this research is the justification of many algorithms that generate random
linear extensions. The existence of an easy bijection between linear extensions of P and maximal
chains of the lattice of ideals of P is used by many algorithms to generate and simulate linear
extensions. Consider for example the algorithm proposed in [15], that follows the following steps:

• Build the ideal lattice I(P ) of P.

• Select randomly a maximal chain Io = ∅, I1, ..., I|P | = P in I(P ). This is done selecting a path
between ∅ and P in I(P ).

• Consider the corresponding linear extension ε given by

ε(i) = Ii+1 \ Ii.

This algorithm has been applied in other papers as [16, 6].
Other algorithm uses “conditional probabilities” of elements given an ideal, that represent the

proportion of linear extensions satisfying that I appears in the first positions and x is assigned to next
position among all linear extensions such that I appears in the first positions. Then, starting with
I = ∅, the algorithm selects minimal elements with probability given by the conditional probability,
then add the selected element to I and repeats this step until I = P. An application of this algorithm
appears in [10] for generating points in the polytopes of 3-tolerant measures and other polytopes
appearing in Decision Making with fuzzy measures.

These algorithms need to know in advance the set of ideals in order to randomly generate a linear
extension. One could think that when the number of ideals is greater than the number of linear
extensions, it is better to spend energy on counting linear extensions rather than ideals. We will see
that the strategy of enumerating ideals in advance is well justified for a vast majority of posets.

The rest of the paper goes as follows. In next section we introduce the notation and basic results
that will be needed in the paper. In Section 3 we establish the main result of the paper, where we
characterize the posets with more linear extensions than ideals. We have called these posets abundant
posets and the proof of this result is given in Section 5. In Section 4 we give several applications to
other branches of mathematics.

2 Basic concepts

Let us begin with a short survey of Order Theory (see [7]) in order to introduce the notation that
will be used in the paper. Let P be a finite set with p elements. Elements of P are denoted x, y
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and z and subsets of P are denoted by capital letters A,B, and so on. Over P we consider a binary
relation � satisfying

i) Reflexivity: x � x, ∀x ∈ P,

ii) Antisymmetry: If x � y and y � x, then x = y, ∀x, y ∈ P,

iii) Transitivity: If x � y and y � z, then x � z, ∀x, y, z ∈ P.

The pair (P,�) is a partially order set (or poset for short). With some abuse of notation, we
will usually omit � and write P instead of (P,�) when referring to posets. For a poset P , we can
define the dual poset P ∂ = (P,�∂) such that x �∂ y ⇔ y � x.

If x 6� y and y 6� x, we write x ‖ y. We say that y covers x, denoted xl y, if x � y and there is
no z ∈ P \ {x, y} satisfying x � z � y.

A poset can be represented through Hasse diagrams. In Figure 1 we can see the Hasse diagram of
two posets shaped like the letter “N” and “V” respectively, so we will name them after these letters.

•

• •• •

••

Figure 1: Hasse diagram of poset N (left) and V (right).

If x ∈ P satisfies that x 6� y,∀y ∈ P, y 6= x, then x is a minimal element. The set of minimal
elements of P is denoted by MIN (P ). Similarly, if x ∈ P satisfies that x 6� y,∀y ∈ P, y 6= x, then
x is a maximal element and we denote the set of maximal elements of P by MAX (P ).

A poset is a chain if x � y or y � x, ∀x, y ∈ P. We will denote the generic chain of n elements by
n; similarly, an antichain is a poset where � is given by x � y ⇔ x = y. We will denote the generic
antichain of n elements by n̄. In this paper we admit the emptyset as an antichain. We denote by
A(P ) the set of antichains of P and a(P ) := |A(P )|. A chain C ⊆ P is said to be a maximal chain
in P if there is no other different chain C ′ such that C ⊂ C ′. Symmetrically, we can define maximal
antichains. The height of P , denoted by h(P ), is defined as the cardinality of a longest chain in P.
Similarly, the width of P , denoted by w(P ), is defined as the cardinality of a largest antichain in P .

Given an element x, we denote

↓x := {y : y � x}, ↑x := {y : x � y}, l x := {y : x � y or y � x}.
An ideal or down-set I of P is a subset of P such that if x ∈ I, then ↓x ⊆ I. We will denote

the set of all ideals of P by I(P ) and i(P ) := |I(P )|. Symmetrically, a subset F of P is a filter or
up-set if for any x ∈ F, then ↑ x ⊆ F. We will assume that P and the empty set are both filters and
ideals, therefore I(P ) and F(P ) have both maximum and minimum. One of the most important
constructions in order theory is the poset of ideals ordered by inclusion, (I(P ),⊆). It is easy to
show that for a finite poset P,

i(P ) = a(P ), (1)

via the bijective map f : I(P )→ A(P ) given by f(I) =MAX (I).
Two posets (P,�P ) and (Q,�Q) are isomorphic if there is a bijection f : P → Q such that

x �P y ⇔ f(x) �Q f(y), and it is denoted by P ∼= Q (or P = Q). If two posets are isomorphic, then
their corresponding Hasse diagrams are the same up to differences in the names of the elements.
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Now, let us introduce some important ways of defining new posets from old. Given two posets,
(P,�P ), (Q,�Q), their ordinal sum, denoted P ⊕Q, is a poset such that x �P⊕Q y for every x ∈ P
and y ∈ Q and preserves the original orders on P and Q. Remark that the ordinal sum of posets
is associative but not commutative (see Figure 2). A poset is irreducible if it cannot be written
as a ordinal sum of two posets. For example, poset N in Figure 1 is irreducible, while poset V is
reducible as it can be written as V = 1⊕ 2̄.

a

b c

P

1

2 3

Q

a

b c

1

2 3

P ⊕Q

a

b c

1

2 3

Q⊕ P

Figure 2: Ordinal sum of posets.

Definition 1. Let P be a finite poset such that P = P1 ⊕ · · · ⊕ Pk where Pi is an irreducible poset
for i = 1, ..., k. We denote by Φ(P ) to the number of irreducible components isomorphic to the chain
with one element, i.e. Pi

∼= 1. We say that P is chain-irreducible if Φ(P ) = 0. We also define the
chain-irreducible reduction of P as:

R(P ) :=
n⊕

i=1
Pi�1

Pi.

Note that a poset P is chain-irreducible if and only if every element of P is in some antichain
with at least 2 elements. For example, V is reducible but it is chain-irreducible. Obviously, if P
is irreducible and |P | > 1, then P is chain-irreducible. The case P = 1 is trivially irreducible and
chain-reducible.

Similarly, the disjoint union of two posets (P,�P ), (Q,�Q), denoted P ] Q, is a poset (P ∪
Q,�P]Q) where x �P]Q y whenever x, y ∈ P and x �P y, or x, y ∈ Q and x �Q y. The disjoint
union is commutative and associative (see Figure 3). A poset which cannot be written as disjoint
union of two posets is called connected. Obviously, the Hasse diagram of a connected poset is also
a connected graph. A trivial property is that a non-connected poset is chain-irreducible.

Finally, we introduce a definition regarding the height of P . Remember that Dilworth’s Theorem
states that every poset P of width w(P ) = k can be splitted into k chains.
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a

b c

P ]Q
1

2 3

1

2 3

Q ] P

a

b c

Figure 3: Disjoint union of posets.

Theorem 1 (Dilworth). [8] Let P be a finite poset of width w(P ) = k. Then there exists a partition
of P into k chains, that is, P = C1 ∪ · · · ∪ Ck where Ci is a chain ∀i ∈ {1 . . . k} and Ci ∩ Cj = ∅,
∀i 6= j.

Definition 2. Let P be a finite poset with w(P ) = 2 and consider all possible partitions of P into 2
chains:

CP(P ) := {(C1, C2) : chain partition of P where |C1| ≥ |C2|}.

Let (C∗1 , C
∗
2) be a partition in CP(P ) where |C∗1 | is a maximum among all the partitions (C1, C2). We

define the type 1 height h1(P ) := |C∗1 | and type 2 height h2(P ) := |C∗2 |.

Example 1. Consider poset Q⊕P from Figure 2. Then, Q⊕P can be decomposed in chains 1−2−b
and 3 − c − a. Other decomposition is 1 − 2 − b − a and 3 − c. This is indeed the decomposition
(C∗1 , C

∗
2) of Definition 2. Hence, h1(P ) = 4, h2(P ) = 2.

Note that heights h1(P ) and h2(P ) are well-defined and they do not depend on the chosen
partition.

Definition 3. A linear extension of (P,�) is a sorting of the elements of P that is compatible
with �, i.e. x � y implies that x is before y in the sorting. In other words, if |P | = n, then a linear
extension is an order-preserving bijection ε : P → n.

We will denote by L(P ) the set of all linear extensions of poset (P,�) and by e(P ) := |L(P )|.
In a finite poset P , e(P ) equals the number of maximal chains of (I(P ),⊆) [22]. This result is the
starting point of some algorithms to randomly generate linear extensions [15]. The goal of this paper
is to find conditions for a poset P to satisfy i(P ) ≤ e(P ).

The next lemma shows how i(P ) and e(P ) behave with respect to ordinal sum and disjoint union.

Lemma 1. [22, 7] Let P and Q be two non-empty finite posets.

i) i(P ⊕Q) = i(P ) + i(Q)− 1.

ii) i(P ]Q) = i(P ) · i(Q).

iii) e(P ⊕Q) = e(P ) · e(Q).

iv) e(P ]Q) =
(|P |+|Q|
|P |

)
· e(P ) · e(Q).

Let us now introduce some basics concepts about lattice theory. These concepts will be needed
in the section of applications. Given a poset P, we can define

x ∨ y := min{z ∈ P | z � x, z � y}, x ∧ y := max{z ∈ P | z � x, z � y},

when these values exist. More generally, for a general subset S ⊆ P we can define
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∨
S := min{z ∈ P | z � x,∀x ∈ S},

∧
S := max{z ∈ P | z � x,∀x ∈ S},

when these values exist.

Definition 4. Let P be a non-empty poset. If x∨ y and x∧ y exist for all x, y ∈ P, then P is called
a lattice.

Let L and K be lattices. A function f : L→ K is a lattice homomorphism if

f(x ∨L y) = f(x) ∨K f(y), f(x ∧L y) = f(x) ∧K f(y), ∀x, y ∈ L.

A bijective lattice homomorphism is a lattice isomorphism. An element x of a lattice L is
said to be join-irreducible if x is not a minimum and x = a ∨ b implies x = a or x = b. A meet-
irreducible element is defined dually. The set of join-irreducible elements of a lattice L is denoted
by J (L). A lattice L is said to be distributive if it satisfies the distributive law,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀x, y, z ∈ L.

Theorem 2 (Birkhoff’s representation theorem for finite lattices). [7] Let L be a finite
distributive lattice. Then, the map η : L→ I(J (L)), x 7→ J (L)∩ ↓x is an isomorphism between L
and I(J (L)).

This way, for any distributive lattice L all the information is concentrated in the poset J (L).
Note that the number of elements of J (L) is in general much lower than the cardinality of L.

Definition 5. We say that a finite poset P is abundant if i(P ) ≤ e(P ). Otherwise, we say that P
is deficient 1.

The set of abundant finite posets is denoted by A, and the set of deficient finite posets by D.
The first problem we face when characterizing abundant posets is the possibility of encountering

a poset that can be written as a ordinal sum of a poset and a chain.

Theorem 3. Let P be a finite poset. Then ∃m ∈ N such that m⊕ P is deficient.

Proof. By Lemma 1 note that e(m ⊕ P ) = e(P ) but i(m ⊕ P ) = i(P ) + m. It is enough to choose
m > e(P )− i(P ).

This way, we can always add large enough chains to a poset such that the new poset is deficient.
However, from a combinatorial point of view, adding or removing chains as ordinal summands does
not change most of the combinatorial structure of the poset. For this reason we will focus on working
with chain-irreducible posets.

3 Characterization of chain-irreducible abundant posets

In this section we summarize the main result of the paper, which characterizes chain-irreducible
abundant posets. Let P be a non-connected finite poset. We will see that P is abundant if and only
if P is not in the family CD1, where:

CD1 := {1 ]m, 1 ] (m1 ⊕ 2̄⊕m2), 2 ] 2, 2 ] 3}.
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• •

••
•

Figure 4: Hasse diagram of poset N3.

Now, let us define the poset N3 given in Figure 4.
We will see that this is the only deficient connected poset with w(P ) ≥ 3. Next, consider the

family

CD2 = {CDm
1 , CD

m
2 , CD3, CD4, CD5, CD6, CD7, CD8},

given in Figure 5.

•
•

...

•

•

••

CDm
1

m

•
•

...

•

•

••

CDm
2

m

• •

••
•
CD3

• •

••
•

•

CD4

• •

••
•

•

CD5

• •

••
•

•

•
CD6

• •

••
•

CD7

• •

••
•
•
CD8

Figure 5: Connected deficient posets with w(P ) = 2 and h2(P ) = 2 (modulo duality).

We will see that these are the only deficient connected posets with w(P ) = 2 and h2(P ) = 2.
Finally, we will denote CD9 = 2̄ ⊕ 2̄ ⊕ 2̄, CD10 = 2̄ ⊕ N and CD11, CD12 the posets of Figure 6.
Let us denote

CD3 := {CD9, CD10, CD
∂
10, CD11, CD12, CD

∂
12}.

It is easy to check that posets in CD3 are chain-irreducible and deficient. Indeed, the pairs
(i(P ), e(P )) for CD9, CD10, CD11 and CD12 are (10, 8), (11, 10), (12, 10) and (14, 13) respectively.
We will see that these are the only deficient connected posets with w(P ) = 2 and h2(P ) > 2.

The main result in the paper is the following:

1This notation is inspired by number theory. Remember that a number is said to be abundant if the sum of its
divisors is greater than the number itself, otherwise it is said to be deficient.
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•

•

•

•

•

•

CD11

•

•

•

•

•

•

•

CD12

Figure 6: CD11 and CD12 posets.

Theorem 4 (Characterization of chain-irreducible abundant posets). Let P be a chain-
irreducible finite poset. Then P is abundant if and only if P and P ∂ are not in CD∗, where:

CD∗ := CD1 ∪ CD2 ∪ CD3 ∪ {N3}.
Proof. See Section 5.

In other words, every chain-irreducible poset is abundant except for 16 exceptions.
Note that the set CD∗ is the set of chain-irreducible deficient posets modulo duality. We can

remove the chain-irreducibility condition from the last result to get a more general one.

Theorem 5 (General Ideal-Extension Inequality). Let P be a finite poset such that R(P ),R(P )∂ /∈
CD∗. Then:

i(P ) ≤ e(P ) + Φ(P ).

Proof. Since the chain-irreducible reduction R(P ) 6∈ CD∗, applying Theorem 4,

i(P )− Φ(P ) = i(R(P )) ≤ e(R(P )) = e(P ).

Corollary 1. Let P be a chain-irreducible finite poset. Then e(P ) ≥ |P |. Moreover, e(P ) = |P | iff
P = 2⊕ 2 or P = 1 ]m, where m is the chain of length |P | − 1.

Proof. Suppose first that P is abundant. Consider the ideals of the form ↓ x and the empty ideal.
Thus, we obtain e(P ) ≥ i(P ) ≥ |P |+ 1 and we conclude that e(P ) ≤ |P | is not possible in this case.

On the other hand, if P is not abundant, by Theorem 4 we know that P ∈ CD∗. It is straightfor-
ward to check that e(P ) ≥ |P | for every P ∈ CD∗ and the equality holds just for the cases P = 2⊕2
and P = 1 ]m, where m is the chain of length |P | − 1.

Therefore, the chain-irreducible poset with cardinal n > 4 with a minimum number of linear
extensions is P = 1] (n−1), having exactly n linear extensions and both P = 1]3 and P = 2⊕2
for n = 4.
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4 Applications

As mentioned above, the main application of Theorem 4 is to offer a mathematical justification for
enumerating ideals in algorithms for random generation of linear extensions. However, in this section
we are going to see some further applications of the characterization of chain-irreducible abundant
posets in different branches of mathematics.

4.1 Discrete Geometry

A convex polytope is a bounded convex polyhedron. The faces of a convex polytope P ordered by
inclusion form a lattice L(P) which is known as the face lattice of P .

Let P be a poset. If there is a rank function r : P → N such that r(x) = 0 for any minimal
element x and r(y) = r(x) + 1 whenever y m x, then P is called graded or ranked with rank r.

It is known that the face lattice of a polytope is always graded by the dimension of the face (see
[22]). Let us also denote L∗(P) = L(P) \ {∅,P}.

Corollary 2. Let P be a convex polytope with dim(P) > 1. Then, L∗(P) is chain-irreducible and
abundant.

Proof. Note that L∗(P) is graded by the dimension and the only dimensions k such that the number
of k-dimensional faces is 1 are k = −1 (the empty set) and k = dim(P) (the whole polytope). This
implies that L∗(P) is chain-irreducible. Moreover, L∗(P) is always connected and w(L∗(P)) ≥ 3 if
dim(P) > 1 because P has at least three vertices. By Theorem 4, the only deficient chain-irreducible
connected poset with width greater than 3 is N3 which is not associated with any polytope (because
P must have at least three vertices).

Therefore, for every polytope different from a line segment, the number of sets of faces that are
not related by inclusion (i.e. antichains) is smaller than the number of ways of ordering all the faces
by inclusion (i.e. linear extensions).

4.2 Number Theory

Let n ∈ N. The division lattice Dn of n is defined as the poset consisting in all the divisors of n
ordered by divisibility: a � b ⇔ a divides b, ∀a, b ∈ Dn. Dn is a bounded distributive lattice (see
[7]). Let us call pruned division lattice to D∗n := Dn \ {1, n}.

Observe that the join-irreducible elements of Dn are the prime powers pk dividing n. Therefore,
if n = pk11 p

k2
2 · · · pkrr , by Birkhoff’s representation theorem, we get Dn

∼= I(k1 ] · · · ] kr). Using the
relationship between the ideal lattice of the union and the product of posets (defined coordinatewise)
we obtain [7]:

Dn
∼= I(k1 ] · · · ] kr) ∼= I(k1)× · · · × I(kr) ∼= (k1 + 1)× · · · × (kr + 1).

Theorem 6. Let n ≥ 2. The pruned division lattice D∗n is abundant if and only if n is neither a
prime power n = pk nor of the form n = pk11 p2 with k1 ≤ 2.

Proof. If n is a prime power n = pk then Dn
∼= k + 1 is a chain so D∗n is also a chain and thus

deficient. If n = p1p2, then Dn
∼= 2× 2 ∼= 1⊕ 2̄⊕ 1, and D∗n

∼= 2̄ is also deficient. Also if n = p21p2,
then Dn

∼= 3× 2 ∼= 1⊕N ⊕ 1, and D∗n
∼= N is also deficient.
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Now suppose that n = pk11 p
k2
2 · · · pkrr is neither a prime power nor of the form n = pk11 p2 with

k1 ≤ 2. It is clear that D∗n is chain-irreducible. Indeed, for every element d1 = ps11 p
s2
2 · · · psrr we can

suppose w.l.o.g. that s1 < k1, s2 > 0 and take d2 = ps1+1
1 ps2−12 · · · psrr and d1 ‖ d2.

Now let us show that D∗n /∈ CD∗. If n has three different prime divisors then the boolean lattice
B3 = 2×2×2 is a subposet of Dn, so D∗n /∈ CD∗. Therefore n should have at most 2 different prime
divisors n = pk11 p

k2
2 . If k1, k2 ≥ 2 then the set A = (p21, p1p2, p

2
2) is an antichain of three elements.

Thus D∗n is connected and w(D∗n) ≥ 3. By Theorem 4, the only posibility for Dn being deficient is
D∗n
∼= N3 which is impossible (1⊕N3 ⊕ 1 is not a product of chains). Finally, in the case n = pk11 p2

we get Dn
∼= 2× (k1 + 1) leading to D∗n ∈ CD∗ if and only if k1 ≤ 2.

5 Proof of Theorem 4

In this appendix, we prove the main theorem of the paper. To shed light on this proof, we divide it
into several cases.

5.1 Technical lemmas

Lemma 2. Let P be a finite poset. Then the next inequalities hold:

i) i(P ) ≤ |P | · e(P ) + 1,

ii) 2 · i(P ) ≤ (1 + |P |) · e(P ), if e(P ) ≥ 3.

Proof. i) For every non-empty ideal I ∈ I(P ), there exists a linear extension ε ∈ L(P ) starting
with the ideal I (note that two ideals I1, I2 may be related to the same linear extension if
I1 ⊂ I2). Therefore, adding 1 for the empty ideal, we have i(P ) ≤ |P | · e(P ) + 1.

ii) We consider two cases. Firstly, let us suppose that for every non-empy ideal I ∈ I(P ), I or
P \I is not a chain in P. Indeed, without loss of generality we can suppose that I is not a chain.
Then, two different linear extensions ε0, ε1 ∈ L(P ) starting with ideal I 6= ∅ exist. Moreover,
since e(P ) ≥ 3, we can assign two different linear extensions δ0, δ1 to the empty ideal I = ∅.
Hence, 2 · i(P ) ≤ (1 + |P |) · e(P ), and the result holds.

Assume now that a non-empty ideal I exists for which both sets I and P \ I are chains in
P. Because of e(P ) > 1, we have I 6= P, and the filter P \ I is non-empty. There exist thus
x, y ∈ P with I =↓x and P \ I =↑y. Due to (↑x) \ {x} ⊆ P \ I and (↓y) \ {y} ⊆ I, the poset
P looks as in Figure 7.

In this Figure 7, P can be written as P = A⊕ (C ]D)⊕B, where ↓x = A⊕C, B = (↑x)\{x},
↑y = D ⊕B, and A = (↓y) \ {y}. Additionally, P contains an arbitrary number of edges from
(C \ {x}) × (D \ {y}) (represented by dotted lines connecting elements of C and D). Let us
denote a = |A|, b = |B|, c = |C| and d = |D|. Observe that a, b ≥ 0 and c + d ≥ 3 due to
e(P ) ≥ 3.

There is a single linear extension of P with ε(y) = ε(x) + 1, i.e. y follows x in the linear
extension ε. Moreover, for every element z ∈ C \ {x} there exist at least d linear extensions
with ε(y) = ε(z) + 1. In fact, we can take ε = (↓ z, y, C \ (↓ z ∪ {x}), ....) and we can place
element x next or following any element in D, so we have at least d different linear extensions.
For the same reason, there exist at least d linear extensions with element y following chain
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...
...
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•
...

•

A

B

C D

Figure 7: Poset P in proof of Lemma 2 ii).

A. We conclude e(P ) ≥ cd + 1. Defining Q as poset P by erasing dashed lines, we have
i(P ) ≤ i(Q) = a+ (c+ 1)(d+ 1) + b. Joining these two facts, we get:

(1 + |P |) · e(P )− 2 · i(P ) ≥ (a+ b+ c+ d+ 1) · (cd+ 1)− 2 · [a+ (c+ 1)(d+ 1) + b] =

(a+ b+ c+ d+ 1) · (cd− 1)− 2cd ≥ (c+ d+ 1) · (cd− 1)− 2cd.

The last expression is greater or equal to zero for all pairs (c, d) with c+d ≥ 3, so the inequality
holds.

Lemma 3. Let P be a finite irreducible poset. Then:

i) There exists x ∈MIN (P ) and y ∈MAX (P ) such that P \ {x} and P \ {y} are irreducible.

ii) If P 6∼= 1 ] Q for any poset Q and there is an antichain A of P such that A ∩MIN (P ) 6=
∅, A ∩MAX (P ) 6= ∅, then ∃x ∈MIN (P )\A satisfying P \ {x} is irreducible.

Proof. i) Consider a partition {Mi}i=0,...,t of P , where Mi := MIN
(
P \

⋃i−1
k=0Mk

)
. Note that

M0 := MIN (P ) and P =
⋃t

i=1Mi for some t ∈ N. Now, ∀i ∈ {1 . . . , t} exists x+i ∈ Mi and

x−i−1 ∈
⋃i−1

k=0Mk such that x−i−1 ‖ x+i , otherwise P =
(⋃i−1

k=0Mk

)
⊕
(
P \

⋃i−1
k=0Mk

)
which is a

contradiction. Besides, |M0| ≥ 2 and we can choose some x ∈ M0, x 6= x−0 . We claim that
P \ {x} is irreducible. Indeed, if we define M0 := M0 \ {x} and M i := Mi for i ≥ 1 we get a
partition for P \ {x}. Since the elements of each M i form an antichain, they must be in the
same irreducible component of P \ {x}. As x−i−1 ‖ x+i , M i is in the same irreducible component

as M i−1 for all i and we conclude that the whole P \ {x} is in just one irreducible component.

By duality, there is also y ∈MAX (P ) s.t. P \ {y} is irreducible.

ii) Remark that if x ∈ MIN (P ) ∩MAX (P ), this implies that x is isolated and thus P can be
written as 1]Q. Hence,MIN (P )∩MAX (P ) = ∅. Let us see that there is a minimal element
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x /∈ A. Otherwise, as A∩MAX (P ) 6= ∅ and A is an antichain, there would exist some maximal
element z ∈ A such that z ‖ y, ∀y ∈MIN (P ), which is a contradiction.

Therefore, we can take x ∈MIN (P )\A, y ∈MIN (P )∩A and z ∈MAX (P )∩A. As y ‖ z,
P \ {x} is irreducible.

Lemma 4. Let P be a poset and x ∈ P s.t. w(P ) = w(P \ {x}) = 2. Consider a partition (C∗1 , C
∗
2)

of P \ {x} into two chains s.t. |C∗1 | = h1(P \ {x}). If C∗1 ∪ {x} or C∗2 ∪ {x} is a chain, then
h1(P \ {x}) ≤ h1(P ).

Proof. If C∗1 ∪ {x} is a chain then (C∗1 ∪ {x}, C∗2) is a partition of P into two chains. Hence,

h1(P \ {x}) = |C∗1 | < |C∗1 ∪ {x}| ≤ h1(P ).

Now suppose C∗2 ∪ {x} is a chain. We can assume w.l.o.g. that |C∗1 | > |C∗2 |, otherwise we are in
the conditions of the first case. Then (C∗1 , C

∗
2 ∪ {x}) is a partition of P into two chains and we get

h1(P \ {x}) = |C∗1 | ≤ h1(P ).

Definition 6. Let P be a finite poset. We define the class of equivalence of P as:

[P ] = {Q : |P | = |Q|, i(P ) = i(Q) and e(P ) = e(Q)}.

In particular, P , P ∂ ∈ [P ]. Obviously, if Q ∈ [P ] and Q ∈ A, it follows that Q′ ∈ A,∀Q′ ∈ [P ].

Lemma 5. Let P be a finite poset. Suppose there exists Q ∈ [P ] satisfying that there are x, y ∈
MIN (Q) s.t. Q \ {x} ∈ A and e(Q \ {x, y}) ≥ 2. Then, P ∈ A.

Proof. Let P be a poset and consider Q, x, y satisfying the previous conditions. As Q \ {x} ∈ A,
there exists an injective map f : I(Q \ {x})→ L(Q \ {x}). Let us consider F : I(Q)→ L(Q) given
by

F (I) :=


(x, f(I)) if x 6∈ I
(x, f(I \ {x})) if x ∈ I, x 6∈ MAX (I)
(I \ {x}, x, f(I \ {x}) \ (I \ {x})) if x ∈ I, x ∈MAX (I), I 6= {x}
(y, x, f̂({y}) \ {y}) if I = {x}

where in the third case the elements of I \ {x} are ordered in a compatible way. In the fourth case,
we define f̂({y}) as a linear extension of Q\{x} such that f({y})\{y} 6= f̂({y})\{y}. Remark that
this is possible because e(Q \ {x, y}) ≥ 2.

Let us first show that F is well-defined. As f(I) ∈ L(Q\{x}), it suffices to see that the inclusion
of x does not violate the order. For this, as x, y ∈ MIN (Q), cases 1, 2 and 4 are straightforward.
For the third case, note that x ∈MAX (I), so that for z ∈ I, z 6= x, it cannot happen z � x. Besides,
as x ∈MIN (Q), for z 6∈ I, it cannot happen x � z.

Let us now see that F is injective. Let us first show that F is injective within each case. For the
first two cases, this holds because f is injective. The third case holds because it starts with I \ {x}.

Finally, let us see that F is injective between the different cases. For this, we have to compare the
two first cases and the two last. For the two first cases, equality could arise if there exists I ∈ I(Q)
such that x ∈ I, and I \ {x} ∈ I(Q). But this would imply that x ∈ MAX (I) and in the second
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case we have excluded this possibility. For the third and fourth cases, we could have equality for
I = {x, y} and I ′ = {x}. But as f({y}) \ {y} 6= f̂({y}) \ {y}, injectivity holds.

Thus, Q ∈ A and hence P ∈ A.

5.2 Characterizing non-connected abundant posets

Theorem 7 (Characterization of non-connected abundant posets). Let P be a non-connected
finite poset. Then P is abundant if and only if P is not in the family CD1, where:

CD1 := {1 ]m, 1 ] (m1 ⊕ 2̄⊕m2), 2 ] 2, 2 ] 3}.

Proof. Let P = P1 ] P2 and n := |P1|, m := |P2|, with n ≤ m. Applying Lemma 2 i) and Lemma 1
yields

i(P ) = i(P1)·i(P2) ≤ (n·e(P1)+1)·(m·e(P2)+1) ≤ (n+1)·(m+1)·e(P1)·e(P2) =
(n+ 1) · (m+ 1)(

n+m
m

) e(P ).

Therefore, the poset P is abundant if

(n+ 1) · (m+ 1) ≤
(
n+m

n

)
,

which is true for all combinations (n,m) with the exception of (1,m), (2, 2), and (2, 3). For the latter
two alternatives, P must be one of the posets (see [17]):

2] 2, 2] 2, 4, 2] 3, 2] (1⊕ 2),2] (2⊕ 1), 2] 3, 2] (1] 2), 5,2] 3, 2] (1⊕ 2), 2] (2⊕ 1).

P i(P ) e(P ) P i(P ) e(P )

2 ] 2 9 6 2 ] 2 12 12

4 16 24 2 ] 3 12 10

2 ] (1⊕ 2) 15 20 2 ] (2⊕ 1) 15 20

2 ] 3 24 60 2 ] (1 ] 2) 18 30

5 32 120 2 ] 3 16 20

2 ] (1⊕ 2) 20 40 2 ] (2⊕ 1) 20 40

Table 1: Number of ideals and linear extensions for some non-connected posets.

As we can see in Table 1, all of these posets are abundant except 2 ] 2 and 2 ] 3.
Now let n = 1. According to Lemma 1, P = 1 ] P2 is abundant if and only if

i(P ) = 2 · i(P2) ≤ (1 +m) · e(P2) = e(P ),

which holds according to Lemma 2 ii) for e(P2) ≥ 3. Finally, for the case e(P2) ≤ 2, poset P2 is the
chain m or isomorphic to m1 ⊕ 2⊕m2 which lead to deficient posets. Indeed,

i(1 ]m) = 2(m+ 1) ≥ (m+ 1) = e(1 ]m)
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and

i(1 ] (m1 ⊕ 2⊕m2)) = 2(m1 +m2 + 4) ≥ 2(m1 +m2 + 2) = e(1 ] (m1 ⊕ 2⊕m2)).

So the result holds.

5.3 Chain-irreducible connected abundant posets with w(P ) ≥ 3

We first treat the reducible case.

Theorem 8. Let P be a finite, chain-irreducible, connected and reducible poset with w(P ) ≥ 3. Then
P ∈ A.

Proof. Let P be a poset in these conditions. Then, as P is reducible, we can write

P = P1 ⊕ P2 ⊕ . . .⊕ Pk,

where each Pi is irreducible, |Pi| > 1, k > 1, and ∃ i∗ such that w(Pi∗) ≥ 3.
If every Pi is equal to 2̄ or 3̄, then we can reorder the ordinal summands to get Q ∈ [P ] given by

Q := 2̄⊕ k1. . .⊕ 2̄⊕ 3̄⊕ k2. . .⊕ 3̄, k1 ≥ 0, k2 ≥ 1, k1 + k2 ≥ 2.

Then, by Lemma 1

i(Q) = 4k1 + 8k2 − (k1 + k2 − 1) = 3k1 + 7k2 + 1 ≤ 2k16k2 = e(Q),∀k1, k2,

and Q ∈ A.
In other case, let us make the proof by induction in |P |. There are no chain-irreducible, connected

and reducible posets with w(P ) ≥ 3 and less than 5 elements. So let us prove the basis step for
|P | = 5. The only posets with 5 elements in these conditions are (see [17]) P = 2̄⊕ 3̄ and P ∂ = 3̄⊕ 2̄
and hence P, P ∂ ∈ A.

Let us now assume |P | > 5 and suppose that the result holds until |P | − 1. We have to consider
several cases.

Case 1: If Pi∗ = 3̄, by hypothesis there is some j∗ 6= i∗ such that Pj∗ � 2̄. We can use Lemma 3
i) to obtain some minimal element x of Pj∗ with Pj∗ \{x} irreducible. Hence, x is also minimal
element of Q := Pj∗

⊕
i 6=j∗ Pi ∈ [P ]. Note that Q\{x} = (Pj∗\{x})

⊕
i 6=j∗ Pi is chain-irreducible

because Pj∗ � 2̄. Now, w(Q) ≥ w(Pi∗) = 3. Applying induction, we conclude that Q\{x} ∈ A.
Finally, we can choose any minimal element y 6= x of Q and we get e(Q \ {x, y}) ≥ 2. Hence,
by Lemma 5 the result holds.

Case 2: If Pi∗ = H ] 1 6= 3̄. Hence, as w(Pi∗) ≥ 3, it follows w(H) ≥ 2. Consequently,
there is some antichain {h1, h2} ∈ H such that {h1, h2,1} is an antichain in Pi∗ . Moreover,
since Pi∗ 6= 3̄, then H \ {h1, h2} 6= ∅ and we can take a minimal (or maximal) element x ∈ H
different from h1 and h2. Obviously, Pi∗ \{x} is irreducible because it is not connected. Besides,
{h1, h2,1} ⊆ Pi∗ \ {x}, so that w(Pi∗ \ {x}) ≥ 3.

Now, consider

Q := Pi∗

⊕
i 6=i∗

Pi ∈ [P ], (or Q := P ∂
i∗

⊕
i 6=i∗

Pi ∈ [P ], if x ∈MAX (P )).
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Hence, Q \ {x} is reducible, chain-irreducible and w(Q \ {x}) ≥ w(Pi∗ \ {x}) ≥ 3, so using the
induction hypothesis Q \ {x} ∈ A. Finally we can choose any minimal element y 6= x of Q and
we get e(Q \ {x, y}) ≥ 2. Hence, by Lemma 5, Q ∈ A.

Case 3: Finally, assume Pi∗ 6= 3̄ and Pi∗ 6= H ] 1. Let us see that we can find Q ∈ [P ] and
x ∈ MIN (Q) such that Q \ {x} ∈ A. Let A be a 3-element antichain of Pi∗ . If there is no
minimal element in A we can apply Lemma 3 i) to obtain some x ∈MIN (Pi∗) with Pi∗ \ {x}
irreducible. Besides, w(Pi∗ \ {x}) ≥ w(A) = 3. Hence, considering Q = Pi∗

⊕
i 6=i∗ Pi ∈ [P ], we

conclude by induction that Q \ {x} ∈ A.

If there is some minimal element in A but there is no maximal element, we can apply Lemma
3 i) to the dual P ∂

i∗ and we obtain the same conclusions for Q = P ∂
i∗
⊕

i 6=i∗ Pi ∈ [P ].

Finally, if A has some minimal element and some maximal element, we can apply Lemma 3
ii) to obtain a minimal element x 6∈ A such that Pi∗ \ {x} is irreducible. Hence, considering
Q = Pi∗

⊕
i 6=i∗ Pi ∈ [P ], it follows that Q\{x} is reducible, chain-irreducible and w(Q\{x}) ≥ 3.

We conclude by induction that Q \ {x} ∈ A.

Now, we can choose any minimal element y 6= x of Q and we get e(Q \ {x, y}) ≥ 2. Hence, by
Lemma 5 the result holds.

Let us now generalize the last result to every chain-irreducible, connected poset P with w(P ) ≥ 3.
In order to achieve this, let us consider a previous lemma.

Lemma 6. Let P be a chain-irreducible connected poset with w(P ) ≥ 3 and x ∈MIN (P ).

i) If |P | ≥ 6 and P \ {x} is disconnected, then at least one of P or P \ {x} is abundant.

ii) If P \ {x} ∼= N3, then P ∈ A.

Proof. i) If P \ {x} ∈ A we are finished, so let us suppose that P \ {x} /∈ A and we are going
to show that P ∈ A. Since w(P ) ≥ 3, this implies that 2 ≤ w(P \ {x}) ≤ 3. Thus we need to
distinguish two cases.

Case 1: If w(P \ {x}) = 2, as P \ {x} ∈ D, P \ {x} is disconnected and |P \ {x}| ≥ 5, we
know by Theorem 7 that P \ {x} ∼= 1 ]m, m ≥ 4 or P \ {x} ∼= 2 ] 3.

If P \ {x} ∼= 1 ]m the Hasse diagram of P is given in Figure 8 (left) where is clear that
w(P ) = 2, which is a contradiction.

If P \ {x} ∼= 2 ] 3 the only choices for P such that w(P ) ≥ 3 are depicted in Figure 8 (center
and right). These two posets are abundant since their corresponding pairs (i(P ), e(P )) are
(16, 26) and (18, 35), respectively.

Case 2: If w(P \ {x}) = 3, as P \ {x} ∈ D, P \ {x} is disconnected and |P \ {x}| ≥ 5, we
know by Theorem 7 that P \ {x} ∼= 1 ] (m1 ⊕ 2̄⊕m2).

Here we can also distinguish four possible cases for P (see [17]). These four cases (A, B, C and
D) are depicted in Figure 9. Let us denote by Pk1,k2,k3 the posets belonging to families A and
B, and by Pk1,k2 the posets belonging to families C and D.

In Case A, we have Pk1,k2,k3 , k1 ≥ 1, (otherwise P = {x}⊕P1,), k2, k3 ≥ 0. For counting ideals
we use i(P ) = a(P ) and hence we count the number of antichains of length 0, 1, 2 and 3.
Hence,
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Figure 8: Hasse diagram of P when P \ {x} ∼= 1 ]m (left) and choices for P when P \ {x} ∼= 2 ] 3
(center and right).
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Figure 9: Different choices for P if P \ x ∼= 1 ] (m1 ⊕ 2̄⊕m2).

i(Pk1,k2,k3) = 1 + (5 + k1 + k2 + k3) + (4 + 2k1 + k2 + k3) + 1 = 3k1 + 2k2 + 2k3 + 11.

For counting e(Pk1,k2,k3) we can apply the fact that for every poset P,

e(P ) =
∑

x∈MIN (P )

e(P \ {x}).

Next, there are 2(k1 + k2 + k3 + 4) linear extensions in Pk1,k2,k3 \ {x}. Therefore,

e(Pk1,k2,k3) = 2(k1 + k2 + k3 + 4) + e(Pk1−1,k2,k3).

If k1 = 1, then e(P1,k2,k3) = 2(1 + k2 + k3 + 4) + 2(0 + k2 + k3 + 4). Thus,

e(Pk1,k2,k3) = 2(k1+1)(k2+k3+4)+2

k1∑
t=0

t = 2(k1+1)(k2+k3+4)+k1(k1+1) = (k1+1)(k1+2k2+2k3+8),
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and Pk1,k2,k3 ∈ A,∀k1, k2, k3.
In Case B, we have Pk1,k2,k3 , k1, k2, k3 ≥ 0. Proceeding as before,

i(Pk1,k2,k3) = 3k1 + 3k2 + 2k3 + 14.

And for e(P ), it can be seen proceeding as in Case A

e(Pk1,k2,k3) = 2(k1 + k2 + 3) + e(Pk1,k2,k3−1).

If k3 = 0, then e(Pk1,k2,0) = 2(k1 + k2 + 3) + 2
(
k1+k2+4

2

)
. Thus,

e(Pk1,k2,k3) = 2(k1 + k2 + 3)(k3 + 1) + (k1 + k2 + 4)(k1 + k2 + 3),

and Pk1,k2,k3 ∈ A,∀k1, k2, k3.
In Case C, we have Pk1,k2 , k1 + k2 ≥ 1. Counting ideals we get

i(Pk1,k2) = 3k1 + 2k2 + 10.

Observe that

e(Pk1,k2) = 2(k1 + k2 + 3) + e(Pk1−1,k2).

If k1 = 0 we obtain e(P0,k2) = 2(k2 + 3) + (k2 + 2). Thus,

e(Pk1,k2) =

k1∑
t=0

2(t+ k2 + 3) + (k2 + 2) = 2(k1 + 1)(k2 + 3) + (k2 + 2) + k1(k1 + 1),

and Pk1,k2 ∈ A except for k1 = 0 and k2 = 1. However in this case |P0,1| = 5 in contradiction
with the hypothesis |Pk1,k2 | ≥ 6.

In Case D, we have Pk1,k2 , k1 ≥ 1, k2 ≥ 0. Counting ideals we get

i(Pk1,k2) = 3k1 + 2k2 + 9.

Observe that

e(Pk1,k2) = 2(k1 + k2 + 3) + e(Pk1−1,k2).

If k1 = 0 we obtain e(P0,k2) = 2(k2 + 3). Thus,

e(Pk1,k2) = 2(k1 + 1)(k2 + 3) + k1(k1 + 1),

so Pk1,k2 ∈ A, ∀k1, k2.
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Figure 10: Choices for P such that P \ {x} ∼= N3 and pairs (i(P ), e(P )).

ii) As x ∈ MIN (P ) and P \ {x} ∼= N3, we can consider all the possibilities for P being chain-
irreducible, connected and with w(P ) ≥ 3. These alternatives depend on the number of
elements of N3 covering x. In Figure 10 we can see the different possible posets P (see [17])
and their corresponding pairs (i(P ), e(P )) of ideals and linear extensions. As it can be checked,
all of them are abundant, so the result holds.

Theorem 9 (Characterization of chain-irreducible connected abundant posets with w(P ) ≥ 3).
Let P be a chain-irreducible connected poset with w(P ) ≥ 3. Then P ∈ A if and only if P � N3 (as
defined in Figure 4).

Proof. Start noting that N3 ∈ D since i(N3) = 12 and e(N3) = 11.
Let us prove the other implication using induction on |P |.
There are no posets allowed by the conditions of the theorem with less than 5 elements and there

are just 4 posets (modulo isomorphism and duality) with 5 elements (see [17]). These posets and
their corresponding pairs (i(P ), e(P )) are shown in Figure 11. As we can see these four posets are
abundant.

•• •

••
(11, 12)

•• •

••
(13, 16)

•• •

••
(14, 18)

•• •

••
(12, 14)

Figure 11: Chain-irreducible connected posets with w(P ) ≥ 3 and 5 elements.

Let us now prove the induction step. Let P be a poset with |P | > 5. By Theorem 8, if P is
reducible then P ∈ A so we can suppose that P is irreducible.
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In the same way, by Lemma 6 i), if there is some x ∈ MIN (P ) such that P \ {x} is non-
connected then P ∈ A or P \ {x} ∈ A. If P ∈ A we are done. If P \ {x} ∈ A, we can take some
y ∈MIN (P ), y 6= x such that e(P \ {x, y}) ≥ 2. Otherwise, P \ {x, y} ∼= m and as P is connected,
this implies that either P ∼= (k1 ] 1)⊕k2 with k2 ≥ 1 or P ∼= (((k1 ] 1)⊕k2)] 1)⊕k3 with k3 ≥ 1,
a contradiction since P is chain-irreducible. Hence, P ∈ A by Lemma 5.

Next, by Lemma 6 ii) if there is some minimal element x such that P \ {x} = N3, then P ∈ A.
Therefore, we can suppose that P is irreducible and for every minimal element x (or maximal

element by duality) P \{x} is connected and different from N3. Since w(P ) ≥ 3, let A be a 3-element
antichain of P . If there is no minimal element in A we can apply Lemma 3 i) to obtain some minimal
element x of P with P \ {x} irreducible and w(P \ {x}) ≥ w(A) = 3, so P \ {x} ∈ A by induction.
If there is some minimal element in A but there is no maximal element we can apply Lemma 3 i) to
the dual P ∂ (Q = P ∂ ∈ [P ]) and we obtain the same conclusions. Finally, if A has some minimal
element and some maximal element then we can apply Lemma 3 ii) to obtain a minimal element
x /∈ A such that P \ {x} is irreducible and P \ {x} ∈ A by induction.

Finally, we can choose any minimal element y 6= x of P and we get e(P \ {x, y}) ≥ 2. Indeed,
A\{y} has a 2-element antichain contained in P \{x, y}. Therefore, by Lemma 5 the result holds.

5.4 Chain-irreducible connected abundant posets with w(P ) = 2

It remains to study the case w(P ) ≤ 2. Observe that the case w(P ) = 1, i.e. chains, is trivial since
every chain is deficient (and obviously is not chain-irreducible). So let us focus on the case w(P ) = 2.
We are going to divide the study of chain-irreducible connected abundant posets with w(P ) = 2 into
two cases: h2(P ) ≤ 2 and h2(P ) ≥ 3 (see Def. 2). Let us start with the case h2(P ) ≤ 2. Observe
that the case h2(P ) = 1 implies (modulo duality) P ∼= (k1 ] 1) ⊕ k2, k2 ≥ 1, which is always
chain-reducible. Let us study the case h2(P ) = 2.

Theorem 10 (Characterization of chain-irreducible connected abundant posets with
w(P ) = 2 and h2(P ) = 2). Let P be a chain-irreducible connected poset with w(P ) = 2 and
h2(P ) = 2. Then, P is abundant if and only if P and P ∂ are not in the family

CD2 = {CDm
1 , CD

m
2 , CD3, CD4, CD5, CD6, CD7, CD8},

given in Figure 5.

Proof. As w(P ) = 2 and h2(P ) = 2, P can be decomposed into one chain of length 2 and one longer
chain. Since P should be connected there are just 2 possible choices for P or P ∂ given by Cases A
and B in Figure 12. Let us denote by Pm1,m2 and Pm1,m2,m3 to posets belonging to Case A and B,
respectively.

In Case A, m2 ≥ 1 because if m2 = 0, then P = P1 ⊕ 1, a contradiction. Moreover, counting
antichains

a(Pm1,m2) = i(Pm1,m2) = 2m1 + 3m2 + 5.

For counting e(Pm1,m2) we apply that for every poset P, e(P ) =
∑

x∈MIN (P ) e(P \{x}). Therefore,

e(Pm1,m2) = (m2 + 1) + e(Pm1−1,m2).

Next, e(P0,m2) = (m2 + 1) +
(
m2+2

2

)
and thus,
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Figure 12: Possible chain-irreducible connected posets with w(P ) = 2 and h2(P ) = 2.

e(Pm1,m2) = (m1 + 1)(m2 + 1) +

(
m2 + 2

2

)
=

1

2
(m2 + 1)(2m1 +m2 + 4).

If m2 = 1, i(Pm1,1) > e(Pm1,1) so the poset is deficient and we get the dual of CDm
1 . If m2 = 2,

then Pm1,2 is abundant for m1 > 1 and deficient for m1 ≤ 1. The values m1 = 0 and m1 = 1 give us
posets CD∂

3 and CD∂
4 . It is straightforward to check that for m2 ≥ 3, Pm1,m2 ∈ A.

In Case B, m1,m3 ≥ 0 and m2 ≥ 2. Proceeding as before,

i(Pm1,m2,m3) = 2m1 + 3m2 + 2m3 + 1.

For e(Pm1,m2,m3), it can be seen as in Case A that

e(Pm1,m2,m3) = (m2 +m3) + e(Pm1−1,m2,m3).

Moreover, e(P0,m2,m3) = (m2 +m3) +
(
m2

2

)
+ (m2 − 1)(m3 + 1). Therefore,

e(Pm1,m2,m3) = (m1 + 1)(m2 +m3) +

(
m2

2

)
+ (m2 − 1)(m3 + 1).

If m2 = 2, we get a deficient poset if and only if m1m3 < 3. So we get a deficient poset in the next
cases: when m1 = 0 (or m3 = 0) we get poset CDm

2 (or its dual) and when m1 = 1 and 1 ≤ m3 ≤ 2
(or m3 = 1 and 1 ≤ m1 ≤ 2) we get CD5 and CD6 (or CD∂

6 ). If m2 = 3, we get a deficient poset if
and only if (m1 + 1)(m3 + 1) < 3. So we get a deficient poset when m1 = 0 and m3 ≤ 1 (or m3 = 0
and m1 ≤ 1) and we get posets CD7 and CD8 (or their duals). Finally, if m2 ≥ 4 we always get an
abundant poset, so the result holds.

Lemma 7. Let P be a chain-irreducible connected poset with w(P ) = 2, h2(P ) ≥ 3 and let x ∈
MIN (P ).

i) If P \ {x} is disconnected, then at least one of P or P \ {x} is abundant.

ii) If P /∈ CD3 and P \ {x} ∈ CD3, then P ∈ A.
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Proof. i) If P \{x} ∈ A then we are done, so let us suppose that P \{x} 6∈ A. Hence, by Theorem
7, P \ {x} ∈ CD1. On the other hand, as w(P \ {x}) ≤ 2, it follows that the only possible cases
are

P \ {x} ∈ {1 ]m,2 ] 2,2 ] 3}.

Next, since h2(P ) ≥ 3, this implies that |P | ≥ 6 and |P \ {x}| ≥ 5. Therefore, P \ {x} � 2] 2.

If P \ {x} ∼= 1]m, then P should be isomorphic to the poset displayed in Case 1 of Figure 13
and thus h2(P ) = 2, a contradiction.

•

x

•
...

•

•

•

...

•

Case 1

•

•

x

•

•

•

Case 2

•

•

x

•

•

•

Case 3

•

•

•

•

x

•

Case 4

Figure 13: Different cases for P when P \ {x} ∈ {1 ]m,2 ] 3}.

Finally, assume P \ {x} ∼= 2 ] 3. Then, P should be isomorphic to one of the posets displayed
in Case 2, 3 and 4 of Figure 13. It is easy to check that Cases 2 and 3 are abundant with pairs
(i(P ), e(P )) given by (14, 16), (15, 19), respectively. For Case 4, h2(P ) = 2, a contradiction.

ii) Let us consider each case. If P \ {x} = CD9 = 2̄⊕ 2̄⊕ 2̄, then P ∼= (2 ] 1)⊕ 2̄⊕ 2̄ which is
abundant (i(P ), e(P )) = (12, 12). If P \ {x} = CD10 = 2̄ ⊕ N, then P ∼= (2 ] 1) ⊕ N which
is also abundant (i(P ), e(P )) = (13, 15). If P \ {x} is CD∂

10, CD11, CD12 or CD∂
12 then the

different cases with P irreducible and w(P ) = 2 can be seen in first, second, third and fourth
row of Figure 14, respectively. The pairs (i(P ), e(P )) of each case are computed in Figure 14.
We can observe that in all the possibilities, P ∈ A.

Theorem 11 (Characterization of chain-irreducible connected abundant posets with
w(P ) = 2 and h2(P ) ≥ 3). Let P be a chain-irreducible connected poset with w(P ) = 2 and
h2(P ) ≥ 3. Then, P ∈ A if and only if P /∈ CD3.

Proof. We have already seen that CD3 ⊆ D. Hence, let us see that any other P in the conditions of
the theorem is in A. We will prove this applying induction on |P |.

For |P | = 6, there are just 8 posets (up to isomorphism) s.t. P is chain-irreducible, connected,
P /∈ CD3, w(P ) = 2 and h2(P ) ≥ 3 (see [17]). These posets and their corresponding pairs (i(P ), e(P ))
are shown in Figure 15. As it can be seen, these 8 posets are abundant.

Now let P be a chain-irreducible, connected poset s.t. w(P ) = 2, h2(P ) ≥ 3, P 6∈ CD3, |P | > 6,
and assume the result holds until |P | − 1.
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Figure 14: Different cases for P when P \ {x} ∈ CD3.
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Figure 15: Posets in induction base with |P | = 6 and their corresponding pairs (i(P ), e(P )).

Let us first consider the case in which there exists x ∈ MIN (P ) s.t. P \ {x} is not connected.
By Lemma 7 i), this implies that P ∈ A or P \ {x} ∈ A. If P ∈ A, then we are done.

Otherwise, P \{x} ∈ A. Note that as P is chain-irreducible, there exists y ∈MIN (P ) s.t. y 6= x
and e(P \ {x, y}) ≥ 2. Otherwise, P \ {x, y} would be a chain and this would imply that either
P ∼= (k1 ] 1)⊕ k2 with k2 ≥ 1 or P ∼= (((k1 ] 1)⊕ k2) ] 1)⊕ k3 with k3 ≥ 1, a contradiction since
P is chain-irreducible. Hence, we can apply Lemma 5 and conclude that P ∈ A.

Thus, we can assume that ∀x ∈MIN (P ), P \ {x} is connected. If P \ {x} ∈ CD3, we can apply
Lemma 7 ii) to conclude that P ∈ A. Hence, we can also assume that P \ {x} 6∈ CD3.

Note that as P is chain-irreducible and w(P ) = 2, this implies that w(P \ {x}) = 2. Otherwise,
if w(P \ {x}) = 1, this would imply that P \ {x} is a chain and thus

P = (k1 ] x)⊕ k2, k2 ≥ 1,

a contradiction with the fact that P is chain-irreducible.

In addition, we can assume that P = Pk⊕
k︷ ︸︸ ︷

2̄⊕ · · · ⊕ 2̄ where Pk � 2̄⊕P ′k. If P = 2̄⊕P1 we can take
Q = P1⊕ 2̄ ∈ [P ]. Now, if P1

∼= 2̄⊕P2 we can take Q = P2⊕ 2̄⊕ 2̄ ∈ [P ]. If we repeat this reasoning

we have two choices; P =

k︷ ︸︸ ︷
2̄⊕ · · · ⊕ 2̄ which is abundant since k ≥ 4 or Q = Pk ⊕

k︷ ︸︸ ︷
2̄⊕ · · · ⊕ 2̄ ∈ [P ]

where Pk � 2̄⊕ P ′k.
With the last considerations in mind, we have to consider now two different cases:
Case 1 : h2(P ) ≥ 4.

In this case, let us start by showing that there exists x ∈MIN (P ) (or x ∈MIN (Q) where Q ∈ [P ])
such that P \ {x} is chain-irreducible and h1(P \ {x}) ≤ h1(P ).

First, note that without loss of generality, the Hasse diagram of P is given as in Figure 16.
Consider a partition (C∗1 , C

∗
2) of P into two chains s.t. |C∗1 | = h1(P ), |C∗2 | = h2(P ). As P is

connected, there exist a ∈ C∗1 , b ∈ C∗2 s.t. either al b or bl a. Let us consider (a, b) minimal in the
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Figure 16: Hasse diagram for P (or P ∂) in Cases 1 and 2 of Theorem 11.

sense that there does not exist a different pair a′ ∈ C∗1 , b′ ∈ C∗2 satisfying a′ l b′ or b′ l a′ and s.t.
a′ � a, b′ � b.

Given such (a, b), this allows the decomposition of P into several parts (namely A,B,C and D)
as shown in Figure 16. In this figure, let us denote by x0 := min{a, b}. If x0 ∈ C∗i , let us denote by
x−0 the element in C∗i covering x0. Element x−0 always exists. Otherwise, B = ∅, A 6= ∅ (a ∈ A or
b ∈ A) and hence P = P1⊕A, and P would be chain-reducible. Finally, note that |C| ≥ 1 (otherwise
|C| = 0 and P = D⊕P1, so that P would be chain-reducible). Hence, we denote by x+0 the maximum
of chain C.

By construction, an element in D is not related to an element in C. Note however that more
relations between some other different parts of P are possible. This is depicted in Figure 16 as
dashed lines.

Now consider a minimal element x in P. Note that w(P \ {x}) = 2. Obviously, x ∈ C, x ∈ D or
x = x0 (if |D| = 0).

Suppose |C| > 1 and x ∈ C. Consider a partition (C∗
′

1 , C
∗′
2 ) of P \ {x} s.t. |C∗′1 | = h1(P \ {x}). If

x+0 ∈ C∗
′

i , then C∗
′

i ∪ {x} is a chain in P . Hence, by Lemma 4, h1(P \ {x}) ≤ h1(P ). It rests to see
that P \ {x} is chain-irreducible but this holds because the elements of C are not related to x0.

Suppose D 6= ∅ and x ∈ D. Consider a partition (C∗
′

1 , C
∗′
2 ) of P \ {x} s.t. |C∗′1 | = h1(P \ {x}).

If x0 ∈ C∗
′

i , then C∗
′

i ∪ {x} is a chain in P . Hence, again by Lemma 4, h1(P \ {x}) ≤ h1(P ). It
remains to be checked that P \ {x} is chain-irreducible but this holds because the elements of D are
not related to x+0 .

Finally, let us suppose C = {x+0 } and D = ∅. Take x = x0. Consider a partition (C∗
′

1 , C
∗′
2 ) of

P \ {x} s.t. |C∗′1 | = h1(P \ {x}) and suppose x−0 ∈ C∗
′

i . If x+0 � x−0 then P = 2̄ ⊕ P1 with P1 some
poset, a contradiction. Thus x+0 � x−0 and C∗

′
i ∪ {x} is a chain in P. Hence, again by Lemma 4

h1(P \ {x}) ≤ h1(P ). Moreover, as x−0 ‖ x+0 , then P \ {x} is chain-irreducible.
Therefore we know that there exist x ∈ MIN (P ) (or x ∈ MIN (Q) where Q ∈ [P ]) such that

P \ {x} is chain-irreducible and h1(P \ {x}) ≤ h1(P ). Observe that

h2(P \ {x}) = |P | − 1− h1(P \ {x}) ≥ |P | − 1− h1(P ) = h2(P )− 1 ≥ 3.

Therefore, we can use induction to get P \ {x} ∈ A.
Finally, we have already seen that there exists y ∈MIN (P ), y 6= x s.t. e(P \{x, y}) ≥ 2. Hence,

we can apply Lemma 5 and conclude that P ∈ A.
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Case 2 : h2(P ) = 3.
As in the previous case, the possibilities for P are given in Figure 16. Moreover, we can decompose
P into two chains (C∗1 , C

∗
2) s.t. |C∗1 | = h1(P ), |C∗2 | = h2(P ) = 3 and we assume (taking duals

Q = P ∂ ∈ [P ] and relabeling parts if neccesary) that C∗2 is the chain (D, x0, B). Let us take
x ∈MIN (P ). Then, x ∈ C, x ∈ D or x = x0 (if D = ∅).

Suppose |C| > 1 and let us choose x ∈ C. Then, as in the case for h2(P ) > 3, consider a partition
(C∗

′
1 , C

∗′
2 ) of P \ {x} s.t. |C∗′1 | = h1(P \ {x}). Now, x+0 ∈ C∗

′
1 , then C∗

′
1 ∪ {x} is a chain in P .

Hence, by Lemma 4, h1(P \ {x}) ≤ h1(P ). Moreover, since the chain containing x is C∗
′

1 , we obtain
h1(P \ {x}) + 1 ≤ h1(P ) (see proof of Lemma 4). Note that the left chain (C \ {x}, A) in P \ {x} has
length |C|+ |A| ≥ 4 (as |P | > 6) and is longer than or equal to the right one (with just 3 elements).
Thus h1(P \ {x}) ≥ h1(P )− 1. Therefore, h1(P \ {x}) = h1(P )− 1 and h2(P \ {x}) = h2(P ) = 3.

Besides, P \ {x} is chain-irreducible because the chain C is not related to x0.
Therefore, P \ {x} ∈ A by the induction hypothesis and we have already seen that there exists

y ∈MIN (P ), y 6= x s.t. e(P \{x, y}) ≥ 2. Hence, we can apply Lemma 5 and conclude that P ∈ A.
Consider now the case |C| = 1. Since P is chain-irreducible and h2(P ) = 3 the length of D is

bounded, |D| ≤ 1. Suppose |D| = 1. In this case, there are just two possibilities for P that are
depicted in the first row of Figure 17. In these cases m ≥ 2 because |C∗1 | ≥ 4. Moreover, m ≥ 3
because for m = 2 these posets are CD12 and CD∂

6 respectively. Now, for the first possibility
we get i(P ) = 2m + 10 ≤ 3m + 7 = e(P ) so it is abundant. For the second possibility we get
i(P ) = 2m+ 9 ≤ 3m+ 6 = e(P ) so it is again abundant.

Now consider the last case where |C| = 1 and |D| = 0. Here we can take Q = P ∂ ∈ [P ] to choose
x ∈MAX (C∗1). It holds that h2(P \{x}) = 3. By induction, if P \{x} is chain-irreducible, P \{x} ∈ A
and there exists y 6= x s.t. e(P \ {x, y}) ≥ 2 and we can use Lemma 5 to get P ∈ A. So we only have
to consider the cases where P \ {x} is not chain-irreducible for x being the maximum of the longest
chain in P . As h1(P ) ≥ 4, there are only three cases (see Figure 17 second row). These three families
of posets are abundant. In the first case, i(P ) = 2m + 14 ≤ 4m + 16 = e(P ). For the second one,
i(P ) = 2m+ 13 ≤ 4m+ 14 = e(P ) and finally for the third one i(P ) = 2m+ 12 ≤ 4m+ 12 = e(P ).
So the result holds.
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