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1 Introduction.

In this paper we study the approximate controllability of several semilinear

parabolic boundary value problems for which the nonlinear term appears either

in the second order parabolic equation or in the flux boundary condition. We

also distinguish the case in which the control function acts on the interior of

the set Q := Ω × (0, T ) from the one in which the control acts on the boundary

Σ := ∂Ω × (0, T ) (or on a subset O of Σ). Most of our results will concern the

control of problems with final observation i.e. our goal is to prove that the set

{y(T, ·; v)} generated by the values of solutions at time T is dense in L2(Ω) as

v runs through the set of controls. However we also consider a control problem

with a boundary observation. In this case we shall prove that if Σ1 ⊂ Σ then the

set {y(·, ·; v}|Σ1} generated by the traces of solutions on Σ1 is a dense subset of

L2(Σ1) as v runs through the set of controls.

This paper grew out of the unpublished thesis of one of the authors (Henry

[16]) at the University of Paris VI. His results were pioneering in the study of

the approximate controllability for semilinear parabolic problems. For instance,

to the best of our knowledge, the technique of applying the Kakutani fixed point

theorem after a linearization argument, since widely used in works on controlla-

bility of nonlinear problems (see e.g. Zuazua [23], Fabre-Puel-Zuazua [13], [14],

Dı́az [6], Dı́az-Ramos [11], [12], etc...), first appeared in Henry [16].

This paper is organised according to the method of proof. Section 2 is devoted

to the illustration of the so called Cancelation Method: the nonlinear control prob-

lem is solved as a perturbation of a linear control problem cancelling the nonlinear

term. This method is applied to the study of the approximate controllability of

two semilinear parabolic boundary value problems (see problems (PD) and (PN)

bellow). In the first problem we have a sign constraint on the control.

Section 3 contains the treatment of two different control problems (see (P1)

and (P2) below) via the application of the Kakutani fixed point theorem. As

indicated above, this general idea was already used in Henry [16]. However, in

order to obtain sharper conditions on the nonlinear terms, we shall use also some

more recent arguments introduced (for other boundary value problems) in Lions

[18] and Fabre-Puel-Zuazua [13]. This section contains some improvements of

the results by Henry [16]. In particular we state and prove all the results of this

section under a unique condition on the behaviour at infinity of the nonlinear
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terms f(y): we shall asume that f : IR → IR is sublinear at infinity i.e. there

exists some nonnegative constants a, b and M such that

|f(s)| ≤ a + b|s| for any s ∈ IR, |s| > M.(1.1)

For the case f(s) = |s|p−1s, the optimality of condition (1.1) (i.e. noncontrol-

lability for p > 1) was already proved in Henry [16] (counterexample due to A.

Bamberger) for the case of one-dimensional flux control superlinear problems by

using an energy method. Later, the optimality (again for the case f(s) = |s|p−1s)

was obtained by showing the existence of some obstruction functions and, in fact,

the approximate controllability for a suitable subclass of desired states may be

demonstrated (see Dı́az [9]).

2 On the cancelation method.

The main goal of this section is to present some results related to the Lp-

approximate controllabiliy of the Dirichlet semilinear problem

(PD)





yt −∆y + f(y) = v in Q = Ω× (0, T ),

y = 0 on Σ = ∂Ω× (0, T ),

y(0) = y0 on Ω,

and the nonlinear Neumann type problem

(PN)





yt −∆y = 0 in Q,
∂y

∂ν
+ f(y) = v on Σ,

y(0) = y0 on Ω,

where Ω is a bounded subset of IRn such that ∂Ω is a (n−1) dimensional infinitely

differentiable manifold and Ω is locally on only one side of ∂Ω, T > 0, Q =

Ω× (0, T ), f is a continuous real valued function, y0 ∈ L2(Ω), ν is the outer unit

normal vector to ∂Ω and in both cases v represents the control.

For problem (PD) we shall show a stronger property than the usual approx-

imate controllability: for suitable desired states we can control the problem by

using merely nonnegative controls. In both cases we prove Lp-approximate con-

trollability for any p such that 1 < p < ∞.

Our treatement of problems (PD) and (PN) relies on the same general pro-

gramme: we first establish the conclusion for the linear associated problem and as
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a second step, we prove the result for the nonlinear case by means of a cancelation

technique already introduced in Henry [16]. This technique consists in modifying

the control associated to the linear case by means of a perturbation which cancels

the nonlinearity appearing in the equation or in the boundary condition.

2.1 Internal nonnegative controls.

In spite of the extensive literature on the approximate controllability of nonlinear

parabolic problems (see e.g. the list of references of the survey Dı́az [7]) the study

of the approximate controllability property under a nonnegativity constraint on

the controls seems to have been unexplored before the work Dı́az [6] dealing with

the parabolic obstacle problem.

We point out that, in constrast to the case of unconstrained control problems

(see e.g. Henry [16] and Dı́az-Fursikov [10]) the constraint on the controls intro-

duces some important difficulties, even if the control v acts on the whole domain

Q.

We start by considering the linear case, which we shall use in the proof of the

result for the nonlinear case. In the rest of this paper we shall always assume

1 < p < ∞ (the limit cases p = 1 and p = ∞ can be treated also with some

technical modifications). Given a measurable set M of IRd (d ≥ 1) we define the

set Lp
+(M) = {g ∈ Lp(M) : g ≥ 0}.

Theorem 1 Let h ∈ Lp(Q), Y0 ∈ Lp(Ω) and a ∈ L∞(Q). We denote by Y (·; v)

the solution of

(LPD)





Yt −∆Y + aY = h + v in Q

Y = 0 on Σ

Y (0) = Y0 on Ω.

Then, if U is a dense subset of Lp
+(Q), the set F := {Y (T ; v); v ∈ U} is dense

in Y (T ; 0) + Lp
+(Ω).

Proof. By linearity we can assume Y0 ≡ 0 and h ≡ 0. Suppose that there exists

yd ∈ Lp
+(Ω) such that yd 6∈ F (notice that F is a closed and convex set). Then,

by the Hahn-Banach theorem (in its geometrical form), we can separate yd from

F , i.e. there exists α ∈ IR and g ∈ Lp′(Ω) (with 1
p

+ 1
p′ = 1) such that

∫

Ω
Y (T ; v)gdx < α <

∫

Ω
ydgdx for all v ∈ U .
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Further, if v ∈ Lp
+(Q) and λ ∈ IR+, then by linearity, Y (T, λv) = λY (T, v) ∈ F

and so ∫

Ω
Y (T ; v)gdx ≤ 0 < α <

∫

Ω
ydgdx for all v ∈ U .(2.1)

Now, let q ∈ C([0, T ] : Lp′(Ω)) be the solution of the auxiliary backward problem





−qt −∆q + aq = 0 in Q

q = 0 on Σ

q(T ) = g on Ω.

(2.2)

Multiplying (2.2) by Y (v), with v ∈ U arbitrary, we obtain

0 ≥
∫

Ω
g(x)Y (T, x; v)dx =

∫

Q
qvdxdt ∀ v ∈ U .

Then, q ≤ 0 in Q. In particular g ≤ 0, which is a contradiction to (2.1). 2

Now, we are ready to consider the nonlinear problem (PD). For simplicity we

shall assume that

f is a nondecreasing continuous real function(2.3)

and that

y0 ∈ L∞(Ω).(2.4)

Theorem 2 Assume (2.3) and (2.4). If U is a dense subset of Lp
+(Q) then the

set F = {y(T ; v) solution of (PD); v ∈ U} is dense in y(T ; 0) + Lp
+(Ω).

Proof. As y0 ∈ L∞(Ω), by the maximum principle y(·; 0) ∈ L∞(Q) and h(·) :=

−f(y(·; 0)) ∈ L∞(Q). Then, theorem 1, with h = −f(y(·; 0)), implies that there

exists wε ∈ L∞+ (Q) such that

‖ Y (T ; wε)− yd ‖Lp(Ω)< ε,

with yd ∈ y(T ; 0) + Lp
+(Ω). Further, again by means of the maximum principle,

f(Y (wε)) ∈ Lp(Q). Now, given δ > 0, let ỹ be the unique solution of the auxiliary

problem

(P∗D)





ỹt −∆ỹ + f(ỹ + Y (wε)) = f(Y (wε)) + δ in Q

ỹ = 0 on Σ

ỹ(0) = 0 on Ω.
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Then, if we define y = ỹ + Y (wε), we easily check that y is the solution of (PD)

with

vε = wε + f(Y (wε))− f(y(·; 0)) + δ ∈ Lp(Q).

Moreover, vε ≥ 0 since f is nondecreasing and Y (·; wε) ≥ Y (·; 0) = y(·; 0). Using

the density of U and the continuous dependence on the data in problem (P∗D),

we can choose v ∈ U such that ‖ v− vε ‖Lp(Q)≤ ε. Finally applying Hölder’s and

Young’s inequalities, we conclude (for δ > 0 small enough) that

‖ ỹ(T ) ‖Lp(Ω)≤ C1ε

and so

‖ y(T ; v)− yd ‖Lp(Ω)≤ C2ε. 2

Remark 3 In the above theorem we can replace f by a general maximal mono-

tone graph β of IR2. The proof of existence of a solution in this case can be found,

for instance, in Benilan [4] and theorem 2 remains true if we assume β+(r) < +∞
for all r ∈ D(β), where

β+(r) := sup{b ∈ IR : b ∈ β(r)}.

This assumption holds in many cases: i) the case of D(β) = IR (as, for instance,

when β is a continuous nondecreasing function or the Heaviside graph); ii) the

condition is also satisfied in some cases for which D(β) 6= IR such as, for instance,

β(r) =





∅ if r < 0

(−∞, 0] if r = 0

0 if r > 0.

Remark 4 It is easy to see that theorem 1 with the decomposition Y = Y+−Y−
implies the Lp-approximate controllability for the unconstrained linear problem.

For the unconstrained nonlinear case the Lp-approximate controllability follows

from obvious modifications of theorem 2. The same property is also proved in

Henry [16] without assumption (2.3), but with some additional condition on the

behaviour of f at infinity.
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2.2 Neumann type boundary controls.

In this section, we study problem (PN). The cancelation technique can be ap-

plied in order to prove the Lp-approximate controllability (under unconstrained

controls).

Theorem 5 Assume (2.3), (2.4). For v ∈ Lp(Σ) we denote by y(v) the unique

solution of

(PN)





yt −∆y = 0 in Q
∂y

∂ν
+ f(y) = v on Σ

y(0) = y0 on Ω.

Then, if U is dense in Lp(Σ), the set F = {y(T ; v); v ∈ U} is dense in Lp(Ω).

Proof: For yd ∈ Lp(Ω) and ε > 0 fixed, we use the decomposition y = ỹε + Y

with Y the solution of the associated linear problem

(LPN)





Yt −∆Y = 0 in Q
∂Y

∂ν
= −f(y(·; 0)) + vε on Σ

Y (0) = y0 on Ω,

for a suitable vε such that ‖ y(T ; vε) − yd ‖Lp(Ω)< ε (we can prove the existence

of vε again by means of the Hahn-Banach theorem; see Lions [17]). For δ > 0 let

ỹ be the solution of the nonlinear problem

(P∗N)





ỹt −∆ỹ = 0 in Q
∂ỹ

∂ν
+ f(ỹ + Y (vε)) = f(Y (vε)) + δ on Σ

ỹ(0) = 0 on Ω.

Then, by Lp a priori estimates, it is easy to see that if δ > 0 is small enough,

there exists C > 0 such that

‖ ỹ(T ) ‖Lp(Ω)≤ Cε.

Then using the triangle inequality we obtain the desired result. 2
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3 Approximate Controllability via the Kakutani

fixed point theorem: case of flux boundary

controls.

This section is devoted to proving some controllability results for nonlinear parabolic

problems by means of a different method. The key idea is the application of a

fixed point argument for a (possibly) multivalued operator (the Kakutani fixed

point theorem). We shall consider two different control problems

(P1)





yt −∆y + f(y) + a(x, t)β(y) 3 h in Q
∂y

∂ν
= vχO on Σ

y(x, 0) = y0(x) on Ω,

and

(P2)





yt −∆y + a(x, t)β(y) 3 h in Q
∂y

∂ν
+ f(y) = 0 on Σ1

∂y

∂ν
= v on Σ2

y(x, 0) = y0(x) on Ω,

where O ⊂ Σ and ν is the outward normal vector to ∂Ω. The controllability

will be considered under different criteria: observation in time T for (P1) (section

3.1) and observation on Σ1 for (P2) (section 3.2). Our method will combine some

ideas introduced in Henry [16], Lions [18] and Fabre-Puel-Zuazua [13].

We point out that the controllability results are independent of the unique-

ness of the solution for a fixed control: so, for instance, if a(x, t) < 0 and β is

multivalued there is lack of uniqueness of solutions (see Dı́az [8]).

3.1 Observation in time T .

Let O be a nonempty open subset of Σ = ∂Ω × (0, T ). Let a ∈ L∞(Q), and

consider h ∈ L2(Q), y0 ∈ L2(Ω). We define

X1(Q) = {ϕ : ϕ ∈ H1,2(Q),
∂ϕ

∂ν
= 0, ϕ(·, T ) ≡ 0}.

Here and in what follows we shall use the notation

Hr,s(Q) = L2(0, T ; Hs(Ω)) ∩Hr(0, T ; L2(Ω))
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for r, s ∈ IR.

Following Lions-Magenes [19] we define the notion of weak solution in the

following manner

Definition 6 A function y ∈ L2(Q) is a solution of problem (P1) if there exists

b ∈ L2(Q) with b ∈ β(y) such that

(y,−ϕt −∆ϕ)L2(Q) = (h− f(y)− a(x, t)b, ϕ)L2(Q)

+(vχO, ϕ)L2(Σ) + (y0, ϕ(·, 0))L2(Ω) ∀ϕ ∈ X1(Q).

Theorem 7 Let f be a real valued function satisfying the following two conditions

f(·) is continuous and there exists f ′(s0) for some s0 ∈ IR,(3.1)




there exists M > 0, c1 > 0, and c2 > 0 such that |f(s)| ≤ c1 + c2|s|,
for |s| > M.

(3.2)

Assume also that β is a bounded maximal monotone graph of IR2 such that D(β) =

IR. Then the set F := {y(T ; v) : y(T ; v) is a solution of (P1) with v ∈ L∞(O)}
is dense in X = L2(Ω).

Before beginning the proof of theorem 7 we shall recall some results.

Proposition 8 Let a = a(t, x) ∈ L∞(Q). There exists a constant C > 0 such

that for each k ∈ L2(Σ), h ∈ L2(Q) and ω0 ∈ L2(Ω), the solution ω of




ωt −∆ω + a(t, x)ω = h in Q
∂ω

∂ν
= k on Σ

ω(0) = ω0 on Ω

(3.3)

satisfies

‖ ω ‖H1/2,1(Q)≤ Ca

(
‖ ω0 ‖L2(Ω) + ‖ h ‖L2(Q) + ‖ k ‖L2(Σ)

)
.(3.4)

Further, if {an} ⊂ L∞(Q) with supn∈IN{‖ an ‖L∞(Q)} < ∞, then we can choose

Can = C independent of n.

The proof is given in two steps.

Lemma 9 The conclusion of proposition 8 is true if ω0 ≡ 0 and k ≡ 0.
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Proof of lemma 9. By density we can choose a sequence an ∈ C∞(Q) such

that an → a in L2(Q) and {an} is uniformly bounded in the topology of L∞(Q).

Then, if we denote by ωn the solution of




ωn
t −∆ωn + an(x, t)ωn = h in Q

∂ωn

∂ν
= 0 on Σ

ωn(0) = 0 on Ω,

by well known results (see, for instance, section 6.1 of Chapter 4 of Lions-Magenes

[19]), ωn ∈ H1,2(Q) and

‖ ωn ‖H1,2(Q)≤ C
(
‖ h ‖L2(Q) + ‖ ωn ‖L2(Q)

)

with C independent of n. Further, by “multiplying” in the above problem by ωn

and by using Young’s inequality it is easy to deduce that

‖ ωn ‖L2(Q)≤ C ′ ‖ h ‖L2(Q)

with C ′ independent of n. So, if ω is the limit of ωn in the weak topology of

H1,2(Q), by means of definition 6 we can pass to the limit in the problem and

deduce that ω is the unique solution of the problem




ωt −∆ω + a(x, t)ω = h in Q
∂ω

∂ν
= 0 on Σ

ω(0) = 0 on Ω

and that it satisfies

‖ ω ‖H1,2(Q)≤ C ′′ ‖ h ‖L2(Q)

with C ′′ independent of n. 2

Proof of proposition 8. We write ω = u + z, where u satisfies




ut −∆u = h in Q
∂u

∂ν
= k on Σ

u(0) = ω0 on Ω

and z is the solution of




zt −∆z + az = −au in Q
∂z

∂ν
= 0 on Σ

z(0) = 0 on Ω.

(3.5)
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Then we have the estimate

‖ u ‖H1/2,1(Q)≤ c1

(
‖ k ‖L2(Σ) + ‖ ω0 ‖L2(Ω) + ‖ h ‖L2(Q)

)

(see, for instance, section 15.1 of Chapter 4 of Lions-Magenes [19]). Finally, by

applying lemma 9, we obtain that

‖ z ‖H1/2,1(Q)≤‖ z ‖H1,2(Q)≤ C ‖ u ‖L2(Q) . 2

Proposition 10 If ω is the solution of (3.3), then ω ∈ C([0, T ]; L2(Ω)). Further,

if k ∈ H1/4,1/2(Σ), then ω ∈ H1,2((δ, T )× Ω) for all 0 < δ < T .

Proof: We know that ω ∈ L2(0, T ; H1(Ω)) and according to Lions-Magenes [19]

(see proposition 12.1 of Chapter 1),

∆ω ∈ L2(0, T ; H−1(Ω)).

Therefore

ωt = h− a(x, t)ω + ∆ω ∈ L2(0, T ; H−1(Ω)).

By using theorem 3.1 of Chapter 3 of Lions-Magenes [19], we obtain that

ω ∈ C([0, T ]; [H1(Ω), H−1(Ω)]1/2),

where [X,Y ]θ denotes the θ−intermediate space between the Banach spaces X

and Y , if X is a dense subset of Y and X ⊂ Y is a continuous injection (for

more details see, for instance, section 2 of Chapter 1 of Lions-Magenes [19]).

Now, by using theorem 12.4 of Chapter 1 of Lions-Magenes [19] we obtain that

[H1(Ω), H−1(Ω)]1/2 = L2(Ω). On the other hand, for all δ, 0 < δ < T , w(δ)

belongs to H1(Ω). So, by applying theorem 6.1 of Chapter 4 of Lions-Magenes

[19], we deduce that if k ∈ H1/4,1/2(Σ), then ω ∈ H1,2((δ, T )× Ω). 2

Following Lions [18] and Fabre-Puel-Zuazua [13], for ϕ0 ∈ L2(Ω) we introduce

the functional

J(ϕ0) =
1

2

(∫

O
|ϕ(x, t)|dΣ

)2

+ ε|ϕ0|L2(Ω) −
∫

Ω
ydϕ

0dx,

with ϕ(x, t) the solution of the backward problem




−ϕt −∆ϕ + a(x, t)ϕ = 0 in Q
∂ϕ

∂ν
= 0 on Σ

ϕ(T ) = ϕ0 on Ω.

(3.6)

11



Remark 11 We point out that, if we reformulate the problem in forward form,

by definition 6, a function ϕ is said to be a solution of (3.6) if

(ϕ, ψt −∆ψ + a(x, t)ψ)L2(Q) = (ψ(T ), ϕ0)L2(Ω) ∀ψ ∈ X1(Q).

Proposition 12 If O is a nonempty open subset of Σ, a ∈ L∞(Q) and ϕ satisfies




−ϕt −∆ϕ + a(x, t)ϕ = 0 in Q
∂ϕ

∂ν
= 0 on Σ,

with ϕ(T ) ∈ L2(Ω) and

ϕ = 0 on O,

then ϕ ≡ 0 in Q.

Proof: Let t∗ = sup{t ≤ T : ∃ x ∈ ∂Ω such that (x, t) ∈ O}. Then, by a

unique continuation theorem (see Mizohata [20] and Saut-Scheurer [21]) and the

uniqueness of solutions of this type of problem, ϕ ≡ 0 in Q∗ = Ω×(0, t∗). Finally,

by backward uniqueness results (see page 175 of Friedman [15]), ϕ ≡ 0 in the

whole domain Q. 2

Remark 13 We point out that in the proof of proposition 12, we can apply the

unique continuation argument since ϕ ∈ L2(δ, T ; H2(Ω)) for all 0 < δ < T (see

proposition 10).

Proposition 14 For all ε > 0, yd ∈ L2(Ω) and a ∈ L∞(Q), the functional

J(·; a, yd) : L2(Ω) → IR is strictly convex and satisfies

lim inf
|ϕ0|2→∞

J(ϕ0; a, yd)

|ϕ0|2 ≥ ε.(3.7)

Further J(·; a, yd) attains its minimum at a unique point ϕ̂0 in L2(Ω) and

ϕ̂0 = 0 ⇔ |yd|2 ≤ ε.(3.8)

Proof. If J does not satisfy (3.7), then there exists a sequence {ϕ0
n} ⊂ L2(Ω)

such that

|ϕ0
n|2 → +∞ and lim inf

n→+∞
J(ϕ0

n; a, yd)

|ϕ0
n|2

< ε.
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Thus, if ϕn is the solution of (3.6) with initial data ϕ0
n, we obtain that

lim inf
n→+∞

∫

O
|ϕn(x, t)|
|ϕ0

n|2
dΣ = 0,(3.9)

since in the other case

lim inf
n→+∞

J(ϕ0
n; a, yd)

|ϕ0
n|2

= lim inf
n→+∞


1

2
|ϕ0

n|2
(∫

O
|ϕn(t, x)|
|ϕ0

n|2
dΣ

)2

+ ε−
∫

Ω
yd

ϕ0
n

|ϕ0
n|2

dx




≥ lim inf
n→+∞


1

2
|ϕ0

n|2
(∫

O
|ϕn(t, x)|
|ϕ0

n|2
dΣ

)2

+ ε− |yd|2

 = +∞.

At the same time, ϕ0
n

|ϕ0
n|2 has a unit norm and so it converges weakly in L2(Ω) to

an element ψ0 ∈ L2(Ω). Now, from proposition 8, { ϕn

|ϕ0
n|2}n∈IN converges weakly

in L2(Ω) to ψ (solution of (3.6) with ψ(T ) = ψ0). Then, by (3.9) and the unique

continuation property of proposition 12, ψ0 ≡ 0. Further, since

J(ϕ0
n; a, yd) ≥ |ϕ0

n|2
(
ε−

∫

Ω
yd

ϕ0
n

|ϕ0
n|2

dx

)
,

we deduce that

lim inf
n→+∞

J(ϕ0
n; a, yd)

|ϕ0
n|2

≥ ε,

which is a contradiction to the assumption.

In order to prove (3.8), we use that J(·; a, yd) is strictly convex and continuous

in L2(Ω) and that

lim
|ϕ0

n|2→+∞
J(ϕ0

n; a, yd) = +∞.

Then J(.; a, yd) attains its minimum at a unique point ϕ̂0 ∈ L2(Ω) (see, for

instance, Brézis [5]).

Further, if |yd|2 ≤ ε, then

J(ϕ0
n; a, yd) ≥ ε|ϕ0|2 − |yd|2|ϕ0|2

≥ |ϕ0|2(ε− |yd|2)
≥ 0 ∀ ϕ0 ∈ L2(Ω),

which implies that ϕ̂0 = 0.

Converserly, if we suppose that ϕ̂0 = 0 and ε < |yd|2, we take

γ =
|yd|2 − ε

2
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and then, as

|yd|2 = sup
|ϕ0|2=1

∫

Ω
ydϕ

0dx,

if ϕ̃0 ∈ L2(Ω) with |ϕ̃0|2 = 1 and |yd|2−
∫
Ω ydϕ̃

0dx < γ
2
, we obtain for every µ > 0

that

J(µϕ̃0) =
µ2

2

(∫

O
|ϕ̃(t, x)|dΣ

)2

+ µ
(
ε−

∫

Ω
ydϕ̃

0dx
)

<
µ2

2

(∫

O
|ϕ̃(t, x)|dΣ

)2

+ µ(ε− |yd|2 +
γ

2
)

=
µ2

2

(∫

O
|ϕ̃(t, x)|dΣ

)2

+ µ(−2γ +
γ

2
)

< 0, if µ is small enough.

But ϕ̂0 = 0 implies that J(µϕ̃0) ≥ J(ϕ̂0) = 0, which is a contradiction and so

ε ≥ |yd|2. 2

Proposition 15 Let M be the mapping

M : L∞(Q) → L2(Ω)

a(x, t) −→ ϕ̂0.

If B is a bounded subset of L∞(Q), then M(B) is a bounded subset of L2(Ω).

Proof: Assume, for the sake of a contradiction, that there exists a sequence

(an)n ⊂ B ⊂ L∞(Q) such that

|ϕ̂0
n|2 = |M(an)|2 →∞.(3.10)

Now, since B is bounded, there exists a ∈ L∞(Q) such that a subsequence

an
n→+∞

⇀ a in the weak ∗ topology of L∞(Q).

Let us see that

lim inf
|ϕ0

n|2→∞
J(ϕ0

n; an, yd)

|ϕ0
n|2

≥ ε.(3.11)

If this is not true, there exists a sequence (ϕ0
n)n of L2(Ω) such that |ϕ0

n|2 → ∞
and

lim inf
n→∞

J(ϕ0
n; an, yd)

|ϕ0
n|2

< ε.(3.12)

Next, in a way similar to that followed in the proof of proposition 14 we put

ϕ̃0
n =

ϕ0
n

|ϕ0
n|2

and denote by ϕ̃n the solution of (3.6) with respect to an with

14



ϕ̃n(T ) = ϕ̃0
n. Since |ϕ̃0

n|2 = 1, we can suppose that ϕ̃0
n, converges weakly in L2(Ω)

to ϕ̃0 ∈ L2(Ω).

As in the proof of proposition 14 it is easy to prove that ϕ̃n converges in the

weak topology of L1(O) to ϕ̃ ( solution of (3.6) ) with respect to a and with

ϕ̂(T ) = ϕ̃0). Then ∫

O
|ϕ̃n|dxdt

n→∞→ 0,

and so

ϕ̂0 = 0.

Now if Jn =
J(ϕ0

n; an, yd)

|ϕ0
n|2

, it holds that

Jn ≥
(
ε−

∫

Ω
yn

d ϕ̃0
ndx

)
,

and since ϕ̃0
n converges in the weak topology of L2(Ω) to 0 , we obtain

lim inf
n→+∞ Jn ≥ ε,

which contradicts (3.12) and thus proves (3.11).

Finally, we point out that J(0; an, yd) = 0, and so J(ϕ̂0
n; an, yd) ≤ 0, which is

a contradiction to (3.10) and (3.11). Therefore

sup
n∈IN

{|ϕ̂0
n|2 : n ∈ IN} < +∞. 2

Definition 16 Given V : X → IR ∪ {+∞} a convex and proper function on the

Banach space X, it is said that an element p0 of V ′ belongs to the set ∂V (x0)

(subdifferential of V at x0 ∈ X) if

V (x0)− V (x) ≤ (p0, x0 − x) ∀ x ∈ X.

Remark 17 Under the conditions of definition 16, x0 minimizes V over X (or

over a convex subset of X) if and only if

0 ∈ ∂V (x0).

Proposition 18 Under the above conditions, if V is a lower semicontinuous

function, then p0 ∈ ∂V (x0) if and only if

(p0, x) ≤ lim
h→0+

V (x0 + hx)− V (x0)

h
(< +∞) ∀ x ∈ X.

15



For a proof see, for instance, proposition 3 (page 187) and theorem 16 (page

198) of Aubin-Ekeland [2].

Remark 19 If V is differentiable its differential coincides with its subdifferential.

Lemma 20 Let ϕ0 ∈ L2(Ω), ϕ0 6= 0, Let ϕ be the solution of (3.6) verifying

ϕ(T ) = ϕ0. Then we have that

∂J(ϕ0; a, yd) = {ξ ∈ L2(Ω), ∃ v ∈ sgn(ϕ)χO satisfying

∫

Ω
ξ(x)θ0(x)dx =

(∫

O
|ϕ(t, x)|dΣ

) (∫

O
v(t, x)θ(t, x)dΣ

)

+ε
∫

Ω

ϕ0(x)

|ϕ0|2 θ0(x)dx−
∫

Ω
yd(x)θ0(x)dx ∀θ0 ∈ L2(Ω)},

where θ is the solution of (3.6) verifying θ(T ) = θ0.

Proof: We introduce the following notation

J(ϕ0; a, yd) =
1

2

(∫

O
|ϕ(t, x)|dΣ

)2

+ε|ϕ0|2−
∫

Ω
ydϕ

0dx = J1(ϕ
0)+J2(ϕ

0)+J3(ϕ
0).

Let P := {(t, x) ∈ O such that ϕ(t, x) = 0}, and ξ ∈ ∂J1(ϕ
0). Since J1 satisfies

conditions of proposition 18, for every θ0 ∈ L2(Ω) we have

(ξ, θ0) ≤ lim
h→0+

J1(ϕ
0 + hθ0)− J1(ϕ

0)

h

= lim
h→0+

1

2h

[(∫

O−P
|ϕ + hθ|dΣ

)2

−
(∫

O−P
|ϕ|dΣ

)2
]

+ lim
h→0+

1

2h

[(∫

P
|ϕ + hθ|dΣ

)2

−
(∫

P
|ϕ|dΣ

)2
]

+ lim
h→0+

1

h

[(∫

O−P
|ϕ + hθ|dΣ

)
·
(∫

P
|ϕ + hθ|dΣ

)]

= lim
h→0+

1

2h

[(∫

O−P
(|ϕ|+ sgn(ϕ)hθ) dΣ

)2

−
(∫

O−P
|ϕ|dΣ

)2
]

+ lim
h→0+

1

h

[(∫

O−P
(|ϕ|+ sgn(ϕ)hθ)dΣ

)
·
(∫

P
h|θ|dΣ

)]

= lim
h→0+

1

2h

[
h2

(∫

O−P
sgn(ϕ)θdΣ

)2

+2h
∫

O−P
|ϕ|dΣ

∫

O−P
sgn(ϕ)θdΣ

]
+

∫

O
|ϕ|dΣ ·

∫

P
|θ|dΣ

=
∫

O−P
|ϕ|dΣ

∫

O−P
sgn(ϕ)θdΣ +

∫

O
|ϕ|dΣ

∫

P
|θ|dΣ

=
∫

O
|ϕ|dΣ

∫

O−P
sgn(ϕ)θdΣ +

∫

O
|ϕ|dΣ

∫

P
|θ|dΣ.

16



Then,

ξ ∈ ∂J1(ϕ
0) ⇔ ∀ θ0 ∈ L2(Ω),

(ξ, θ0) ≤ |ϕ|L1(O)

(∫

O−P
sgn(ϕ(t, x))θ(t, x)dΣ +

∫

P
|θ(t, x)|dΣ

)
.(3.13)

Now, we put

G = {θ ∈ L1(O) : θ is solution of (3.6) with θ0 ∈ L2(Ω)}.

Then, the mapping θ → θ0 → (ξ, θ0) is a linear mapping on G and so applying

the Hahn-Banach theorem there exists a linear mapping V on L1(O), such that

∀ θ0 ∈ L2(Ω), (ξ, θ0) = V (θ)

and for each Θ ∈ L1(O),

V (Θ) ≤ |ϕ|L1(O)

(∫

O−P
sgn(ϕ(t, x))Θ(t, x)dΣ +

∫

P
|Θ(t, x)|dΣ

)
.(3.14)

From (3.14), V is continuous on L1(O) and then V ∈ L∞(O) and

|
∫

O
V (t, x)Θ(t, x)dO − |ϕ|L1(O)

∫

O−P
sgn(ϕ(t, x))Θ(t, x)dΣ| ≤(3.15)

≤ |ϕ|L1(O)

∫

P
|Θ(t, x)|dΣ ∀ Θ ∈ L1(O).

If we choose Θ ∈ L1(O) with support contained in O − P , we obtain

V = |ϕ|L1(O)

ϕ

|ϕ| a.e. in O − P.

Next, if we take Θ ∈ L1(P ) we obtain

|
∫

P
V (t, x)Θ(t, x)dΣ| ≤ |ϕ|L1(O)

∫

P
|Θ(t, x)|dΣ,

and then

|V (t, x)| ≤‖ V ‖L∞(P )≤ |ϕ|L1(O) almost every (x, t) ∈ P.

This proves that there exists v ∈ sgn(ϕ)χO such that

V = |ϕ|L1(O)v.

Reciprocally, if V ∈ |ϕ|L1(O)sgn(ϕ)χO, then

θ0 →
∫

O
V (t, x)θ(t, x)dΣ

17



is a continuous linear function on L2(Ω) and so, there exists a unique ξ ∈ L2(Ω)

such that

(ξ, θ0) =
∫

O
V (t, x)θ(t, x)dΣ ∀ θ0 ∈ L2(Ω).

Obviously ξ satisfies (3.13) and then ξ ∈ ∂J(ϕ0).

As a second step, consider

J2(ϕ
0) = ε

(∫

Ω
|ϕ0(x)|2dx

) 1
2

.

By remark 19,

(∂J2(ϕ
0), θ0) =

ε

2

(∫

Ω
|ϕ0(x)|2dx

)− 1
2

2
∫

Ω
ϕ0(x)θ0(x)dx

= ε|ϕ0|−1
2

∫

Ω
ϕ0(x)θ0(x)dx.

Finally, by linearity,

(∂J3(ϕ
0), θ0) = −

∫

Ω
yd(x)θ0(x)dx. 2

Now we are ready to prove a linear version of theorem 1.

Theorem 21 If |yd|2 > ε and ϕ̂ is the solution of (3.6) satisfying ϕ̂(T ) = ϕ̂0,

then there exists v ∈ sgn(ϕ̂)χO such that, for every h ∈ L2(Q), the solution of




yt −∆y + a(t, x)y = h in Q
∂y

∂ν
= |ϕ̂|L1(O)vχO on Σ

y(0) = y0 on Ω

(3.16)

satisfies

y(T ) = yd − ε
ϕ̂0

|ϕ̂0|2 ,

and then |y(T )− yd|2 = ε.

Remark 22 If, y0 ≡ 0 and h ≡ 0, the case |yd| ≤ ε is trivially solved with the

control v ≡ 0.

Proof of theorem 21. Using linearity and proposition 15, we can assume y0 ≡ 0

and h ≡ 0. Now, because of the subdifferentiability of J(.; a, yd) at ϕ̂0 (6= 0 by

(3.8)), we know (see remark 17) that

0 ∈ ∂J(ϕ̂0),
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which is equivalent, from lemma 20, to the existence of v ∈ sgn(ϕ̂)χO, such that

−|ϕ̂|L1(O)

(∫

O
v(x, t)θ(x, t)dxdt

)
=

ε

|ϕ̂0|2
∫

Ω
ϕ̂0(x)θ0(x)dx(3.17)

−
∫

Ω
yd(x)θ0(x)dx.

On the other hand, it follows from remark 11, that since θ is the solution of (3.6)

and y is an admissible “test function” in X1(Q),

(y(T ), θ0) = |ϕ̂|L1(O)

(∫

O
v(x, t)θ(x, t)dxdt

)
.(3.18)

Then, from (3.17) and (3.18), we obtain

(y(T ), θ0) = (yd − ε
ϕ̂0

|ϕ̂0|2 , θ0) ∀ θ0 ∈ L2(Ω)

and we conclude that y(T ) = yd − ε
ϕ̂0

|ϕ̂0|2 . 2

For the study of the nonlinear case we shall need to apply a fixed point theorem

for multivalued operators:

Definition 23 Let X and Y be Banach spaces and Λ : X → P(Y ) a multivalued

function. We say that Λ is upper hemicontinuous at x0 ∈ X, if for every p ∈ Y ′,

the function

x → σ(Λ(x), p) = sup
y∈Λ(x)

< p, y >Y ′×Y

is upper semicontinuous at x0. We say that the multivalued function is upper

hemicontinuous on a subset K of X if it satisfies this property for every point of

K.

Theorem 24 (Kakutani’s fixed point theorem). Let K ⊂ X be a convex

and compact subset and Λ : K → K an upper hemicontinuous application with

convex, closed and nonempty values. Then, there exists a fixed point x0, of Λ.

For a proof see, for instance, Aubin [1] page 126.

Proof of theorem 7. We fix yd ∈ L2(Ω), ε > 0 and we define

g(s) =





f(s)− f(s0)

s− s0

s 6= s0

f ′(s0) s = s0.
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Then, from the assumption made on f we have that g ∈ L∞(IR) ∩ C(IR).

Now, using theorem 21, for each z ∈ L2(Q), b ∈ β(z) and ε > 0 it is possible

to find two functions ϕ(z, b) ∈ L2(Q) and v(z, b) ∈ sgn(ϕ(z, b))χO such that the

solution y = yz
b of





yt −∆y + g(z)y = −f(s0) + g(z)s0 − a(x, t)b + h in Q
∂y

∂ν
= uχO on Σ

y(0) = y0 on Ω,

(3.19)

(where u =‖ ϕ(z, b) ‖L1(O) v(z, b)) satisfies

|y(T )− yd|L2(Ω) ≤ ε.(3.20)

Now, as g(·) is bounded, from proposition 15 and proposition 8 we obtain that

{‖ ϕ(z, b) ‖L1(O) v(z, b), z ∈ L2(Q), b ∈ β(z)} is bounded in L∞(Q).(3.21)

Let

M = sup
z∈L2(Q)
b∈β(z)

‖ ϕ(z, b) ‖L1(O)< ∞.(3.22)

Obviously u =‖ ϕ(z, b) ‖L1(O) v(z, b) satisfies

‖ u ‖L∞(Σ)≤ M.(3.23)

Therefore, if we define the operator

Λ : L2(Q) → P(L2(Q))

by

Λ(z) = {y satisfying (3.19), (3.20) for some b ∈ β(z) and u verifying (3.23)},

we have seen that for each z ∈ L2(Q), Λ(z) 6= ∅. In order to apply Kakutani’s

fixed point theorem, we must verify that the following properties hold:

(i) There exists a compact subset U of L2(Q), such that for every z ∈ L2(Q),

Λ(z) ⊂ U .

(ii) For every z ∈ L2(Q), Λ(z) is a convex, compact and nonempty subset of

L2(Q).
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(iii) Λ is upper hemicontinuous.

The proof that these properties hold is as follows:

(i) From proposition 8 we know that there exists a bounded subset U of H1/2,1(Q)

such that for every z ∈ L2(Q), Λ(z) ⊂ U . Now, to see that we can choose U

compact we shall prove that the set

Y = {y satisfying (3.19) for some z ∈ L2(Q), b ∈ β(z) and u verifying (3.23)}

is a relatively compact subset of L2(Q). But this is easy to prove using proposition

8 and the fact that

H1/2,1(Q) ⊂ Lq([0, T ]; L2(Ω)) with compact imbedding ∀q < ∞(3.24)

(see lemma 5, page 78, and theorem 3, page 80, of Simon [22]).

(ii) We have already seen that for every z ∈ L2(Q), Λ(z) is a nonempty subset

of L2(Q). Further, Λ(z) is obviously convex because B(yd, ε), β(z) and {u ∈
L∞(Σ) : u satisfies (3.23)} are convex sets. Then, we have to see that Λ(z)

is a compact subset of L2(Q). In (i) we have proved that Λ(z) ⊂ U with U

compact. Let (yn)n be a sequence of elements of Λ(z) which converges in L2(Q)

to y ∈ U . We have to prove that y ∈ Λ(z). We know that there exist bn ∈ β(z)

and un ∈ L∞(Σ) satisfying (3.23) such that




yn
t −∆yn + g(z)yn = −f(s0) + g(z)s0 − abn + h in Q

∂yn

∂ν
= unχO on Σ

yn(0) = y0 on Ω

|yn(T )− yd|2 ≤ ε.

(3.25)

Now, using the facts that β is a bounded maximal monotone graph and that the

controls un are uniformly bounded, we deduce that un → u and bn → b in the

weak-topology of L2(Σ) and of L2(Q) respectively. Moreover, u satisfies (3.23)

and since any maximal monotone graph is strongly-weakly closed (see proposition

3.5, p. 75 of Barbu [3]) over any Banach space with uniformly convex dual (as,

for instance, L2(Q)) we obtain that b ∈ β(z). Therefore, if we pass to the limit

in (3.25) we obtain




yt −∆y + g(z)y = −f(s0) + g(z)s0 − ab + h in Q
∂y

∂ν
= uχO on Σ

y(0) = y0 on Ω.
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Further, we shall see that yn(T ) converges to y(T ) in L2(Ω). Let ωn = y − yn be

the solution of




ωn
t −∆ωn + g(z)ωn = −a(b− bn) in Q

∂ωn

∂ν
= (u− un)χO on Σ

ωn(0) = 0 on Ω.

Then, if we choose γn ∈ H1/4,1/2(Σ) such that ‖ γn− (u− un)χO ‖L2(Σ)≤ 1
n
, then

γn → 0 in the weak topology of L2(Σ) and the solution ωn of





ωn
t −∆ωn + g(z)ωn = A(b− bn) in Q

∂ωn

∂ν
= γn on Σ

ωn(0) = 0 on Ω

satisfies ωn ∈ H1,2(Q) (see Lions-Magenes [19]). Therefore ωn is a strong solution

and if we “multiply” by ωn and integrate, we obtain that

‖ ωn(T ) ‖2
L2(Ω)≤ k1

∫

Q
|(b− bn)ωn|dxdt + k2

∫

Σ
|γnωn|dxdt → 0 as n →∞.

Thus, ωn(T ) converges to 0 in L2(Ω) and by again using regularity results (see

Lions-Magenes [19]) we see that

‖ ωn − ωn ‖H3/4,3/2(Q)≤ k ‖ γn − (u− un)χO ‖L2(Σ) .

Finally, as H3/4,3/2(Q) ⊂ C([0, T ]; L2(Ω)) is a continuous injection (even a com-

pact imbedding; see theorem 3 of Simon [22]) we have

‖ ωn(T )− ωn(T ) ‖L2(Ω)→ 0 as n →∞.

Thus ωn(T ) → 0 in L2(Ω, which implies that |y(T )− yd|2 ≤ ε. This proves that

y ∈ Λ(z) and concludes the proof of (ii).

(iii) We must prove that for each z0 ∈ L2(Q),

lim sup
zn→z0

σ(Λ(zn), k) ≤ σ(Λ(z0), k), ∀ k ∈ L2(Q).

We have seen in (ii) that Λ(z) is a compact set, which implies that for every

n ∈ IN there exists yn ∈ Λ(zn) such that

σ(Λ(zn), k) =
∫

Q
k(t, x)yn(t, x)dxdt.
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Now by (i) (yn)n ⊂ U , a compact set. Thus, there exists y ∈ L2(Q) such that

(after extracting a subsequence) yn → y on L2(Q). We shall prove that y ∈ Λ(z0).

We know that there exist bn ∈ β(zn) and un ∈ L∞(Σ) satisfying (3.23) such that





yn
t −∆yn + g(zn)yn = −f(s0) + g(zn)− abn + h in Q

∂yn

∂ν
= unχO on Σ

yn(0) = y0 on Ω

|yn(T )− yd|2 ≤ ε.

(3.26)

Hence there exists u ∈ L∞(Σ) satisfying (3.23) such that un → u in the weak-∗
topology of L∞(Σ). Moreover, by using again that β is a bounded strongly-weakly

closed graph and that the heat equation has a smoothing effect (as in the proof of

(ii)), we deduce that y satisfies (3.19) and (3.20) with z = z0 for some u ∈ L∞(Σ)

satisfying (3.23) and some b ∈ β(z0), which implies that y ∈ Λ(z0). Then, for

every k ∈ L2(Q),

σ(Λ(zn), k) =
∫

Q
k(t, x)yn(t, x)dxdt →

∫

Q
k(t, x)y(t, x)dxdt ≤

≤ sup
y∈Λ(z0)

∫

Q
k(t, x)y(t, x)dxdt = σ(Λ(z0), k),

which proves that Λ is upper hemicontinuous and concludes the proof of (iii).

Finally, the restriction of Λ to K = conv(U) (the convex enveloppe of U), which

is a compact set in L2(Q), satisfies the assumptions of Kakutani’s fixed point

theorem. Thus, Λ has a fixed point y ∈ K. Furthermore, by construction, there

exists a control u ∈ L∞(Σ) satisfying (3.23) such that





yt −∆y + f(y) + a(x, t)β(y) 3 h in Q
∂y

∂ν
= uχO on Σ

y(0) = y0 on Ω

|y(T )− yd|2 ≤ ε.

(3.27)

Therefore, y is the solution that we were looking for. 2

3.2 Boundary Observation.

Let Ω a bounded smooth subset of IRn, Q = Ω × (0, T ), Σ1 a subset of Σ =

∂Ω× (0, T ) such that Σ2 = Σ\Σ1 has nonempty interior set, a(·, ·) ∈ L∞(Q), f a

23



real function, h ∈ L2(Q), y0 ∈ L2(Ω) and β a bounded maximal monotone graph

of IR2 such that D(β) = IR. We study “the approximate controllability” with

observation on Σ1 of the problem

(P)





yt −∆y + a(x, t)β(y) 3 h in Q
∂y

∂ν
+ f(y) = 0 on Σ1

∂y

∂ν
= v on Σ2

y(x, 0) = y0(x) on Ω.

Here we define the weak solutions of (P) in a way similar to that in which we

defined weak solutions in section 3.1.

Theorem 25 If f is a nondecreasing continuous function satisfying

|f(r)| ≤ C(1 + |r|)(3.28)

for some constant C > 0, then problem (P) has the approximate controllability

property with control space U = L2(Σ2) and observation y(v)|Σ1 ∈ L2(Σ1).

Proof: Given yd ∈ L2(Σ1) and ε > 0, for 0 < α < 1/2 we take

U = {z ∈ H1/2−α/2,1−α(Q) : ‖ z|Σ1 − yd ‖L2(Σ1)≤ ε}.

We point out that, since the trace operator from H1/2−α/2,1−α(Q) to L2(Σ) is

continuous (see, for instance, section 2.2 of Chapter 4 of Lions-Magenes [19]), it

is easy to prove that U is a closed set with the topology of H1/2−α/2,1−α(Q) and

so, it is a Banach space. We define the multivalued mapping

F : U → P(U)

by

F(z) = {yb
z(v) for some b ∈ β(z), ‖ v ‖L2(Σ2)≤ R, ‖ yb

z(v)|Σ1 − yd ‖L2(Σ1)≤ ε},

where yb
z(v) is the solution of the associated problem





yt −∆y + a(x, t)b = h in Q
∂y

∂ν
+ f(z|Σ1) = 0 on Σ1

∂y

∂ν
= v on Σ2

y(x, 0) = y0(x) on Ω.

(3.29)
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By regularity results (see Lions-Magenes [19]), as f(z|Σ1) ∈ L2(Σ) (by (3.28)),

we obtain that yb
z(v) ∈ H1/2,1(Q) for every z ∈ H1/2−α/2,1−α(Q), b ∈ β(z) and

v ∈ L2(Σ2). Moreover

‖ yb
z(v) ‖H1/2,1(Q)≤ C(1+ ‖ h ‖L2(Q) + ‖ v ‖L2(Σ2) + ‖ y0 ‖L2(Ω))(3.30)

(see proposition 8). To prove theorem 25 we shall use Kakutani’s fixed point

theorem. Next, we prove that the hypotheses of that theorem are satisfied.

From (3.30) we know that there exists a bounded subset V of U ∩H1/2,1(Q)

such that for each z ∈ U , F(z) ⊂ V . Then, using the facts that H1/2,1(Q) ⊂
H1/2−α/2,1−α(Q) is a compact imbedding and U is a closed set, we can choose V
to be a compact set of U . Also, it is easy to prove that F(z) is a convex set for

all z ∈ U . To see that F(z) is a compact set for every z ∈ U we suppose that

(yn)n is a sequence of elements of F(z) which converges in H1/2−α/2,1−α(Q) to

y ∈ V . We have to prove that y ∈ F(z). We know that there exist bn ∈ β(z) and

un ∈ L2(Σ2) satisfying ‖ un ‖L2(Σ2)≤ R, such that




yn
t −∆yn + a(x, t)bn = h in Q

∂yn

∂ν
+ f(z|Σ1

) = 0 on Σ1

∂yn

∂ν
= un on Σ2

yn(0) = y0 on Ω

‖ yn − yd ‖L2(Σ1)≤ ε.

(3.31)

Now, using the facts that β is a bounded maximal monotone graph and that the

controls un are uniformly bounded, we deduce that un → u and bn → b in the

weak-topology of L2(Σ2) and of L2(Q) respectively. Also u satisfies ‖ u ‖L2(Σ2)≤
R and since any maximal monotone graph is strongly-weakly closed (see e.g.

proposition 3.5, p. 75 of Barbu [3]) over any Banach space with uniformly convex

dual (as, for instance, L2(Q)) we obtain that b ∈ β(z). Therefore, if we pass to

the limit in (3.31) (taking into account that f(yn) → f(y) in L2(Σ)), we obtain




yt −∆y + a(x, t)b = h in Q
∂y

∂ν
+ f(z|Σ1

) = 0 on Σ1

∂y

∂ν
= u on Σ2

y(0) = y0 on Ω.

Further, ‖ yn − y ‖L2(Σ1)≤‖ yn − y ‖H1/2−α/2,1−α(Q)→ 0 and so ‖ y − yd ‖L2(Σ1)≤ ε.

To show that F(z) is not the empty set we shall use the following lemma:
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Lemma 26 We consider the linear problem

(LP)





Yt −∆Y = F in Q
∂Y

∂ν
= G on Σ1

∂Y

∂ν
= v on Σ2

Y (x, 0) = y0(x) on Ω

‖ v ‖L2(Σ2)≤ R,

where F and G lie in bounded sets B of L2(Q) and E of L2(Σ1) respectively. If

vF,G ∈ L2(Σ2) is the optimal control of this problem relative to the functional

J(v) =
∫

Σ1

|Y (v)− yd|2dΣ

(vF,G exists by the compactness result pointed out earlier), then for every ε > 0

we can choose R large enough to obtain

|Y (F, G, vF,G)− yd|L2(Σ1) ≤ ε for all F ∈ B and G ∈ E.

Proof: By linearity we can assume y0 ≡ 0. We take γ > 0 small enough.

Then, if F ∈ H−(1/4+γ),−2(1/4+γ)(Q) and G ∈ H−γ,−2γ(Σ1), we obtain (see,

for instance, Lions-Magenes [19]) that the solution Y (F,G) of (LP) belongs to

H3/4−γ,2(3/4−γ)(Q).

Let PR : H−(1/4+γ),−2(1/4+γ)(Q) × H−γ,−2γ(Σ1) → L2(Σ1) be the mapping

defined by

PR(F ×G) = Y (F, G, vF,G)|Σ1 .

The optimallity condition for vF,G is
∫

Σ1

(Y (F, G, vF,G)− yd)Y (0, 0, v − vF,G)dΣ ≥ 0 ∀ v ∈ L2(Σ2), ‖ v ‖L2(Σ2)≤ R.

Then, by adding the inequalities
∫

Σ1

(Y (F1, G1, vF1,G1)− yd)Y (0, 0, vF1,G1 − vF2,G2)dΣ ≤ 0

and ∫

Σ1

(Y (F2, G2, vF2,G2)− yd)Y (0, 0, vF2,G2 − vF1,G1)dΣ ≤ 0

we obtain
∫

Σ1

[Y (F1, G1, vF1,G1)− Y (F2, G2, vF2,G2)] Y (0, 0, vF1,G1 − vF2,G2)dΣ ≤ 0.(3.32)
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Now, as

Y (F1, G1, vF1,G1)−Y (F2, G2, vF2,G2) = Y (F1−F2, G1−G2, 0)+Y (0, 0, vF1,G1−vF2,G2),

using (3.32) we see that

‖ Y (F1, G1, vF1,G1)− Y (F2, G2, vF2,G2) ‖2
L2(Σ1)

≤
∫

Σ1

[Y (F1, G1, vF1,G1)− Y (F2, G2, vF2,G2)] Y (F1 − F2, G1 −G2, 0)dΣ.

By the Hölder and Young inequalities we conclude that

‖ Y (F1, G1, vF1,G1)− Y (F2, G2, vF2,G2) ‖2
L2(Σ1)≤‖ Y (F1 − F2, G1 −G2, 0) ‖2

L2(Σ1)

≤‖ Y (·; F1 − F2, G1 −G2, 0) ‖2
H3/4−γ,2(3/4−γ)(Q)

≤ C(‖ F1 − F2 ‖2
H−(1/4+γ),−2(1/4+γ)(Q) + ‖ G1 −G2 ‖2

H−γ,−2γ(Σ1)),

where the constant C is independent of R. Therefore, PR is equicontinuous

and by Ascoli’s theorem, (PR)R>0 converges uniformly over the compact sets of

H−(1/4+γ),−2(1/4+γ)(Q)×H−γ,−2γ(Σ1). Thus, as

L2(Q)× L2(Σ1) ⊂ H−(1/4+γ),−2(1/4+γ)(Q)×H−γ,−2γ(Σ1)

with compact imbedding, the result is obtained by using the fact that the ap-

proximate controllability of problem (LP) implies

lim
R→∞

PR(F ×G) = yd in the topology of L2(Σ1). 2

End of the proof of theorem 25: Applying (3.28) and the previous lemma

we can choose R such that F(z) is a nonempty set, for all z ∈ U . Finally, in

order to apply Kakutani’s fixed point theorem, we have to prove that F is upper

hemicontinuous. Therefore, we shall prove that for every z0 ∈ H1/2−α/2,1−α(Q),

lim sup
zn→z0

σ(F(zn), k) ≤ σ(F(z0), k), ∀k ∈ (H1/2−α/2,1−α(Q))′.

Since we have already seen that F(z) is a compact set, we know that for each

n ∈ IN there exists yn ∈ F(zn) such that

σ(F(zn), k) =< k, yn > .
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Now, by using that (yn)n ⊂ V , we know that there exists y ∈ H1/2−α/2,1−α(Q) such

that (after extracting a subsequence) yn → y in the topology of H1/2−α/2,1−α(Q).

We shall show that y ∈ F(z0).

We know that there exists bn ∈ β(zn) and vn ∈ L2(Σ2) satisfying

‖ v ‖L2(Σ2)≤ R,(3.33)

such that 



yn
t −∆yn + a(x, t)bn = h in Q

∂yn

∂ν
+ f(zn) = 0 on Σ1

∂yn

∂ν
= vn on Σ2

yn(x, 0) = y0(x) on Ω

‖ yn − yd ‖L2(Σ1)≤ ε.

Thus there exists v ∈ L2(Σ2) satisfying (3.33) such that vn → v in the weak

topology of L2(Σ2). Moreover, by using that β is a bounded strongly-weakly

closed graph and that the heat equation has a smoothing effect, we deduce (as

before) that y satisfies (3.29) and

‖ yn − yd ‖L2(Σ1)≤ ε,

with z = z0 for some v ∈ L2(Σ2) satisfying (3.33) and some b ∈ β(z0), which

implies that y ∈ F(z0). Then, for every k ∈ (H1/2−α/2,1−α(Q))′ we obtain

σ(F(zn), k) = < k, yn > → < k, y > ≤ sup
y∈F(z0)

< k, y > = σ(F(z0), k),

which proves that F is upper hemicontinuous. Finally, the restriction of F to K =

conv(V) (the convex enveloppe of V), which is a compact set in H1/2−α/2,1−α(Q),

satisfies the assumptions of Kakutani’s fixed point theorem. Thus, F has a fixed

point y ∈ K. Further, by construction, there exists a control v ∈ L2(Σ2) satisfying

(3.33) such that 



yt −∆y + a(x, t)β(y) 3 h in Q
∂y

∂ν
+ f(y) = 0 on Σ1

∂y

∂ν
= v on Σ2

y(x, 0) = y0(x) on Ω

‖ y − yd ‖L2(Σ1)≤ ε.
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Therefore, y is the solution that we were looking for. 2
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of XIII C.E.D.Y.A./III Congreso de Matemática Aplicada. Univ. Politécnica
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20 Mizohata,S. (1958) Unicité du prolongement des solutions pour quelques o-
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J.L. Lions Eds., Séminaire du Collège de France 1987-1988, vol X, Research

Notes in Mathematics, Pitman, (1991), pp. 357-391.

31


