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Abstract: In this paper, we introduce the restricted minimum density power divergence Gaussian
estimator (MDPDGE) and study its main asymptotic properties. In addition, we examine it robustness
through its influence function analysis. Restricted estimators are required in many practical situations,
such as testing composite null hypotheses, and we provide in this case constrained estimators
to inherent restrictions of the underlying distribution. Furthermore, we derive robust Rao-type
test statistics based on the MDPDGE for testing a simple null hypothesis, and we deduce explicit
expressions for some main important distributions. Finally, we empirically evaluate the efficiency
and robustness of the method through a simulation study.
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1. Introduction

Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with probability density function fθ(y), θ ∈ Θ ⊂ Rd, where
θ is the vector of unknown parameters, Θ is the corresponding parameter space and d is
the dimension of θ, d ≥ 1. We denote,

Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ). (1)

The log-likelihood function of the assumed model is given by

l(θ) =
n

∑
i=1

log fθ(yi)

for y1, ..., yn observations of the m-dimensional random vectors Y1, ..., Yn. Then, the maxi-
mum likelihood estimator (MLE) is computed as

θ̂MLE = maxθ∈Θ l(θ). (2)

In many real-life situations, the underlying density function, fθ(·), is unknown or its
computation is quite difficult but contrariwise, the mean vector and variance–covariance
matrices of the underlying distribution of the data as a function of θ, namely µ(θ) and Σ(θ),
are known.

In this case, Zhang [1] proposed a general procedure based on the Gaussian dis-
tribution for estimating the model parameter vector θ. In [1], it is assumed that the m-
dimensional random vector Y comes from a multidimensional normal distribution with
mean vector µ(θ) and variance-covariance matrix Σ(θ). From a statistical point of view,
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this procedure can be justified on the basis of the maximum-entropy principle (see [2]),
as the multidimensional normal distribution has maximum uncertainty in terms of Shan-
non entropy and is as well consistent with the given information, i.e., vector mean and
variance–covariance matrix.

Then, an estimator of the model parameter θ based on the Gaussian distribution
can be obtained by maximizing the log-likelihood function as defined in (2) but using as
fθ(·) the probability density function of a normal distribution with known mean vector
µ(θ) and variance–covariance matrix Σ(θ), corresponding to the true mean vector and
variance–covariance matrix of the underlying distribution. That is, the Gaussian-based
likelihood function of θ is given by

lG(θ) = −
nm
2

log 2π − n
2

log|Σ(θ)| − 1
2

n

∑
i=1

(yi − µ(θ))TΣ(θ)−1(yi − µ(θ)) (3)

for any y1, ..., yn independent observations of the population Y , and the Gaussian MLE of θ
is defined by

θ̂G = arg max
θ∈Θ

lG(θ).

The Gaussian estimator is an MLE and thus inherits all the good properties of the
likelihood estimators. Consequently, it works well in terms of the asymptotic efficiency,
but it has important robustness problems. That is, in the absence of contamination in data,
the MLE consistently estimates the true value of the model parameter, but it may be quite
heavily affected by outlying observations in the data. For this reason, Castilla and Zografos
extended in [3] the concept of Gaussian estimator and defined a robust version of the
estimator based on the density power divergence (DPD) introduced in Basu et al. in [4].
The DPD robustly quantifies the statistical difference between two distributions, and it has
been widely used for developing robust inferential methods in many different statistical
models. Given a set of observations, the robust minimum DPD estimator (MDPDE) is
computed as the minimizer of the DPD between the assumed model distribution and
the empirical distribution of the data. The MDPDE enjoys good asymptotic properties
and produces robust estimators under general statistical models, as discussed later. The
minimum density power divergence Gaussian estimator (MDPDGE) of the parameter θ is
defined for τ ≥ 0 as

θ̂
τ
G = arg max

θ∈Θ⊂Rd
Hτ

n(θ), (4)

where

Hτ
n(θ) =

τ + 1

τ(2π)mτ/2|Σ(θ)|τ/2
1
n

[
n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− τ

(1 + τ)(m/2)+1

]
− 1

τ

=a|Σ(θ)|−
τ
2

1
n

[
n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]
− 1

τ
,

(5)

and
a =

τ + 1

τ(2π)mτ/2 and b =
τ

(1 + τ)(m/2)+1
. (6)

The MDPDGE family is indexed by a tuning parameter τ controlling the trade-off
between robustness and efficiency; the greater the value of τ, the more robust the resulting
estimator is, but the efficiency decreases. It has been shown in the literature that values
of the tuning parameter above 1 do not provide sufficiently efficient estimators, and so,
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the tuning parameter would be chosen in the [0, 1] interval. Furthermore, at τ = 0, the
MDPDGE reduces to the Gaussian estimator of [1],

θ̂G = arg max
θ∈Θ⊂Rd

H0
n(θ)

with

H0
n(θ) = lim

τ→0
Hτ

n(θ) = −
n
2

log|Σ(θ)| − 1
2

n

∑
i=1

(yi − µ(θ))TΣ(θ)−1(yi − µ(θ)). (7)

Note that the above objective function does not perfectly match with the likelihood
function of the model stated in (2), as it lacks the first term of the likelihood. However,
this term does not depend on the parameter θ, and thus, both loss functions will lead to
the same maximizer. Indeed, the loss in Equation (7) corresponds to the Kullback–Leiber
divergence between the assumed normal distribution and the empirical distribution of the
data, which justifies the MLE from the point of view of information theory (see [5–7]).

Furthermore, the MDPDGE is consistent and asymptotically normal, that is, given
Y1, ..., Yn independent and identically distributed vectors from the m-dimensional random
vector Y , the MDPDGE, θ̂

τ
G, defined in (4) satisfies

√
n
(

θ̂
τ
G − θ

) L−→
n−→∞

N (0d, Jτ(θ)
−1Kτ(θ)Jτ(θ)

−1), (8)

being
Jτ(θ) =

(
Jij
τ (θ)

)
i,j=1,...,d

and Kτ(θ) =
(

Kij
τ (θ)

)
i,j=1,...,d

.

and the elements Jij
τ (θ) and Kij

τ (θ) of the matrices Jτ(θ) and Kτ(θ) are given by

Jij
τ (θ) =

(
1

(2π)m/2|Σ(θ)|1/2

)τ
1

(1 + τ)(m/2)+2
(9)

×

(τ + 1)trace

Σ(θ)−1 ∂µ(θ)

∂θi

(
∂µ(θ)

∂θj

)T


+∆i
τ∆j

τ +
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)]

and

Kij
τ (θ) =

(
1

(2π)m/2|Σ(θ)|1/2

)2τ
1

(1 + 2τ)(m/2)+2

[
∆i

2τ∆j
2τ (10)

+(1 + 2τ)trace

Σ(θ)−1 ∂µ(θ)

∂θi

(
∂µ(θ)

∂θj

)T


+
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)]

−
(

1

(2π)m/2|Σ(θ)|1/2

)2τ
1

(1 + τ)m+2 ∆i
τ∆j

τ ,

with ∆i
τ = τ

2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
. By trace(A), we mean the trace of matrix A.

The above asymptotic distribution follows from Theorem 2 in [8], where matrices
Jτ(θ) and Kτ(θ) are defined for general statistical models.

The asymptotic distribution of θ̂G has been considered in many papers, see e.g., [9–13].
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On the other hand, in some situations, we may have additional knowledge about the
true parameter space. Then, these constraints should be included in the definition of the
parameter space Θ. Here, we will consider restricted parameter spaces of the form

Θ0 = {θ ∈ Θ/ g(θ) = 0r}, (11)

where g : Rd → Rr is a vector-valued function mapping such that the d× r matrix

G(θ) =
∂gT(θ)

∂θ
(12)

exists and is continuous in θ and rank(G(θ)) = r, and 0r denotes the null vector of
dimension r. The notation Θ0 clues the use of the present restricted estimator for defining
test statistics under composite null hypothesis.

The most popular estimator of θ satisfying the constraints in (11) is the restricted MLE
(RMLE), which is naturally defined as the maximizer of the log-likelihood function of the
model but is subject to the parameter space restrictions g(θ) = 0r (see [14–17]). Unfortu-
nately, the RMLE has the same robustness problems as the MLE, and so robust alternatives
should be adopted in the presence of contamination in data. Several robust restricted
estimators have been considered in the statistical literature to overcome the robustness
drawback of the RMLE. For example, Pardo et al. introduced in [18] the restricted mini-
mum Phi-divergence estimator and studied its properties. In [8], the restricted minimum
density power divergence estimators (RMDPDE) are presented, and some applications
on the testing hypothesis are studied. In [19], the theoretical robustness properties of
the RMDPDE were studied. In [20,21], the restricted Rényi pseudodistance estimator is
considered, and robust Rao-type tests are derived from it and developed. More recently, in
[22], the RMDPD under normal distributions is studied, and independence tests under the
normal assumption are developed, and in [23] the RMDPDE is applied in the context of
independent but not identically distributed variables under heterocedastic linear regression
models. Other interesting papers related to multivariate analysis are [24–27].

In this paper, we introduce and study the restricted minimum density power diver-
gence Gaussian estimator (RMDPDGE). The aim of this study is to introduce an estimator
dealing with situations where Gaussian estimators are useful; there are additional con-
straints on the parameter space, and the estimator should be robust in terms of contam-
ination. To show the robustness, we compute the corresponding influence function (IF),
showing that in general, it is bounded. As an application of these restricted estimators,
we develop Rao-type test statistics. The idea in this case is to consider the additional
constraints as the constraints defining the null hypothesis of the test. Finally, we show
the robustness via a simulation study, in which the good behavior of these estimators is
shown comparing it with the behavior of classical restricted estimators based on MLE.
We compare the loss in efficiency when comparing these estimators with more specific
estimators dealing with the real distribution, showing that the loss is affordable.

The rest of the paper is organized as follows: In Section 2, we introduce the RMDPDGE
and we obtain its asymptotic distribution. Section 3 presents the influence function of
the RMDPDGE and theoretically proves the robustness of the proposed estimators. Some
statistical applications for testing are presented in Section 4, and an explicit expression of
the Rao-type test statistics based on the RMDPDGE under exponential, Poisson and Lindley
models are given. Section 5 empirically demonstrates the robustness of the method through
a simulation study, and the advantages and disadvantages of the Gaussian assumption are
discussed there. Section 6 presents some conclusions. The proofs of the main results stated
in the paper are included in Appendix A.

2. Restricted Minimum Density Power Divergence Gaussian Estimators

In this section, we present the RMDPDGE under general equality non-linear con-
straints and we study its asymptotic distribution, showing the consistency of the estimator.
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Definition 1. Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. The
RMDPDGE, θ̃

τ
G, is defined by

θ̃
τ
G = arg max

Θ0
Hτ

n(θ),

where Hτ
n(θ) is as given in Equation (5) and Θ0 = {θ ∈ Θ/ g(θr) = 0r} is the restricted

parameter space defined in (11).

Before presenting the asymptotic distribution of the MDPDGE, we present some
previous results whose proofs are included in Appendix A.

Proposition 1. Let Y1, ..., Yn be independent and identically distributed observations from an
m-dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. Then,

√
n
(

1
τ + 1

∂Hτ
n(θ)

∂θ

)
L−→

n−→∞
N (0d, Kτ(θ)),

where Kτ(θ) was defined in (10).

Proof. See Appendix A.2.

Proposition 2. Let Y1, ..., Yn be independent and identically distributed observations from an
m-dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. Then,

∂2Hτ
n(θ)

∂θ∂θT
P−→

n−→∞
−(τ + 1)Jτ(θ),

where Jτ(θ) was defined in (9).

Proof. See Appendix A.3.

Next, we present the asymptotic distribution of θ̃
τ
G.

Theorem 1. Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. Suppose
the true distribution of Y belongs to the model, and we consider θ ∈ Θ0. Then, the RMDPDGE θ̃

τ
G

of θ obtained under the constraints g(θ) = 0r satisfies

n1/2(θ̃
τ
G − θ)

L−→
n−→∞

N (0d, Mτ(θ)), (13)

where
Mτ(θ) = P∗τ(θ)Kτ(θ)P∗τ(θ)

T ,

P∗τ(θ) = Jτ(θ)
−1 −Qτ(θ)G(θ)T Jτ(θ)

−1, (14)

Qτ(θ) = J−1
τ (θ)G(θ)

[
G(θ)T Jτ(θ)

−1G(θ)
]−1

, (15)

and Jτ(θ) and Kτ(θ) were defined in (9) and (10), respectively.

Proof. The estimating equations for the RMDPDGE are given by{
∂

∂θ Hτ
n(θ) + G(θ)λn = 0d,

g(θ̃
τ
G) = 0r,

(16)
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where λn is a vector of Lagrangian multipliers. Now, we consider θn = θ+ mn−1/2, where
||m|| < k, for 0 < k < ∞. We have,

∂

∂θ
Hτ

n(θ)|θ=θn
=

∂

∂θ
Hτ

n(θ) +
∂2

∂θT∂θ
Hτ

n(θ)|θ=θ∗(θ
∗
n − θ)

and

n1/2 ∂

∂θ
Hτ

n(θ)

∣∣∣∣
θ=θn

= n1/2 ∂

∂θ
Hτ

n(θ) +
∂2

∂θT∂θ
Hτ

n(θ)|θ=θ∗n
1/2(θn − θ), (17)

where θ∗ belongs to the segment joining θ and θn. Since

lim
n→∞

∂2

∂θT∂θ
Hτ

n(θ) = −(τ + 1)Jτ(θ),

we obtain

n1/2 ∂

∂θ
Hτ

n(θ)

∣∣∣∣
θ=θn

= n1/2 ∂

∂θ
Hτ

n(θ)− (τ + 1)n1/2 Jτ(θ)(θn − θ) + op(1). (18)

Taking into account that G(θ) is continuous in θ

n1/2g(θn) = G(θ)Tn1/2(θn − θ) + op(1). (19)

The RMDPDGE θ̃
τ
G must satisfy the conditions in (16), and in view of (18), we have

n1/2 ∂

∂θ
Hτ

n(θ)− (τ + 1)Jτ(θ)n
1/2(θ̃

τ
G − θ) + G(θ)n1/2λn + op(1) = 0p. (20)

From (19), it follows that

GT(θ)n1/2(θ̃
τ
G − θ) + op(1) = 0r. (21)

Now, we can express Equations (20) and (21) in matrix form as(
(τ + 1)Jτ(θ) −G(θ)
−GT(θ) 0

)(
n1/2(θ̃

τ
G − θ)

n1/2λn

)
=

(
n1/2 ∂

∂θ Hτ
n(θ)

0

)
+ op(1).

Therefore,(
n1/2(θ̃

τ
G − θ)

n1/2λn

)
=

(
(τ + 1)Jτ(θ) −G(θ)
−GT(θ) 0

)−1(
n1/2 ∂

∂θ Hτ
n(θ)

0r

)
+ op(1).

However, (
(τ + 1)Jτ(θ) −G(θ)
−GT(θ) 0

)−1

=

(
L∗τ(θ) Qτ(θ)

Qτ(θ0)
T Rτ(θ)

)
,

where

L∗τ(θ) =
1

τ + 1

(
Jτ(θ)

−1 −Qτ(θ)G(θ)T Jτ(θ)
−1
)

=
1

τ + 1
P∗τ(θ),

Qτ(θ) = J−1
τ (θ)G(θ)

[
G(θ)T Jτ(θ)

−1G(θ)
]−1

,

Rτ(θ) = G(θ)T Jτ(θ)
−1G(θ),
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and P∗τ(θ0) and Qτ(θ0) are as given in (14) and (15), respectively. Then,

n1/2(θ̃
τ
G − θ) = (τ + 1)−1P∗τ(θ)n

1/2 ∂

∂θ
Hτ

n(θ) + op(1), (22)

and we know by Proposition 1 that

n1/2(τ + 1)−1 ∂

∂θ
Hτ

n(θ)
L−→

n−→∞
N (0, Kτ(θ)). (23)

Now, by (22) and (23), we have the desired result.

Remark 1. Notice that the result in (8) is a special case of the previous theorem when there are no
restrictions on the parameter space, in the sense that G defined in (12) is the null matrix. In this
case, matrix P∗τ(θ) given in (14) becomes P∗τ(θ) = Jτ(θ)

−1. Therefore, the asymptotic variance–
covariance matrix of the unrestricted estimator, i.e., the MDPDGE, may be reconstructed from the
previous theorem.

In order to compute the MDPDGE, we note that it is an optimum of a differentiable
function Hτ

n , so it must annul its first derivatives. We will use that

∂|Σ(θ)|−τ/2

∂θ
= −τ

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
,

and

∂

∂θ
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ)) =− 2

(
∂µ(θ)

∂θ

)T
Σ(θ)−1(yi − µ(θ))− (yi − µ(θ))T

×
(

Σ(θ)−1 ∂Σ(θ)

∂θ
Σ(θ)−1

)
(yi − µ(θ)).

Now, taking derivatives in (5), for a certain fixed τ, we have that

∂

∂θ
Hτ

n(θ) =
1
n

n

∑
i=1

{
−a

τ

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
× exp

(
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

)
+ ba

τ

2
|Σ(θ)|−τ/2

×trace
(

Σ(θ)−1 ∂Σ(θ)

∂θ

)
+ a

τ

2
|Σ(θ)|−τ/2

× exp
(
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

)
×
[

2
(

∂µ(θ)

∂θ

)T
Σ(θ)−1(yi − µ(θ))

+(yi − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θ
Σ(θ)−1

)
(yi − µ(θ))

]}
=

1
n

n

∑
i=1

Ψτ(yi; θ),

with
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Ψτ(yi; θ) = a
τ

2
|Σ(θ)|−τ/2

{[
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
(24)

+

(
2
(

∂µ(θ)

∂θ

)T
Σ(θ)−1(yi − µ(θ))

+(yi − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θ
Σ(θ)−1

)
(yi − µ(θ))

)]
× exp

(
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

)
+b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)}
.

Therefore, the estimating equations of the MDPDGE for a fixed parameter τ are
given by n

∑
i=1

Ψτ(yi; θ) = 0d. (25)

The previous estimating equations characterize the MDPDGE as an M-estimator and
so its asymptotic distribution could have been also derived from the general theory of
M-estimators. In particular, the MDPDGE, θ̂

τ
G, satisfies for any τ ≥ 0

√
n
(

θ̂
τ
G − θ

) L−→
n−→∞

N
(

0d, S−1MS−1
)

, (26)

with

S = −E
[

∂2Hτ
n(θ)

∂θ∂θT

]
and M = Cov

[√
n

∂

∂θ
Hτ

n(θ)

]
. (27)

Based on Propositions 1 and 2, we can express the previous matrices as

S = (τ + 1)Jτ(θ) and M = (τ + 1)2Kτ(θ),

and we obtain the expressions established in (8). The asymptotic convergence in (26) offers
an alternative proof of the asymptotic distribution of MDPDGE developed in [3] in terms
of the transformed matrices S and M in Equation (27).

3. Influence Function for the RMDPDGE

To analyze the robustness of an estimator, Hampel et al. introduced in [28] the
concept of an Influence Function (IF). Since then, the IF has been widely used in the
statistical literature to measure robustness in different statistical contexts. Intuitively, the
IF describes the effect of an infinitesimal contamination of the model on the estimation.
Robust estimators should be less affected by contamination, and thus, IFs associated to
locally robust (B-robust) estimators should be bounded.

The IF of an estimator, θ̃
τ
G, is defined in terms of its statistical functional T̃τ satisfying

T̃τ(g) = θ̃
τ
G, where g is the true density function underlying the data. Given the density

function g, we define its contaminated version at the point perturbation y0 as,

g = (1− ε)g + ε∆y0
, (28)

where ε is fraction of contamination and ∆y0
denotes the indicator function at y0. Then, the

IF of θ̃τ
G is defined as the derivative of the functional at ε = 0

IF(y0, T̃τ) =
∂T̃τ(gε)

ε
|ε=0.

Hence, the above derivative quantifies the rate of change of the sample estimator when
contamination occurs.
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Let us now obtain the IF of RMDPDE. We consider the contaminated model

gε(y) = (1− ε) fθ(y) + ε∆y0
,

where fθ is the assumed probability density function of a normal population. The MDPDGE
for the contaminated model is then given by θ̃

τ
G,ε = T̃τ(gε).

By definition, θ̃
τ
G,ε is the maximizer of Hτ

n(θ) in (5), subject to the constraints g(θ̃
τ
G,ε) = 0.

Using the characterization of the MDPDGE as an M-estimator, we have that the influence
function of the MDPDGE is given by

IF(y, T̃τ , θ) = Jτ(θ)
−1Ψτ(y; θ), (29)

where Jτ(θ) was defined in (9) and Ψτ(y; θ) in (24). The influence function of the RMD-
PDGE will be obtained with the additional condition g(θ̃

τ
G,ε) = 0. Differentiating this last

equation gives, at ε = 0,
G(θ)T IF(y, T̃τ , θ) = 0. (30)

Based on (29) and (30), we have(
Jτ(θ)

G(θ)T

)
IF(y, T̃τ , θ) =

(
Ψτ(y; θ)

0

)
.

Therefore, (
Jτ(θ)

T , G(θ)
)( Jτ(θ)

G(θ)T

)
IF(y, T̃τ , θ) = Jτ(θ)

TΨτ(y; θ),

and the influence function of the RMDPDGE, θ̃
τ
G, is given by(

Jτ(θ)
T Jτ(θ)) + G(θ)G(θ)T

)−1
Jτ(θ)

TΨτ(y; θ). (31)

We can observe that the influence function of θ̃
τ
G, obtained in (31), will be bounded if

the influence function of the MDPDGE, θ̂
τ
G, given in (29) is bounded. In general, it is not

easy to see if it is bounded or not, but in particular situations, this can be solved. On the
other hand, if there are no restrictions, G(θ) = 0, and therefore, (31) coincides with (29).

In Section 4.1, we shall present the expression of Jτ(θ) and Ψτ(y, θ) for some models.
Based on that explicit expressions, Figure 1 presents the influence function of the MDPDGE,
θ̂

τ
G, for the exponential model with θ = 4 and τ = 0, 0.2 and 0.8 . At τ = 0, the influence

function of θ̂
τ
G is not bounded, whereas it is bounded at the positive values of the tuning

parameter, τ = 0.2 and 0.8. This fact illustrates the robustness of the MDPDGE for τ > 0
for the exponential model.

Figure 1. Influence function of the MDPDGE for the exponential model with τ = 0 (red), τ = 0.2
(black) and τ = 0.8 (green).
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4. Rao-Type Tests Based on RMDPDGE

Recently, many robust test statistics based on minimum distance estimators have
been introduced in the statistical literature for testing under different statistical models.
Among them, density power divergence and Rényi’s pseudodistance-based test statistics
have shown very competitive performance with respect to classical tests in many different
problems. Distance-based test statistics are essentially of two types: Wald-type tests and
Rao-type tests. Some applications of these tests can be seen at [8,20–23,29–37] and references
therein. In this section, we introduce the Rao-type tests based on RMDPDGE, and we study
their asymptotic properties, proving the consistency of the tests.

We analyze here a simple null hypothesis of the form

H0 : θ = θ0 vs. H1 : θ 6= θ0. (32)

Definition 2. Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd, and
consider the testing problem defined in (32). The Rao-type test statistic based on RMDPDGE is
defined by

Rτ(θ0) =
1
n

Uτ
n (θ0)

TKτ(θ0)
−1Uτ

n (θ0), (33)

where

Uτ
n (θ) =

(
1

τ + 1

n

∑
i=1

Ψ1
τ(yi; θ), ...,

1
τ + 1 ∑n

i=1 Ψd
τ(yi; θ)

)T

is the score function defining the estimating equations of the MDPDGE and

Ψτ(yi; θ) =
(

Ψ1
τ(yi; θ), ...., Ψd

τ(yi; θ)
)

.

The next result establishes the asymptotic behavior of the proposed Rao-type test statistic.

Theorem 2. Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. Under the
null hypothesis given in (32), it holds

Rτ(θ0)
L→

n→∞
χ2

d.

Proof. First, note that we can rewrite

1√
n

n

∑
i=1

1
τ + 1

Ψτ(yi; θ) =
√

n
1

τ + 1
∂

∂θ
Hτ

n(θ),

and hence, by Proposition 1, we can establish the asymptotic distribution of the τ-score
function Uτ

n(θ)
1√
n

n

∑
i=1

1
τ + 1

Ψτ(yi; θ)
L→

n→∞
N
(
0p, Kτ(θ)

)
.

Hence, as the τ-score function is asymptotically normal,

1√
n

Uτ
n (θ) =

1√
n

n

∑
i=1

1
τ + 1

Ψτ(yi; θ) =
√

n
1

τ + 1
∂

∂θ
Hτ

n(θ)
L−→

n−→∞
N (0, Kτ(θ)).

Then, applying a suitable transformation, the result follows.

Remark 2. The Rao-type statistic relies on the τ-score function Uτ
n (θ) defining the estimating

equations Uτ
n (θ) = 0. Therefore, if the simple null hypothesis holds, the τ-score function vanishes

and conversely, if the true parameter is far from the null hypothesis, large τ-scores will be produced.
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Based on Theorem 2, for large enough sample sizes, one can use the 100(1− α) percentile of the
chi-square distribution with d degrees of freedom χ2

d,α satisfying

Pr
(

χ2
d > χ2

d,α

)
= α,

to define the reject region of the test with null hypothesis in (32) as

RC = {Rτ(θ0) > χ2
d,α}.

For illustrative purposes, we present here the application of the proposed method in
elliptical distributions.

Example 1. (Elliptical distributions). The m-dimensional random vector Y follows an elliptical
distribution if its characteristic function has the form

ϕY (t) = exp
(

it2µ
)

ψ

(
1
2

t2Σt
)

,

where µ is an m-dimensional vector, Σ is a positive definite matrix and ψ(t) denotes the so-called
characteristic generator function. The function ψ may depend on the dimension of random vector Y .
In general, it does not hold that Y has a joint density function, fY (y), but if this density exists, it is
given by

fY (y) = cm|Σ|−
1
2 gm

(
1
2
(y− µ)TΣ−1(y− µ)

)
for some density generator function gm which could depend on the dimension of the random vector.
Moreover, if the density exists, the parameter cm is given explicitly by

cm = (2π)−
m
2 Γ
(m

2

)(∫
x

m
2 −1gm(x)dx

)−1
.

The elliptical distribution family is in the following denoted by Em(µ, Σ,gm). For more details
about the elliptical family Em(µ, Σ,gm), see [38–42] and references therein. In [40], for instance, it
can be seen that the mean vector and variance–covariance matrix can be obtained as

E[Y ] = µ and Cov[Y ] = cY Σ,

where cY = −2ψ′(0).
For the elliptical model, the parameter to be estimated is θ =

(
µT , Σ

)
whose dimension is

s = m + m(m+1)
2 . In the following, we denote µ(θ) instead of µ and Σ(θ) instead of Σ, in order to

be consistent with the paper notation.
Let us consider the testing problem

H0 : (µ(θ), Σ(θ)) = (µ0, Σ0) vs. H1 : (µ(θ), Σ(θ)) 6= (µ0, Σ0), (34)

where µ0 and Σ0 are known. The Rao-type test statistic based on the MDPDGE for the elliptical
model is given as

Rτ(µ0, Σ0) =
1
n

Uτ
n (µ0, Σ0)

TKτ(µ0, Σ0)
−1Uτ

n (µ0, Σ0),

where

Uτ
n (µ0, Σ0) =

n

∑
i=1

1
τ + 1

Ψτ(yi; µ0, Σ0),

with Ψτ(yi; µ0, Σ0) and Kτ(µ0, Σ0) as defined in (24) and (10), respectively, but replacing Σ(θ)
by cY Σ and µ(θ) by µ. Then, the null hypothesis in (34) should be rejected if
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Rτ(µ0, Σ0) > χ2
m+ m(m+1)

2 ,α
,

with χ2
m+ m(m+1)

2 ,α
the (1− α) upper quantile of a chi-square with m + m(m+1)

2 degrees of freedom.

We finally prove the consistency of the Rao-type test based on RMDPDGE. To simplify
the statement of the next result, we first define the vector

Yτ(θ) = a
τ

2
|Σ(θ)|−τ/2

{
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
(35)

exp
(
−τ

2
(Y − µ(θ))TΣ(θ)−1(Y − µ(θ))

)
+ b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
+ exp

(
−τ

2
(Y − µ(θ))TΣ(θ)−1(Y − µ(θ))

)
[

2
(

∂µ(θ)

∂θ

)T
Σ(θ)−1(Y − µ(θ))

+(Y − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θ
Σ(θ)−1

)
(Y − µ(θ))

]}
,

where a and b were defined in (6). We can observe that ∂
∂θ Hn(θ) is the sample mean of a

random sample of size n from the m-dimensional population Yτ(θ).

Theorem 3. Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. Let θ ∈ Θ

with θ 6= θ0, with θ0 defined in (32), and let us assume that Eθ[Yτ(θ0)] 6= 0d. Then,

lim
n→∞

Pθ

(
Rτ(θ0) > χ2

d,α

)
= 1.

Proof. From the previous results, it holds that

1
n

Uτ
n (θ0) =

1
n

n

∑
i=1

1
τ + 1

Ψτ(Y i; θ0 ) =
1

τ + 1
∂

∂θ
Hτ

n(θ0)
P→

n→∞

1
τ + 1

Eθ[Yτ(θ0)],

where Yτ(θ0) is as defined in (35). Therefore,

Pθ

(
Rτ(θ0) > χ2

d,α

)
= Pθ

(
1
n Rτ(θ0) >

1
n χ2

d,α

)
−→
n→∞

I

(
1

(τ + 1)2 Eθ[Yτ(θ0)]K−1
τ (θ)ET

θ [Yτ(θ0)] > 0

)
= 1,

where I(·) is the indicator function.

A natural question that arises here is how the asymptotic power of different test
statistics considered for testing the hypothesis in (34) could be compared. Lehmann [43]
stated that contiguous alternative hypotheses are of great interest for such purposes, as
their associated power functions do not converge to 1. In this regard, we next derive
the asymptotic distribution of Rτ(θ0) under local Pitman-type alternative hypotheses of
the form

H1,n : θ = θn := θ0 + n−1/2l,

where l is a d-dimensional normal vector. The next result determines the asymptotic power
of the Rao-type test based on RMDPDGE under a contiguous alternative hypothesis.
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Theorem 4. Let Y1, ..., Yn be independent and identically distributed observations from an m-
dimensional random vector Y with Eθ[Y ] = µ(θ) and Covθ[Y ] = Σ(θ), θ ∈ Θ ⊂ Rd. Under the
contiguous alternative hypothesis of the form

H1,n : θn = θ0 + n−1/2l,

the asymptotic distribution of the Rao-type test based on RMDPDGE, Rτ(θ0), is a non-central
chi-square distribution with d degrees of freedom and non-centrality parameter given by

δτ(θ0, l) = lT Jτ(θ0)K−1
τ (θ0)Jτ(θ0)l.

Proof. Consider the Taylor series expansion

1√
n

Uτ
n (θn) =

1√
n

Uτ
n(θ0) +

1
n

∂Uτ
n(θ)

∂θT

∣∣∣∣
θ=θ∗n

l,

where θ∗n belongs to the line segment joining θ0 and θ0 +
1√
n l. Now, by Proposition 2

1
n

∂Uτ
n(θ)

∂θT =
1

τ + 1
∂2Hτ

n(θ)

∂θ ∂θT
P−→

n−→∞
−Jτ(θ).

Therefore,

1√
n

Uτ
n(θ)

∣∣∣∣
θ=θ0+n−1/2d

L−→
n→∞

N (−Jτ(θ0)l, Kτ(θ0)),

and
Rτ(θ0)

L−→
n→∞

χ2
p(δτ(θ0, l)),

with δτ(θ0, d) given by

δτ(θ0, l) = lT Jτ(θ0)K−1
τ (θ0)Jτ(θ0)l.

Hence, the result holds.

Remark 3. The previous result can be used for defining an approximation to the power function
under any alternative hypothesis, θ ∈ Θ \Θ0, given as

θ = θ− θ0 + θ0 =
√

n
1√
n
(θ− θ0) + θ0 = θ0 + n−1/2l,

with l =
√

n(θ− θ0).

Remark 4. In this section, we have dealt with a Rao-type test for a simple null hypothesis. This
family can be extended to a composite null hypothesis. If we are interested in testing H0 : θ ∈ Θ0 =
{θ ∈ Θ/ g(θ) = 0r}, we can consider the family of Rao-type tests given by

Rτ

(
θ̃

τ
G

)
=

1
n

Uτ
n(θ̃

τ
G)

TQτ(θ̃
τ
G)
[

Qτ(θ̃
τ
G)Kτ

(
θ̃

τ
G

)
Qτ(θ̃

τ
G)
]−1

Qτ(θ̃
τ
G)

TUτ
n(θ̃

τ
G). (36)

However, the extension of the presented results for the family of robust test statistics defined
in (36) is not trivial, and it will be established in future research.

In particular, the simple null hypothesis in (32) can be written as a composite null hypothesis
with g(θ) = θ− θ0. In this case, G(θ) reduces to the identity matrix of dimension p and the
restricted estimator θ̃

τ
G coincides with θ0. In this case, the Rao-type test statistic Rτ

(
θ̃

τ
G

)
coincides

with the proposed Rτ(θ0) given in (33). Rao-type test statistics based on RMDPDE have been
developed in [22].
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4.1. Rao-Type Tests Based on MDPDGE for Univariate Distributions

Let Y1, ..., Yn be a random sample from the population Y, with

E[Y] = µ(θ) and Var[Y] = σ2(θ).

Based on (25), the estimating equation is given by

n

∑
i=1

Ψτ(yi, θ) = 0,

with

Ψτ(yi, θ) =
(τ + 1)

(
σ2(θ)

)−τ/2

2(2π)τ/2

{[
−∂ log σ2(θ)

∂θ
+

∂ log σ2(θ)

∂θ
(37)

(
yi − µ(θ)

σ2(θ)

)2
+ 2

∂µ(θ)

∂θ
(yi − µ(θ))

1
σ2(θ)

]

× exp
(
− τ

2σ2(θ)
(yi − µ(θ))2

)
+

τ

(1 + τ)3/2
∂ log σ2(θ)

∂θ

}
.

Moreover, the expressions of Jτ(θ) and Kτ(θ) are, respectively, given by

Jτ(θ) =
1(

2πσ(θ)2
) τ

2

1

(1 + τ)5/2

[
(τ + 1)σ−2(θ)

(
∂µ(θ)

∂θ

)2
+

τ2

4

(
∂ log σ2(θ)

∂θ

)2

+
1
2

(
∂ log σ2(θ)

∂θ

)2]

and

Kτ(θ) =

(
1

(2π)1/2σ(θ)

)2τ{
1

(1 + 2τ)5/2

[
τ2
(

∂ log σ2(θ)

∂θ

)2

(38)

+(1 + 2τ)σ−2(θ)

(
∂µ(θ)

∂θ

)2
+

1
2

(
∂ log σ2(θ)

∂θ

)2]

− τ2

4(1 + τ)3

(
∂ log σ2(θ)

∂θ

)2}
.

Therefore, if we are interesting in testing

H0 : θ = θ0 vs. H1 : θ 6= θ0,

the Rao-type tests based on RMDPDGE are given by

Rτ(θ0) =
1
n

Uτ
n (θ0)

2Kτ(θ0)
−1,

where

Uτ
n (θ0) =

1
τ + 1

n

∑
i=1

Ψτ(yi, θ)

and Ψτ(yi, θ) and Kτ(θ) are given in (37) and (38). The null hypothesis is rejected if

Rτ(θ0) > χ2
1,α,

where χ2
1,α is the upper 1− α quantile of a chi-square distribution with 1 degree of freedom.
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We finally derive explicit expressions of the Rao-type test statistics under Poisson,
exponential and Lindley models.

4.1.1. Poisson Model

Let us assume that the random variable Y is Poisson with parameter θ. In this case, it
is well known that E[Y] = Var[Y] = θ, and so the RMDPDGE, for τ > 0, is given by

θ̂τ
G = arg max

θ

{
τ + 1

τ(2πθ)
τ
2

(
1
n

n

∑
i=1

exp
(
− τ

2θ
(yi − θ)2

)
− τ

(1 + τ)3/2

)
− 1

τ

}
.

At τ = 0, the RMDPDGE reduces to the Gaussian MLE,

θ̂G = arg max
θ

{
−1

2
log 2π − 1

2
log θ − 1

n

n

∑
i=1

1
2θ

(yi − θ)2

}
.

On the other hand, the score function Ψτ(·) is given by

Ψτ(yi, θ) =
τ + 1

2(2πθ)
τ
2 θ2

{(
−θ2 − θ + y2

i

)
exp

(
− τ

2θ
(yi − θ)2

)
+

τθ

(1 + τ)
3
2

}
,

and naturally, at τ = 0, we obtain the score function of the Gaussian MLE presented in [1]

Ψ0(yi, θ) =
1

2θ2

(
−2θ2 + y2

i

)
.

On the other hand, the matrix Kτ(θ) under the Poisson model has the explicit expression

Kτ(θ) =

(
1

2π

)τ 1
2θ2+τ

{
1

(1 + 2τ)5/2

((
2τ2 + 2θ + 4θτ + 1

)
− τ2

2(1 + τ)3

)}
,

and hence, the Rao-type tests based on RMDPDGE, Rτ(θ0), for testing a simple null
hypothesis is given, for τ > 0, by

Rτ(θ0) =
1
n

1(
2(2πθ)

τ
2 θ2
)2

(
n

∑
i=1

((
−2θ2

0 + y2
i

)
exp

(
− τ

2θ0
(yi − θ0)

2
)
+

τθ

(1 + τ)
3
2

))2

×(2π)τ(2θ2+τ)(1 + 2τ)5/2

{((
2τ2 + 2θ + 4θτ + 1

)
− τ2

2(1 + τ)3

)}−1

.

Again, for τ = 0, we obtain the expression of the classical Rao test based on the
Gaussian MLE,

R0(θ0) =
1

4n

(
n

∑
i=1

(
−2θ2

0 + y2
i

θ2
0

))2
2θ2

0
2θ0 + 1

.

The null hypothesis is rejected if

Rτ(θ0) > χ2
1,α.

4.1.2. Exponential Model

Let us assume now that the random variable Y comes from an exponential distribution
with probability density function

fθ(x) =
1
θ

exp
(
− x

θ

)
, x > 0. (39)
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In this case, the true mean and variance are given by E[Y] = θ and Var[Y] = θ2. The
RMDPDGE under the exponential model, for τ > 0, is given by

θ̂τ
G = arg max

θ

{
τ + 1

τ

(
1

θ
√

2π

)τ
(

1
n

n

∑
i=1

exp

(
−τ

2

(
yi − θ

θ

)2
)
− τ

(1 + τ)3/2

)
− 1

τ

}
,

and for τ = 0, we have the Gaussian MLE

θ̂G = arg max
θ

{
−1

2
log 2π − log θ − 1

n

n

∑
i=1

1
2

(
yi − θ

θ

)2
}

.

On the other hand, the score function is

Ψτ(yi, θ) =
(τ + 1)

θτ+3
(√

2π
)τ

{(
y2

i − yiθ − θ2
)

exp

(
−τ

2

(
yi − θ

θ

)2
)
+

τθ2

(1 + τ)
3
2

}
,

and for τ = 0, we recover the score function of the Gaussian MLE,

Ψ0(yi, θ) =
1
θ3

(
y2

i − yiθ + θ2
)

.

The value Kτ(θ) has the expression

Kτ(θ) =
1

(2π)τθ2(τ+1)

{
1

(1 + 2τ)5/2

(
4τ2 + 2τ + 3

)
− τ2

(1 + τ)3

}
,

and at τ = 0
K0(θ) =

2
θ2 .

Correspondingly, the Rao-type tests based on RMDPDGE for testing

H0 : θ = θ0 vs. H1 : θ 6= θ0,

is given, for τ > 0, by

Rτ(θ0) =
1
n

1
θ2τ+6

0 (2π)τ

(
n

∑
i=1

{(
y2

i − yiθ0 − θ2
0

)
exp

(
−τ

2

(
yi − θ0

θ0

)2
)

(40)

+
τθ2

0

(1 + τ)
3
2

})2

× (2π)τθ2(τ+1)

{
1

(1 + 2τ)5/2

(
4τ2 + 2τ + 3

)
− τ2

(1 + τ)3

}−1

,

and by

R0(θ0) =
1

2n

n

∑
i=1

(
y2

i − yiθ0 − θ2
0
)2

θ4
0

(41)

for τ = 0.

4.1.3. Lindley Model

Let us finally assume that the random variable Y comes from a Lindley distribution [44]
with probability density function

fθ(x) =
θ2

θ + 1
(1 + x) exp(−θx), x > 0, θ > 0.
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In this case,

E[Y] =
θ + 2

θ(θ + 1)
and V[Y] =

θ2 + 4θ + 2

θ2(θ + 1)2 .

The RMDPGE under the Lindlley model, for τ > 0, is given by

θ̂G = arg max
θ

τ + 1
τ

(
1

2π

)τ
(

θ2 + 4θ + 2

θ2(θ + 1)2

)− τ
2

 1
n

n

∑
i=1

exp

−τ

2

(
yi −

θ + 2
θ(θ + 1)

)2
(

θ2 + 4θ + 2

θ2(θ + 1)2

)−1
 − τ

(1 + τ)
3
2

)
− 1

τ

}
,

and for τ = 0, we have

θ̂G = arg max
θ

{
1
2

ln
1

2π
− 1

2
ln

(
θ2 + 4θ + 2

)
θ2(θ + 1)2 − 1

n

n

∑
i=1

(
θ − yiθ − yiθ

2 + 2
)2

2(θ2 + 4θ + 2)

}
.

On the other hand, the score funtion, Ψτ(yi, θ) is given by

(τ + 1)

2(2π)
τ
2

(
θ2 + 4θ + 2

θ2(θ + 1)2

)− τ
2{[2θ3 + 12θ2 + 12θ + 4

θ4 + 5θ3 + 6θ2 + 2θ

−2θ3 + 12θ2 + 12θ + 4
θ4 + 5θ3 + 6θ2 + 2θ

(
θ − θyi − θ2yi + 2

)2

θ2 + 4θ + 2
− 2
(

yi −
(θ + 2)
θ(θ + 1)

)]
(42)

exp

(
−τ

2

(
θ − θyi − θ2yi + 2

)2

θ2 + 4θ + 2

)
− τ

(1 + τ)
3
2

2θ3 + 12θ2 + 12θ + 4
θ4 + 5θ3 + 6θ2 + 2θ

}

and Kτ(θ) has the expression

(
θ2(θ + 1)2

2π(θ2 + 4θ + 2)

)τ{
1

(1 + 2τ)5/2

[
τ2
(

2θ3 + 12θ2 + 12θ + 4
θ4 + 5θ3 + 6θ2 + 2θ

)2

(43)

+(1 + 2τ)
θ2 + 4θ + 2

θ2(θ + 1)2 +
1
2

(
2θ3 + 12θ2 + 12θ + 4
θ4 + 5θ3 + 6θ2 + 2θ

)2]

− τ2

4(1 + τ)3

(
2θ3 + 12θ2 + 12θ + 4
θ4 + 5θ3 + 6θ2 + 2θ

)2}

and for τ = 0,

K0(θ) =

(
2θ3 + 12θ2 + 12θ + 4

)2

2(θ4 + 5θ3 + 6θ2 + 2θ)
2 +

(θ + 2)
θ(θ + 1)

.

Therefore, the Rao-type test based on RMDPDGE for testing

H0 : θ = θ0 vs. H1 : θ 6= θ0

is given by
Rτ(θ0) =

1
n

Uτ
n (θ0)

2Kτ(θ0)
−1 > χ2

1,α,

where
Uτ

n (θ0) =
1

τ + 1

n

∑
i=1

Ψτ(yi, θ),

with Ψτ(yi, θ) is defined in (42) and Kτ(θ) in (43).
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5. Simulation Study

We analyze here the performance of the Rao-type tests based on the MDPDGE, Rτ(θ0),
in terms of robustness and efficiency. We compare the proposed general method assuming
Gaussian distribution with Rao-type test statistics based on the true parametric distribution
underlying the data.

We consider the exponential model with density function fθ0(x) given in (39). For the
exponential model, the Rao-type test statistics based on MDPDGE is for τ > 0 given in (40)
and for τ = 0 given in (41). To evaluate the robustness of the tests, we generate samples
from an exponential mixture,

f ε
θ0
(x) = (1− ε) fθ0(x) + ε f2θ0(x),

where θ0 denotes the parameter of the exponential distribution and ε is the contamination
proportion. The uncontaminated model is thus obtained by setting ε = 0.

For comparison purposes, we have also considered the robust Rao-type tests based
on the restricted MDPDE, which was introduced and studied [30]. The efficiency loss
caused by the Gaussian assumption should be advertised by the poorer performance of the
Rao-type tests based on the restricted MDPDGE with respect to their analogous based on
the restricted MDPDE. For the exponential model, the family Rao-type test statistics based
on the restricted MDPDE is given, for β > 0, by

Sβ
n(θ0) =

(
4β2 + 1
(2β + 1)3 −

β2

(β + 1)4

)−1 1
n

(
1
θ0

n

∑
i=1

(yi − θ0) exp
(
− βyi

θ0

)
+

nβ

(β + 1)2

)2

.

For β = 0, the above test reduces to the classical Rao test given by

Sn(θ0) = Sβ=0,n(θ0) =

(√
n

X̄n − θ0

θ0

)2

.

We consider the testing problem

H0 : θ = θ0 vs. H1 : θ 6= θ0,

and we empirically examine the level and power of both Rao-type test statistics, the usual
test based on the parametric model and the Gaussian-based test by setting the true value
of the parameter θ0 = 2 and θ0 = 1, respectively. Different sample sizes were considered,
namely n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and 200, but simulation results were quite
similar and so, for brevity, we only report here results for n = 20 and n = 40.

The empirical level of the test is computed

α̂n(ε) =
Number of times

{
Rτ

n(θ0) (or Sβ
n(θ0)) > χ2

1,0.05 = 3.84146
}

Number of simulated samples
.

We set ε = 0%, 5%, 10% and 20% of contamination proportions and perform the
Monte-Carlo study over R = 10,000 replications. The tuning parameters τ and β are fixed
from a grid of values, namely {0, 0.1, ..., 0.7}.

Simulation results are presented in Tables 1 and 2 for n = 20 and n = 40, respectively.
The empirical powers are denoted by π̂n(ε). The robustness advantage in terms of level
of both Rao-type tests considered, Rτ(θ0) and Sβ

n(θ0) with positive values of the turning
parameter with respect to the test statistics with τ = 0 and β = 0 is clearly shown, as their
simulated levels are closer to the nominal value in the presence of contamination.
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Table 1. Simulated levels for different contamination proportions and different tuning parameters
τ, β = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 for the Rao-type tests Rτ(θ0) and Sβ

n(θ0) for n = 20.

τ α̂n(0) α̂n(0.05) α̂n(0.10) α̂n(0.20) π̂n(0) π̂n(0.1) π̂n(0.15) π̂n(0.20)

0.0 0.2601 0.3093 0.3453 0.4661 0.9278 0.6791 0.6887 0.5088
0.1 0.1895 0.1748 0.1561 0.1989 0.9544 0.7213 0.7301 0.0595
0.2 0.2120 0.1776 0.1417 0.1174 0.9747 0.8398 0.8430 0.6395
0.3 0.2532 0.2113 0.1660 0.1275 0.9826 0.8963 0.8961 0.7301
0.4 0.2963 0.2447 0.1986 0.1471 0.9863 0.9228 0.9257 0.7893
0.5 0.3243 0.2773 0.2307 0.1695 0.9875 0.9363 0.9386 0.8254
0.6 0.3512 0.3055 0.2599 0.1899 0.9885 0.9441 0.9437 0.8434
0.7 0.3751 0.3258 0.2762 0.2060 0.9884 0.9466 0.9469 0.8541

β

0.0 0.0453 0.0682 0.1048 0.1909 0.7200 0.4365 0.4384 0.2323
0.1 0.0476 0.0602 0.0780 0.1417 0.7799 0.5223 0.5267 0.3029
0.2 0.0498 0.0552 0.0667 0.1103 0.7922 0.5751 0.5780 0.3558
0.3 0.0494 0.0517 0.0584 0.0897 0.7882 0.5997 0.6024 0.3878
0.4 0.0489 0.0505 0.0535 0.0773 0.7779 0.6067 0.6058 0.4106
0.5 0.0494 0.0498 0.0504 0.0692 0.7634 0.6048 0.6037 0.4221
0.6 0.0491 0.0504 0.0497 0.0647 0.7492 0.6008 0.5986 0.4265
0.7 0.0502 0.0495 0.0494 0.0613 0.7348 0.5932 0.5919 0.4259

Table 2. Simulated levels for different contamination proportions and different tuning parameters
τ, β = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 for the Rao-type tests Rτ(θ0) and Sβ

n(θ0) for n = 40.

τ α̂n(0) α̂n(0.05) α̂n(0.10) α̂n(0.20) π̂n(0) π̂n(0.1) π̂n(0.15) π̂n(0.20)

0.0 0.3014 0.3588 0.4407 0.5919 0.9948 0.8064 0.7591 0.5957
0.1 0.2393 0.1934 0.1757 0.2032 0.9991 0.9540 0.9229 0.7712
0.2 0.7712 0.2559 0.1970 0.1317 0.9995 0.9916 0.9846 0.9204
0.3 0.4257 0.3485 0.2782 0.1753 0.9997 0.9997 0.9953 0.9694
0.4 0.5021 0.4294 0.3572 0.2388 0.9999 0.9989 0.9978 0.9851
0.5 0.5642 0.4920 0.4253 0.2993 0.9999 0.9992 0.9986 0.9908
0.6 0.6084 0.5415 0.4742 0.3491 1.0000 0.9992 0.9994 0.9935
0.7 0.6416 0.5755 0.5081 0.3831 1.0000 0.9994 0.9994 0.9948

β

0.0 0.0467 0.0758 0.1309 0.2728 0.9838 0.8093 0.7483 0.4905

0.1 0.0469 0.0623 0.0959 0.1987 0.9870 0.8770 0.8317 0.6072
0.2 0.0464 0.0554 0.0800 0.1526 0.9862 0.9010 0.8687 0.6778
0.3 0.0481 0.0529 0.0704 0.1220 0.9846 0.9084 0.8804 0.7169
0.4 0.0483 0.0518 0.0649 0.1036 0.9808 0.9059 0.8809 0.7316
0.5 0.0500 0.0519 0.0618 0.0929 0.9756 0.9008 0.8742 0.7338
0.6 0.0500 0.0501 0.0577 0.0858 0.9689 0.8914 0.8662 0.7317
0.7 0.0504 0.0519 0.0562 0.0801 0.9634 0.8813 0.8562 0.7258

Regarding the power of the tests for uncontaminated scenarios, there are values at
least as good as the corresponding to τ = 0 and β = 0, and for contaminated data, the
power corresponding to τ > 0 and β > 0 is higher.

The loss of efficiency caused by the Guassian assumption can be measured by the
discrepancy of the estimated levels and powers between the family of Rao-type tests based
on the restricted MDPDGE and the restricted MDPDE. As expected, empirical levels of the
test statistics based on the restricted MDPDGE are higher than the corresponding levels of
the test based on the restricted MDPDE. However, the test statistic based on the parametric
model, Sβ

n(θ0), is quite conservative and so the corresponding powers are higher than those
of the proposed tests, Rτ(θ0). Based on the presented results, it seems that the proposed
Rao-type tests, Rτ(θ0), performs reasonably well and offers an appealing alternative for
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situations where the probability density function of the true model is unknown or it is very
complicated to work with it.

6. Conclusions

In this paper, we have considered the situation in which the parametric distribution of
the variables is unknown and the only available information is given in terms of the mean
vector and the variance–covariance matrix. Hence, we only know that the mean vector
and variance–covariance matrix depend on the unknown values of a parameter vector θ.
To deal with this problem, Zhang [1] proposed a procedure to estimate θ assuming that
the underlying distribution was Gaussian. This assumption is justified in terms of the
maximum entropy of the unknown distribution. However, the estimator developed in [1] is
not robust. This procedure was extended using DPD leading to robust estimations of θ. In
this paper, we have dealt with the case in which additional constraints must be imposed to
the estimated parameters, thus leading to a new family of estimators that we have named
RMDPGE. For these estimators, we have derived their asymptotic distribution and we have
studied their robustness properties in terms of the corresponding IF. As an application, we
have developed robust Rao-type test statistics under the null hypothesis, where the null
hypothesis is indeed the restricted version of the estimator. Finally, we have tested the
performance of these test statistics via a simulation study. From the results of this study, we
empirically showed that the Rao-type tests considered in this paper seem to have a good
performance in terms of efficiency and are more robust than the corresponding approach
in [1].

There are several problems to be treated in future research. The most natural seems
to develop Rao-type test statistics for composite null hypothesis and study the results
obtained in terms of efficiency and robustness.
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Appendix A. Derivatives Calculation and Proofs of the Main Results

Appendix A.1. Previous Results

In different parts of Appendix, the following results are applied.

Lemma A1. The following results can be shown:
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1.
∂Σ(θ)

∂θi
= |Σ(θ)| trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.

2. ∂trace(Σ(θ))
∂θi

= trace
(

∂Σ(θ)

∂θi

)
.

3.
∂Σ(θ)

∂θi

−1
= −Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1.

Lemma A2. Let Y be a normal population with vector mean µ and variance–covariance Σ. Then,
we have

E
[
(Y − µ)T A(Y − µ)

]
= Trace(AΣ),

E
[
(Y − µ)T A(Y − µ)(Y − µ)T B(Y − µ)

]
=Trace

(
AΣ
(

B + BT
)

Σ
)

+ Trace(AΣ)Trace(BΣ),

E
[
(Y − µ)T A(Y − µ)(Y − µ)

]
= 0.

For more details about these results, see for instance [45].

Appendix A.2

Proof of Proposition 1. The expression of Hτ
n(θ) introduced in (5) is given by

Hτ
n(θ) = a|Σ(θ)|−τ/2

(
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

)
− 1

τ
.

Consider the d-dimensional random vector Yτ(θ) defined in (35). Applying the Central
Limit Theorem, we have

√
n

∂

∂θ
Hτ

n(θ) =
1√
n

n

∑
i=1

Ψτ(yi; θ)
L−→

n−→∞
N (0m, Sτ(θ0)),

with
Sτ(θ0) = Cov[Yτ(θ)] = E

[
Yτ(θ)

TYτ(θ)
]
,

because
E[Yτ(θ)] = 0d.
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To see that E[Yτ(θ)] = 0d, consider

E[Yτ(θ)] = a
τ

2
|Σ(θ)|−τ/2E

[
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
exp

{
−τ

2
(Y − µ(θ))TΣ(θ)−1(Y − µ(θ))

}
+ b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
+ exp

{
−τ

2
(Y − µ(θ))TΣ(θ)−1(Y − µ(θ))

}
[
−2
(

∂µ(θ)

∂θ

)T
Σ(θ)−1(Y − µ(θ))

+(Y − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θ
Σ(θ)−1

)
(Y − µ(θ))

]]
= a

τ

2
|Σ(θ)|−τ/2

{
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θ

)
1

(τ + 1)m/2

+
τ

(τ + 1)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θ

)

+
1

(τ + 1)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θ

)}
= 0d.

We can observe that Yτ(θ) is a d-dimensional vector whose j-th component is

Y j
τ(θ) = a

τ

2
|Σ(θ)|−τ/2

{
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

exp
{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
+ b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
+ exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
−2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ))

+(y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))

]}
, j = 1, ..., d.

Therefore, the element (i, j) of the matrix Sτ(θ0) is given by

E
[
Yi

τ(θ)Y
j
τ(θ)

]
.
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We are going to obtain Yi
τ(θ)Y

j
τ(θ). First,

Yi
τ(θ)Y

j
τ(θ) =

{
a

τ

2
|Σ(θ)|−τ/2

[
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
+ b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
+ exp

{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
[

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

+(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

]]}
{

a
τ

2
|Σ(θ)|−τ/2

[
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

exp
{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
+ b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
+ exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ))

+(y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))

]]}
.

Therefore, Yi
τ(θ)Y

j
τ(θ) is given by
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a2
(τ

2

)2
|Σ(θ)|−τ

{
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

× exp
{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
b

× exp
{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
[

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ)) + (yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

]

−b trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
+b2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+b trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))


−trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}

×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))


+b trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}

×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))


+ exp

{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
[

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ)) + (yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(yi − µ(θ))

]

×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))

.

Consequently, we can write Yi
τ(θ)Y

j
τ(θ) by

Yi
τ(θ)Y

j
τ(θ) = a2

(τ

2

)2
|Σ(θ)|−τ{C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9},
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and thus,

E
[
Yi(θ)Yj(θ)

]
= a2

(τ

2

)2
|Σ(θ)|−τ

×E[C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9]. (A1)

Now, we are going to calculate the different expectations appearing in Equation A2.
We have

C1 = trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
exp

{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
.

Therefore,

E[C1] = trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
∫ 1

(2π)m/2|Σ(θ)|1/2 exp
{
−1

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}

× exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

2τ

)−1

(y− µ(θ))

}
dy

= trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
(

1
2τ + 1

)m
2 ∫ 1

(2π)m/2
∣∣∣ Σ(θ)

2τ+1

∣∣∣1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

2τ + 1

)−1

(y− µ(θ))

}
dy

= trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)(
1

2τ + 1

)m
2

.

The expression of C2 is given by

C2 = −trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
b

exp
{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
,

and thus,

E[C2] = − τ

(1 + τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
∫ 1

(2π)m/2|Σ(θ)|1/2 exp
{
−1

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}

× exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

τ

)−1

(y− µ(θ))

}
dy

= − τ

(1 + τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

× 1

(1 + τ)
m
2

∫ 1

(2π)m/2
∣∣∣Σ(θ)

τ+1

∣∣∣1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

τ + 1

)−1

(y− µ(θ))

}
dy

= − τ

(1 + τ)m+1 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.
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The expression of C3 is given by

C3 = −trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
[

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ)) + (yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

]
.

Then,

E[C3] = −trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
1

(1 + 2τ)m/2

×
∫ 1

(2π)m/2
∣∣∣ Σ(θ)

2τ+1

∣∣∣1/2 exp
{
−1

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}

×(y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))dy

= −trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
1

(1 + 2τ)
m
2 +1

.

Related to C4, we have

C4 = −b trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
,

and

E[C4] = − τ

(1 + τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
∫ 1

(2π)m/2|Σ(θ)|1/2 exp
{
−1

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
× exp

{
−τ

2
(y− µ(θ))T(Σ(θ))−1(y− µ(θ))

}
dy

= − τ

(1 + τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

× 1

(1 + τ)
m
2

∫ 1

(2π)m/2
∣∣∣Σ(θ)

τ+1

∣∣∣1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

τ + 1

)−1

(y− µ(θ))

}
dy

= − τ

(1 + τ)m+1 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

Related to C5, we have

C5 = b2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
,

and

E[C5] =
τ2

(1 + τ)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

The expression of C6 is given by
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C6 = b trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))

,

and

E[C6] =
τ

(1 + τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
1

(1 + τ)
m
2 +1

=
τ

(1 + τ)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

The expression of C7 is

C7 = −trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−2τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}

×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))

,

and

E[C7] = −
τ

(1 + 2τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

Related to C8,

C8 = b trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
exp

{
−τ

2
(y− µ(θ))TΣ(θ)−1(y− µ(θ))

}
×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(y− µ(θ)) + (y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))

,

and

E[C8] =
τ

(1 + τ)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
1

(1 + τ)
m
2 +1

=
τ

(1 + τ)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

Finally,

C9 = exp
{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
[

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ)) + (yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(yi − µ(θ))

]

×

2

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(yi − µ(θ)) + (yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

.

Therefore,
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C9 = exp
{
−2τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}{
4(yi − µ(θ))TΣ(θ)−1

(
∂µ(θ)

∂θi

)T

×∂µ(θ)

∂θj
Σ(θ)−1(yi − µ(θ))

+2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))(y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

+2(yi − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(yi − µ(θ))

(
∂µ(θ)

∂θj

)T

Σ(θ)−1(yi − µ(θ))

+(yi − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(yi − µ(θ))

}
= A1 + A2 + A3 + A4,

and
E[C9] = E[A1] + E[A4]

because E[A2] = E[A3] = 0. We have

E[A1] = E
[

exp−2τ

2
(Y − µ(θ))TΣ(θ)−1(Y − µ(θ))4(Y − µ(θ))TΣ(θ)−1

×
(

∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj
Σ(θ)−1(Y − µ(θ))

]

= 4
∫ 1

(2π)m/2|Σ(θ)|1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

2τ + 1

)−1

(y− µ(θ))

}
(y− µ(θ))T

×Σ(θ)−1
(

∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj
Σ(θ)−1(y− µ(θ))dy

= 4
1

(2τ + 1)m/2

∫ 1

(2π)m/2
∣∣∣ Σ(θ)

2τ+1

∣∣∣1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

2τ + 1

)−1

(y− µ(θ))

}

×(y− µ(θ))TΣ(θ)−1
(

∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj
Σ(θ)−1(y− µ(θ))dy

= 4
1

(2τ + 1)m/2 trace

(
Σ(θ)−1

(
∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj
Σ(θ)−1 Σ(θ)

2τ + 1

)

=
4

(2τ + 1)m/2+1 trace

(
Σ(θ)−1

(
∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj

)
.

Finally, we are going to obtain E[A4].
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E[A4] = E
[

exp
{
−2τ

2
(Y − µ(θ))TΣ(θ)−1(Y − µ(θ))

}
(Y − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
×(Y − µ(θ))(Y − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(Y − µ(θ))

]

=
∫ 1

(2π)m/2|Σ(θ)|1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

2τ + 1

)−1

(y− µ(θ))

}
(y− µ(θ))T

×
(

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(y− µ(θ))(y− µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(y− µ(θ))dy

=
1

(2τ + 1)m/2

(
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 Σ(θ)

2τ + 1

)

×
[

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 + Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

]
Σ(θ)

2τ + 1

)

+
1

(2τ + 1)m/2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 Σ(θ)

2τ + 1

)

×trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 Σ(θ)

2τ + 1

)

=
1

(2τ + 1)
m
2 +2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
1

(2τ + 1)
m
2 +2

trace

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

(
∂Σ(θ)

∂θj

)T


+
1

(2τ + 1)
m
2 +2

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

= 2
1

(2τ + 1)
m
2 +2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
1

(2τ + 1)
m
2 +2

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.
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Based on the previous results, we have

E
[
Yi

τ(θ)Y
j
τ(θ)

]
= a2

(τ

2

)2
|Σ(θ)|−τ{

1

(2τ + 1)
m
2

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

− τ

(τ + 1)m+1 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

− 1

(2τ + 1)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

− τ

(τ + 1)m+1 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
τ2

(τ + 1)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
τ

(τ + 1)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

− 1

(2τ + 1)
m
2 +1

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
τ

(τ + 1)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
4

(2τ + 1)
m
2 +1

trace

(
Σ(θ)−1

(
∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj

)

+
2

(2τ + 1)
m
2 +2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
1

(2τ + 1)
m
2 +2

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)}
.

The previous expression can be written as

E
[
Yi

τ(θ)Y
j
τ(θ)

]
= a2

(τ

2

)2
Σ(θ)−τ

{
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
[

1

(2τ + 1)
m
2
− 1

(2τ + 1)
m
2 +1
− 1

(2τ + 1)
m
2 +1

+
1

(2τ + 1)
m
2 +2

]

+trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
[
− τ

(τ + 1)m+1 −
τ

(τ + 1)m+1 +
τ2

(τ + 1)m+2 +
τ

(τ + 1)m+2 +
τ

(τ + 1)m+2

]

+
4

(2τ + 1)
m
2 +1

trace

(
Σ(θ)−1

(
∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj

)

+
2

(2τ + 1)
m
2 +2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

)}
.
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Therefore,

E
[
Yi

τ(θ)Y
j
τ(θ)

]
=

(
τ + 1

τ(2π)mτ/2

)2(τ

2

)2
|Σ(θ)|−τ

×
{

4τ2

(2τ + 1)
m
2 +2

trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

− τ2

(1 + τ)m+2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+4
4

(2τ + 1)
m
2 +1

trace

(
Σ(θ)−1

(
∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj

)

+
2

(2τ + 1)
m
2 +2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

)}
.

Finally,

E
[
Yi

τ(θ)Y
j
τ(θ)

]
= (τ + 1)2


(

1

(2π)mτ/2|Σ(θ)|1/2

)2τ
1

(2τ + 1)
m
2 +2

×
(

∆i
2τ∆j

2τ + (2τ + 1)trace

(
Σ(θ)−1

(
∂µ(θ)

∂θi

)T ∂µ(θ)

∂θj

)

+
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 ∂Σ(θ)

∂θj

))

−
(

1

(2π)mτ/2|Σ(θ)|1/2

)2τ
1

(1 + τ)m+2 ∆i
τ∆j

τ


= (τ + 1)2Kij

τ (θ),

where Kij
τ (θ) was defined in (10). Then,

√
n

∂

∂θ
Hn(θ)

L−→
n−→∞

N
(

0, (τ + 1)2Kτ(θ)
)

,

and
√

n
(

1
τ + 1

∂

∂θ
Hn(θ)

)
L−→

n−→∞
N (0, Kτ(θ)).



Mathematics 2023, 11, 1480 32 of 41

Appendix A.3

Proof of Proposition 2. Note that

∂

∂θi
Hτ

n(θ) = −a
τ

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]

+a |Σ(θ)|−τ/2

[
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}(
−τ

2

)
×
(

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

−(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]

= −a
τ

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]

+a
τ

2
|Σ(θ)|−τ/2 τ

2

[
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
(

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

×(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]
.

Therefore,
∂2

∂θi∂θj
Hτ

n(θ) =
∂

∂θj
Lτ

1(θ) +
∂

∂θj
Lτ

2(θ),

being

Lτ
1(θ) = −a

τ

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]

and

Lτ
2(θ) = a

τ

2
|Σ(θ)|−τ/2 τ

2

[
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
(

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

×(yi − µ(θ))T
(

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(yi − µ(θ))

)]
.
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We are going to obtain ∂
∂θj

Lτ
1(θ).

∂

∂θj
Lτ

1(θ) = −a
τ

2

(
−τ

2

)
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)

×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]

−a
τ

2
|Σ(θ)|−τ/2trace

(
−Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi
+ Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj

)

×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]

−a
τ

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}(
−τ

2

)
×
(
−2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

−(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]
= D1 + D2 + D3,

being

D1 = a
τ

4

2
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]
,

D2 = −a
τ

2
|Σ(θ)|−τ/2trace

(
−Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

+Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj

)

×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
− b

]
,

and

D3 = a
τ2

4
|Σ(θ)|−τ/2trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
(
−2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

−(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]
.
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Now, we are going to see some result that will be important in order to obtain conver-
gence in probability of D1, D2 and D3.

Lemma A3. We have

l =
1
n

n

∑
i=1

exp
{
−τ

2
(Y i − µ(θ))TΣ(θ)−1(Y i − µ(θ))

} P−→
n−→∞

1

(1 + τ)m/2 .

Proof. It is clear that

l P−→
n−→∞

EN (µ(θ),Σ(θ))

[
exp

{
−τ

2
(Y − µ(θ))T

(
Σ(θ)

τ

)
(Y − µ(θ))

}]
=

∫
exp

{
−τ

2
(Y − µ(θ))T

(
Σ(θ)

τ

)
(Y − µ(θ))

}
fN (µ(θ),Σ(θ))(y)dy

=
1

(1 + τ)m/2

∫ 1

(2π)m/2
1∣∣∣Σ(θ)

τ+1

∣∣∣1/2 exp
{
−τ + 1

2
(y− µ(θ))T

(
Σ(θ)

τ

)
(y− µ(θ))

}
dy

=
1

(1 + τ)m/2 .

Lemma A4. We have

m =
1
n

n

∑
i=1

exp
{
−τ

2
(Y i − µ(θ))TΣ(θ)−1(Y i − µ(θ))

}
− b P−→

n−→∞

1

(1 + τ)
m
2 +1

.

Proof. Applying the previous Lemma

m P−→
n−→∞

1

(1 + τ)m/2 −
τ

(1 + τ)
m
2 +1

=
1

(1 + τ)
m
2 +1

.

Lemma A5. If we denote

n =
1
n

n

∑
i=1

exp
{
−τ

2
(Y i − µ(θ))TΣ(θ)−1(Y i − µ(θ))

}
(Y i − µ(θ))T A(Y i − µ(θ)),

we have

n P−→
n−→∞

trace(AΣ(θ))

(1 + τ)
m
2 +1

.

Proof. It is clear that
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n P−→
n−→∞

EN (µ(θ),Σ(θ))

[
exp

{
−1

2
(Y − µ(θ))T

(
Σ(θ)

τ

)−1

(Y − µ(θ))

}
×(Y − µ(θ))T A(Y − µ(θ))

]
=

1

(1 + τ)m/2

∫ 1

(2π)m/2
1∣∣∣Σ(θ)

τ+1

∣∣∣1/2 exp

{
−1

2
(y− µ(θ))T

(
Σ(θ)

τ + 1

)−1

(y− µ(θ))

}

×(y− µ(θ))T A(y− µ(θ))dy

=
1

(1 + τ)m/2 EN
(

µ(θ), Σ(θ)
1+τ

)[(Y − µ(θ))T A(Y − µ(θ))
]

=
1

(1 + τ)
m
2 +1

trace(AΣ(θ)).

Based on the previous results we have in relation to D1,

D1
P−→

n−→∞

τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

With respect to D2,

D2
P−→

n−→∞

1

(2π)m/2 |Σ(θ)|
− τ

2
1
2

1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

−|Σ(θ)|
− τ

2

(2π)m/2
1
2

trace

(
Σ(θ)−1 ∂2Σ(θ)

∂θj∂θi

)
.

In a similar way, we obtain for D3 that

D3
P−→

n−→∞
−τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

Therefore, we have

∂

∂θj
Lτ

1(θ)
P−→

n−→∞

1
2
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

−1
2
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2

(
Σ(θ)−1 ∂2Σ(θ)

∂θj∂θi

)
.

Now, we have
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∂

∂θj
Lτ

2(θ) = −a
τ2

4
|Σ(θ)|−

τ
2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

×
[

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}(
2
(

∂µ(θ)

∂θi

)T

×Σ(θ)−1(yi − µ(θ)) + (yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]

+a
τ

2
|Σ(θ)|−

τ
2

[
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
(
−τ

2

)( ∂

∂θj
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

)(
2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

×(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]

+a
τ

2
|Σ(θ)|−

τ
2

[
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
× ∂

∂θj

(
2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

)

+(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]
= C1 + C2 + C3.

Now,

C1 = −a
τ2

4
|Σ(θ)|−

τ
2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)[
1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
(

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

×(yi − µ(θ))T

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

)
(yi − µ(θ))

)]
.

It is clear that

C1
P−→

n−→∞
−τ

4
1

(1 + τ)m/2
|Σ(θ)|−

τ
2

(2π)mτ/2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
.

Next,

C2 = −a
τ2

4
|Σ(θ)|−

τ
2

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
(S1 + S2 + S3 + S4)

= L∗1 + L∗2 + L∗3 + L∗4 .

First,
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L∗1 = −a
τ2

4
|Σ(θ)|−

τ
2

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
(
−4(yi − µ(θ))TΣ(θ)−1 ∂µ(θ)

∂θj

(
∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

)
,

and

L∗1
P−→

n−→∞

|Σ(θ)|−
τ
2

(2π)mτ/2
τ

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂µ(θ)

∂θj

(
∂µ(θ)

∂θi

)T
)

.

It is clear that
L∗2

P−→
n−→∞

0 and L∗3
P−→

n−→∞
0.

Finally,

L∗4
P−→

n−→∞

τ + 1

(2π)mτ/2
τ

4
|Σ(θ)|−

τ
2

1

(1 + τ)m/2

×
{

trace

{(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)[
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 + Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

]
× Σ(θ)

1 + τ

}
+ trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 Σ(θ)

1 + τ

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1 Σ(θ)

1 + τ

)}
= 2

τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2+1 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1Σ(θ)

∂Σ(θ)

∂θi

)

+
τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2+1 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.

Therefore,

C2 = L∗1 + L∗2 + L∗3 + L∗4
P−→

n−→∞
R,

where

R =
τ|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2 trace

Σ(θ)−1 ∂µ(θ)

∂θj

(
∂µ(θ)

∂θj

)T


+
τ

2
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2+1 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2+1 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.
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Finally,

C3 = a
τ

2
|Σ(θ)|−

τ
2

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
{(

2
∂

∂θj

(
∂µ(θ)

∂θi

)T
Σ(θ)−1(yi − µ(θ))

)

+2
(

∂µ(θ)

∂θi

)T ∂Σ(θ)−1

∂θi
(yi − µ(θ))

−2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1

(
∂µ(θ)

∂θj

)T

−2
(

∂µ(θ)

∂θi

)T(
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

)
(yi − µ(θ))

+(yi − µ(θ))T{−Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

+Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj
Σ(θ)−1 − Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

}
(yi − µ(θ))

= A∗1 + A∗2 + A∗3 + A∗4 + A∗5 .

It is clear that
A∗1

P−→
n−→∞

0 A∗2
P−→

n−→∞
0 and A∗4

P−→
n−→∞

0.

On the other hand,

A∗3 = −a
τ

2
|Σ(θ)|−

τ
2

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
(

2
(

∂µ(θ)

∂θi

)T
Σ(θ)−1 ∂µ(θ)

∂θi

)
,

and

A∗3
P−→

n−→∞
−(τ + 1)

|Σ(θ)|−
τ
2

(2π)mτ/2(1 + τ)m/2

(
∂µ(θ)

∂θi

)T
Σ(θ)−1 ∂µ(θ)

∂θj
.

Related to A∗5 , we have

A∗5 = a
τ

2
|Σ(θ)|−

τ
2

1
n

n

∑
i=1

exp
{
−τ

2
(yi − µ(θ))TΣ(θ)−1(yi − µ(θ))

}
×
{
(yi − µ(θ))T

[
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi
Σ(θ)−1

+Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj
Σ(θ)−1 − Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1

]
(yi − µ(θ))

}
,

and

A∗5
P−→

n−→∞
− 1

(2π)mτ/2
1
2
|Σ(θ)|−

τ
2

1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
1

(2π)mτ/2
1
2
|Σ(θ)|−

τ
2

1

(1 + τ)m/2 trace
(

Σ(θ)−1 ∂2Σ(θ)

∂θi∂θ

)

− 1

(2π)mτ/2
1
2
|Σ(θ)|−

τ
2

1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.
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Therefore,

C3
P−→

n−→∞
−(τ + 1)

|Σ(θ)|−
τ
2

(2π)mτ/2
1

(1 + τ)m/2

(
∂µ(θ)

∂θi

)T
Σ(θ)−1 ∂µ(θ)

∂θj

− |Σ(θ)|
− τ

2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj

)

− |Σ(θ)|
− τ

2

(2π)mτ/2
1
2

1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.

We are going to join all the previous expressions in order to obtain ∂
∂θj

Lτ
2(θ),

∂

∂θj
Lτ

2(θ) = C1 + C2 + C3

= C1 + L∗1 + L∗2 + L∗3 + L∗4 + C3

= C1 + L∗1 + L∗2 + L∗3 + L∗4 + A∗1 + A∗2 + A∗3 + A∗4 + A∗5 .

Then,

∂

∂θj
Lτ

2(θ)
P−→

n−→∞
−τ

4
1

(1 + τ)m/2
|Σ(θ)|−

τ
2

(2π)mτ/2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
τ|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
τ

2
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)
m
2 +1

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2+1 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)

−(τ + 1)
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2

(
∂µ(θ)

∂θi

)T
Σ(θ)−1 ∂µ(θ)

∂θj

− |Σ(θ)|
− τ

2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj

)

− |Σ(θ)|
− τ

2

(2π)mτ/2
1
2

1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.

Based on the previous results, we have

∂2

∂θi∂θj
Hτ

n(θ) =
∂

∂θj
Lτ

1(θ) +
∂

∂θj
Lτ

2(θ)

= D1 + D2 + D3 + C1 + C2 + C3

= D1 + D2 + D3 + C1 + L∗1 + L∗2 + L∗3 + L∗4
+A∗1 + A∗2 + A∗3 + A∗4 + A∗5



Mathematics 2023, 11, 1480 40 of 41

and

∂2

∂θi∂θj
Hτ

n(θ)
P−→

n−→∞

1
2
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

−1
2
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2

(
Σ(θ)−1 ∂2Σ(θ)

∂θj∂θi

)

−τ

4
1

(1 + τ)m/2
|Σ(θ)|−

τ
2

(2π)mτ/2 trace
(

Σ(θ)−1 ∂Σ(θ)

∂θi

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)

+
τ|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
τ

2
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2+1 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
τ

4
|Σ(θ)|−

τ
2

(2π)mτ/2(1 + τ)m/2+1 trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj

)
trace

(
Σ(θ)−1 ∂Σ(θ)

∂θi

)

−(τ + 1)
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2

(
∂µ(θ)

∂θi

)T
Σ(θ)−1 ∂µ(θ)

∂θj

− |Σ(θ)|
− τ

2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)

+
|Σ(θ)|−

τ
2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂2Σ(θ)

∂θi∂θj

)

− |Σ(θ)|
− τ

2

(2π)mτ/2
1

(1 + τ)m/2
1
2

trace

(
Σ(θ)−1 ∂Σ(θ)

∂θj
Σ(θ)−1 ∂Σ(θ)

∂θi

)
.

After some algebra, we have

∂2

∂θi∂θj
Hτ

n(θ)
P−→

n−→∞
−(τ + 1)Jij

τ (θ).
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